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In this paper, a new invariant feature of two-dimensional contours is re-

ported: the Invariance Signature. The Invariance Signature is a measure

of the degree to which a contour is invariant under a variety of transfor-

mations, derived from the theory of Lie transformation groups. It is shown

that the Invariance Signature is itself invariant under shift, rotation and

scaling of the contour. Since it is derived from local properties of the con-

tour, it is well-suited to a neural network implementation. It is shown that

a Model-Based Neural Network (MBNN) [8, 37] can be constructed which

computes the Invariance Signature of a contour, and classi�es patterns on

this basis. Experiments demonstrate that Invariance Signature networks

can be employed successfully for shift-, rotation- and scale-invariant optical

character recognition.
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1. INTRODUCTION

In this paper we are concerned in particular with the invariant perception of

two-dimensional patterns under shift, rotation and scaling in the plane. This corre-

sponds to the ability of humans to recognize patterns such as typed or handwritten

characters independently of their size, orientation or position, which they are able

to do with little or no di�culty when reading a document such as an engineering

or architectural drawing.

The aim of any invariant pattern recognition technique is to obtain a represen-

tation of the pattern in a form that is invariant under some transformations of the
1
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original image. It is often claimed that an ideal technique would produce a rep-

resentation of the pattern which was not only invariant, but which also uniquely

characterized the input pattern. This goal is not always as desirable as it might

seem.

In many pattern recognition problems, the aim is to produce a system which

classi�es input patterns as belonging to a particular class, rather than to identify

uniquely every input pattern presented. In such cases a unique representation for

each possible input pattern can actually be a disadvantage. All that is required is

an invariant representation which retains enough information for distinct classes to

be distinguished. Indeed, if all members of a class are identical, or nearly so, in the

invariant representation this can greatly reduce the size of the training set required

by many recognition algorithms. The Invariance Signature provides a means of

realizing this goal.

2. PRIOR METHODS FOR INVARIANT PATTERN

RECOGNITION

A large number of techniques for invariant pattern recognition has been proposed.

They vary greatly. Some treat the image as a pattern of pixels, others operate on

higher level representations, such as contours. Many are expensive in computation

time and/or space. They have varying degrees of sensitivity to noise. A brief review

of popular techniques follows.

2.1. Integral Transforms

An approach that has long been popular is to seek an integral transform of the im-

age which is invariant under some speci�ed transformations. Most such techniques

are based upon the Fourier transform: in the transform domain the amplitude

spectrum is invariant under shifts of the image and the phase encodes the shift1.

This idea can be generalized into a scheme for computing the kernel of an integral

transform which will map an image into a space in which speci�ed transformations

are reduced to shifts. This is possible if the desired transformations are speci�ed

by Lie transformation groups, and the coordinates in which the transformations

reduce to shifts are the canonical coordinates of the generators of the transforma-

tion groups [15, 33, 35, 16]. Such transforms, in various guises, form the bases of

many invariant pattern recognition techniques [1, 26, 7, 15]. It is important to note

that the transformed image is of (at least) the same dimensionality as the original.

The invariant component does not uniquely characterize the input, and the issue

of pattern recognition is not addressed.

2.1.1. Moments

Integrals can also be used to compute geometrical moments of the image. Certain

functions of the moments are invariant under transformations of the image [21].

Geometrical moments are not fault-tolerant, and generally produce disappointing

pattern recognition results [44]. Better results have been obtained using alternative

1It should be noted, however, that the phases of the spatial frequency components can be varied
independently. There are thus many possible images of greatly varying visual appearance which
have the same amplitude spectrum.
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sets, such as the Zernike moments [22]. Again, computing a set of moments is

expensive.

2.2. Matched Filtering and Convolution

Matched Filtering is one of the oldest techniques for pattern recognition [32, 2].

Combined with convolution it becomes cross-correlation: e�ectively an exhaustive

search of the image for all possible transformed versions of a template pattern.

Some version of cross-correlation plays a role in many invariant pattern recognition

techniques [1, 7, 30, 46, 23, 26], despite the fact that it is computationally-expensive,

and this cost scales exponentially with the number of transformations with respect

to which invariance is desired.

2.3. Parts and Relationships

In the above techniques, an invariant representation of the whole image is sought.

Matching is done on a pixel-by-pixel basis. A di�erent approach is to view an image

as a set of parts and relationships. For example, the angle between two lines is

invariant under shifts, rotations and scalings. The lines are parts, and the angle

is their relationship. In \parts and relationships" techniques, matching is done

between abstracted properties of the image, rather than between pixels. These

techniques require some form of sub-graph matching [24], which is known to be an

NP-complete problem [2]. The challenge is thus to �nd an algorithm that can obtain

an acceptable solution in reasonable time. Explicit search may be satisfactory for

su�ciently small graphs. Another approach is relaxation labeling [24].

2.4. Cross-ratios

The techniques discussed in this section are often designed for the projective

geometry appropriate in three-dimensional object recognition, rather than two-

dimensional shift, rotation and scale invariance. Projective transformations pre-

serve neither lengths, nor ratios of lengths. The ratio of two ratios of lengths,

however, is invariant [44]. Such a ratio is known as a cross-ratio. Since projec-

tive transformations are many-to-one, matching cross-ratios are a necessary, but

not su�cient, condition for feature-matching. Cross-ratios are used in many recog-

nition problems involving projective geometry [17, 4, 43], and can be de�ned on

the basis of four collinear points or four concurrent lines [28]. In practice, this

means that such labelled reference points or lines must be extracted from the image

before the technique can be applied. Candidate points and lines can, for exam-

ple, be de�ned using points of inection, corners or bitangents. The extraction of

such reference points, even from synthetic images, and their ordering is in itself a

non-trivial problem [13, 39].

2.5. Contour-Based Methods

In this paper we are speci�cally interested in the invariant recognition of con-

tours. There are two basic approaches to contour recognition: the contour may be

represented by a function �tted to image points belonging to the contour, or treated

as a group of pixels. Contour recognition is of particular interest because there are

many applications in which patterns naturally consist of line drawings (e.g. charac-

ter recognition, circuit diagrams, engineering or architectural drawings). In other
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applications contours may be extracted via some form of edge detection. Moreover,

there is evidence that the human visual system applies a contour-based approach to

pattern recognition even when no contour exists in the image: an implied contour

is interpolated [9].

2.5.1. The Hough Transform

Perhaps the simplest contour-based technique is the Hough transform [2]. Vari-

ants of the Hough transform occur frequently in the invariant pattern recognition

literature [30, 12, 25]. The Hough transform and its generalizations can be inter-

preted as cross-correlation techniques, where the template is a parametric curve

rather than an image [30]. Its disadvantage is that it is restricted in practice to a

reasonably small set of template curves, since both the computation time and the

data storage requirements increase exponentially with the number of parameters.

2.5.2. Algebraic Invariants

Another approach is to compute invariants of a continous function �tted to the

contour. This promises to avoid the expenses of exhaustive methods such as the

Hough transform. Algebraic invariants are well-suited for use with contours which

can be expressed by an implicit polynomial f(x; y) = 0. An example is the family

of conic sections, which can be de�ned in matrix form: XTAX = 0: The coordi-

nates can be transformed so that A is diagonal. Thus properties of A invariant

under similarity transforms are invariant descriptors of the conic. One such feature

is the determinant. In fact, any symmetric function of the eigenvalues of A is an

invariant. A must be obtained by �tting a polynomial to the image { a di�cult

and potentially computationally-expensive problem in many real applications. The

matching process, however, is cheap. A high-resolution image of the curve is re-

quired for accurate coe�cient estimation, though Forsyth et al. claim that \For

applications in model-based vision, it is far more important that a representation

be projectively invariant than that it be a good approximation" [17].

2.5.3. Di�erential Invariants

Di�erential Invariants arise most naturally when the points on a curve, x, are

expressed as a function of a parameter t, x = x(t), rather than by an implicit func-

tion. The natural shape descriptors in such a representation are the derivatives
dnxi
dtn

. These descriptors are local, since they are evaluated at t, unlike the global

descriptors derived using algebraic invariants. A di�erential invariant is a function

of the dnxi
dtn

which does not change under transformations of x and t. Various di�er-

ential invariants have been applied: curvature, torsion and Gaussian curvature, for

instance, are all invariant under Euclidean transformations [17]. Di�erential invari-

ants are complete: a small set of invariants contains all the essential information

about the curve. Also, their locality makes them insensitive to occlusion. Whilst

elegant, their application requires the computation of high-order derivatives of the

contour, which is known often to be infeasible [42, 45]. Moreover, these derivatives

are raised to high powers, magnifying the estimation error [5].

2.5.4. Semi-di�erential Invariants

In the above methods, there is often a choice between making a search for refer-

ence points or having to compute high-order derivatives of the extracted contours,
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both of which processes are prone to error. A compromise between these approaches

leads to a class of invariants known as semi-di�erential Invariants [42, 45].

3. LIE TRANSFORMATION GROUPS AND INVARIANCE

One approach to invariant pattern recognition is to consider how local features

change under global transformations. This leads naturally to the study of Lie

transformation groups, which have been a component of many, varied invariant

pattern recognition techniques [18, 19, 15, 14, 33, 35, 38].

We derive a new shift-, rotation- and scale-invariant function of a two-dimensional

contour, the Invariance Measure Density Function. It is shown that several such

functions can be combined to yield an Invariance Signature for the contour. This

Invariance Signature has several properties that make it attractive for implemen-

tation in an MBNN: it is based on local properties of the contour, so initial calcu-

lations are inherently parallel; it is statistical in nature, and its resolution can be

chosen at the designer's discretion, allowing direct control over the dimensionality

of the network implementation. The use of the Invariance Signature, however, is

not limited to neural implementations.

Whilst patterns are not represented uniquely by the Invariance Signature, it will

be shown in x6 that classes of patterns are represented su�ciently di�erently for

optical character recognition applications.

3.1. One Parameter Lie Groups in Two Dimensions

A Lie group is a continuous transformation group with a di�erentiable structure

[33]. For our purposes, the most interesting groups are the one-parameter Lie groups

de�ned on the plane. These include rotation, dilation and translation. They are

smooth transformations of the form

x0 = �(x; y; ") y0 = �(x; y; "): (1)

The parameter " determines which element of the group the transformation is. For

instance, if "0 corresponds to the identity element, we have

x0 = �(x; y; "0)= x y0= �(x; y; "0) = y: (2)

There is a vector �eld ~g =
�
gx gy

�T
associated with each Lie group G, which

gives the direction in which a point (x; y) is \dragged" by an in�nitesimal transfor-

mation under the group. It is given by

gx(x; y) =
@�

@"

����
"="0

gy(x; y) =
@�

@"

����
"="0

: (3)

This vector �eld ~g allows an operator LG to be de�ned,

LG = gx
@

@x
+ gy

@

@y
: (4)

LG is called the generator of G, because it can be used to construct the �nite

transformation corresponding to the in�nitesimal dragging described in Eqs. (3).
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3.2. From In�nitesimal to Finite Transformations

Consider the case in which the vector �eld specifying the in�nitesimal transfor-

mation at each point (Eqs. (3)) is known. We wish to construct Eqs. (1), specifying

the �nite transformation. We will consider the transformation of x in detail. For

a small change in the group parameter from the identity element, " = "0 +�", we

can approximate the change in x by

x0 = x+�x � x+�"
@�

@"

����
"="0

: (5)

We now wish to �nd a �nite transformation corresponding to n applications of the

�" transformation. This will approximate the �nite transformation corresponding

to the group element speci�ed by parameter " = n�". Let xi be the value of x0

after i applications of the �" transformation. We obtain

x0 = x

x1 = x0 +
"

n
LGx0 =

�
1 +

"

n
LG
�
x

x2 = x1 +
"

n
LGx1

=
�
1 +

"

n
LG
�
x1

=
�
1 +

"

n
LG
�2
x

and thus

xn =
�
1 +

"

n
LG
�n

x:

(6)

In the limit as n ! 1, the approximation becomes exact, giving the �nite trans-

formations

�(x; y; ") = lim
n!1

�
1 +

"

n
LG
�n

x �(x; y; ") = lim
n!1

�
1 +

"

n
LG
�n

y: (7)

An example of the direct application of the derivation of the familiar rotation

transformation using Eqs. (7) may be found in [37].

3.3. Functions Invariant Under Lie Transformations

A function is said to be invariant under a transformation if all points of the

function are mapped into other points of the function by the transformation. Con-

sider a function F (x; y). We wish to determine its invariance with respect to a Lie

transformation group G. Let

~g(x; y) =
�
gx(x; y) gy(x; y)

�T
(8)

be the associated vector �eld, and LG be the generator of G. F is constant with

respect to the action of the generator if

LGF = 0: (9)
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This can be written in terms of the vector �eld as

rF � ~g(x; y) = 0: (10)

Now consider a contour C parameterized by t speci�ed by the implicit function

8t F (x(t); y(t)) = K: (11)

Since F is constant on the contour, we have

dF

dt
=

@F

@x

dx

dt
+

@F

@y

dy

dt
= 0: (12)

Combining Eqs. (10) and (12) shows that F is invariant under the Lie transforma-

tion generated by LG if

dy

dx
=

gy
gx

: (13)

everywhere on the contour.

The condition derived in Eq. (13) has a very natural interpretation: a contour

is invariant under a transformation group G if the tangent to the contour at each

point is in the same direction as the vector �eld ~g corresponding to the in�nitesimal

transformation that generates the group.

4. THE INVARIANCE SIGNATURE: FROM LOCAL

INVARIANCE MEASURES TO GLOBAL INVARIANCE

We now propose a new shift-, rotation- and dilation-invariant signature for con-

tours. We call this an Invariance Signature, since it is derived from the degree

to which a given contour is consistent with invariance under a set of Lie trans-

formation groups. We show that although a given contour may not be invariant

under a transformation group G (i.e. Eq. (13) does not hold), the overall departure

from invariance under G of the contour is invariant under the similarity group of

transformations. This is the central idea of this paper. It is important to note that

the invariance of the Invariance Signature of a contour C under G does not imply

the invariance of C under G: it is the manner in which C departs from invariance

under G which is invariant.

4.1. The Local Measure of Consistency

We have seen in Eq. (13) that in order for a contour C to be invariant under

a transformation group G the tangent to the contour must be everywhere parallel

to the vector �eld de�ned by the generator of the group. We now de�ne the Local

Measure of Consistency with invariance under a transformation group G at a point

(x; y) on C, �G(x; y).

�G(x; y) =
����̂(x; y) � ĝG(x; y)��� (14)

The absolute value is used because only the orientation of the tangent vector is

signi�cant, not the direction. At each point both the tangent vector to the contour,
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~�(x; y) and the vector �eld ~g(x; y) are normalized:

ĝ(x; y) =
gx(x; y)̂{+ gy(x; y)|̂

+

q
g2x(x; y) + g2y(x; y)

(15)

and

�̂(x; y) =
{̂+ dy

dx
|̂

+

r
1 +

�
dy
dx

�2 ; (16)

where {̂ and |̂ are unit vectors in the x and y directions respectively. Substituting

Eqs. (15) and (16) in Eq. (14), we obtain

�G(x; y) =
1

+

r
1 +

h
gy(x;y)�gx(x;y)

dy

dx

gx(x;y)+gy(x;y)
dy
dx

i2 : (17)

4.2. The Invariance Measure Density Function

Eq. (14) is a mapping C 7! [0; 1], which gives a measure of the degree to which

the tangent at each point is consistent with invariance under G. We now seek a

function which characterizes the consistency of the entire contour C with invariance

under G. Such a function is the density function for the value of �G in [0; 1], I(�G),

which we will call the Invariance Measure Density Function. The more points from

C that are mapped close to 1 by Eq. (14), the more consistent C is with invariance

under G. I(�G) is a descriptor of C, and we will show that I(�G) is invariant under

rotations and dilations of C. Translation invariance of I(�G) is obtained by choosing

the centroid of C as the origin of coordinates.2

It is interesting to note that there is evidence from psychophysical experiments

that a measure of the degree of invariance of a pattern with respect to the similarity

group of transformations (rotations, translations and dilations) is important in

human pattern recognition [6]. The measure proposed here might be seen as a

mathematical formalization of this notion. Moreover, its implementation in a neural

network architecture is consistent with Caelli and Dodwell's statement [6, p. 159]

of a proposal due to Ho�man [18, 19]: `Ho�man's fundamental postulate was that

the coding of orientation at various positions of the retinotopic map by the visual

system, discovered by Hubel and Wiesel [20] and others, actually provides the visual

system with \vector �eld" information. That is, the visual system, on detecting

speci�c orientation and position states (\�/P codes"), spontaneously extracts the

path curves (interpreted as visual contours) of which the local vectors are tangential

elements.'

2It should be noted that the translation invariance of I(�G) is a separate notion from that of
the translation invariance of the contour C as de�ned in x4.4.
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First, however, we must establish the form of I(�G). Let C be parameterized by

t : t 2 [t0; T ]. The arc length s along C is

s(t) =

Z t

t0

s�
dx

dt

����
�

�2

+

�
dy

dt

����
�

�2

d� : (18)

The total length of C is thus S = s(T ) =
H
C
ds. For well-behaved functions F (x; y),

we can construct s(t) such that we can reparameterize C in terms of s. Thus we can

rewrite Eq. (14) to give �G in terms of s. For simplicity, we will �rst consider the

case in which �G is a monotonic function of s, as shown in Figure 1. The Invariance

S s

1

ι ∆ι

s

ι G

∆ s

FIG. 1. Local Measure of Consistency as a function of arc length.

Measure Density is:

I (�G) = lim
��G!0

���� �s

S��G

���� = 1

S

���� dsd�G

���� : (19)

I (�G) can be interpreted as the probability density function for �G at points

(x(s); y(s)), where s is a random variable uniformly distributed on [0; S]. It is clear

that for the general case the function could be broken into piecewise monotonic

intervals and their contributions to the density summed. The general form for a

speci�c value �G
0 is thus

I (�G
0) =

1

S

X
s2[0;S]:�G(s)=�G0

���� dsd�G

����: (20)

Theorem 4.1. The Invariance Measure Density Function, I (�G), is invariant

under translations, rotations and dilations of the contour C with respect to which

it is calculated.
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Proof. That I (�G), de�ned in Eq. (20), is invariant under translations of the

contour C is trivial, since, as de�ned in x4.2, �G is calculated with the origin at

the centroid of the contour C. Rotation and dilation invariance can be proved by

construction. Since the transformations for rotation and dilation in the plane com-

mute, we can consider a two-parameter Abelian group corresponding to a rotation

by an angle � and a dilation by a positive factor �. The coordinates x and y are

transformed according to

x0 = � (x cos�� y sin�) y0 = � (x sin�+ y cos�) : (21)

Consider the relationship between the arc length s(t) for the original parameterized

contour (x(t); y(t)) and s0(t), after the coordinates are transformed according to

Eqs. (21). We �nd that

dx0

dt
= � cos�

dx

dt
� � sin�

dy

dt

dy0

dt
= � sin�

dx

dt
+ � cos�

dy

dt
: (22)

Combining these, we obtain

�
dx0

dt

�2

+

�
dy0

dt

�2

= �2

"�
dx

dt

�2

+

�
dy

dt

�2
#
: (23)

This result can be substituted into Eq. (18), giving

s0(t) = �s(t): (24)

This indicates that the total arc length is S0 = �S. The derivative of s(t) is also

scaled. Substituting into Eq. (20), we obtain

I 0 (�G
0) =

1

S0

X
�G(s)=�G0

���� ds0d�G

����
=

1

�S

X
�G(s)=�G0

�

���� dsd�G
����

=
1

S

X
�G(s)=�G0

���� dsd�G
����

= I (�G
0) (25)

Thus I (�G
0) is invariant under rotations and dilations of C.

4.3. Invariance Measure Densities For Speci�c Contours

To demonstrate the application of the Invariance Measure Density, we will eval-

uate I (�G) for a speci�c contour. Let C be a square of side 2L centred at the

origin, as shown in Figure 2. We will �nd the Invariance Measure Density for C

with respect to rotation, ICrot (�). By symmetry, we need only �nd ICrot for one

side of the square. On the side indicated by the dashed line in Figure 2, x and y
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x

L

L

(x(t),y(t))

C

y

FIG. 2. Square of side 2L.

can be expressed in terms of a parameter t as

x = L y = t; �L � t � L: (26)

Thus the arc length is s(t) = t + L, and the total is S = 2L. If _x(t) and _y(t) are

the derivatives of x and y with respect to t, Eq. (17) can be rewritten as

�Crot(s) =
1r

1 +
h
gy(s) _x(s)�gx(s) _y(s)
gx(s) _x(s)+gy(s) _y(s)

i2 (27)

Here _x(t) = 0 and _y(t) = 1. The generator of the rotation group is

LR = �y @

@x
+ x

@

@y
: (28)

Eqs. (28) and (26) can be substituted into Eq. (27) to give

�Crot(s) =
1q

1 +
�
s�L
L

�2 ; (29)

which can be inverted to yield

s = L

 
1 +

s
1

�2Crot
� 1

!
; (30)
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di�erentiating,

ds

d�Crot
=

�L
�2Crot

q
1� �2Crot

: (31)

Using Eq. (20), we arrive at our �nal result:

ICrot (�Crot) =
1

2L

X
�0
Crot

=�Crot

���� ds

d�Crot

����
�0
Crot

=
1

2L
� 2� L

�2Crot

q
1� �2Crot

=
1

�2Crot

q
1� �2Crot

; �Crot 2
�
1p
2
; 1

�
:

(32)

Note that, as required, the scale of the square L does not appear. The factor of

2 arises because �Crot for one side of the square (0 � s � 2L) is symmetric about

s = L, so the sum has two terms. This function, shown in Figure 3, is characteristic

of the square.

0

2

4

6

8

10

12

14

0.75 0.8 0.85 0.9 0.95 1

�Crot

I C
r
o
t
(�
C
r
o
t
)

FIG. 3. Invariance Density Measure with respect to rotation for a square.

4.4. Invariance Space: Combining Invariance Measure Densities

We now consider the case in which the Invariance Measure Density Function

is calculated with respect to a number of groups, and the results combined to

provide a more complete characterization of the transformational properties of a

contour C. This operation maps each point from the two dimensional image space



INVARIANCE SIGNATURES 13

to the interior of a unit hypercube in an n-dimensional invariance space, where

each of the n dimensions corresponds to a particular sort of invariance. Eq. (33)

shows this for the case of a three-dimensional invariance space where the dimensions

correspond to the Local Measure of Consistency � with respect to rotation, dilation

and translation:

(x; y) 7! �
�rot �dil �trans

�T
: (33)

The distribution of points in this invariance space is characteristic of the contour

C. Since each of the component invariance measure densities is invariant, this n-

dimensional Invariance Signature is invariant under rotations, dilations, translations

(and reections) of the input image. It will be shown later that the projections on

to the axes of this three-dimensional invariance space (i.e. the Invariance Signatures

with respect to each transformation) give adequate performance in an experimental

application of Invariance Signatures. The idea of plotting one invariant against

another in order to create an invariant signature has also been employed by Weiss

[45], who used di�erential invariants.

The vector �elds for the generators of the transformation groups for rotation,

dilation and translation are given in normalized form. All can be derived using

Eq. (3):

for rotation invariance

~grot(x; y) =
1p

x2 + y2

� �y x
�T

; (34)

and for dilation invariance

~gdil(x; y) =
1p

x2 + y2

�
x y

�T
: (35)

The translation invariance case is somewhat di�erent. The vector �eld corre-

sponding to the generator of a translation transformation is constant for all (x; y).

Here we choose the direction of this �eld to be that of the unit eigenvector corre-

sponding to the largest eigenvalue, ~e1, of the coordinate covariance matrix of all

points in the contour: the direction of maximum variance of the contour. The

Invariance Measure Density for translation thus measures the degree to which the

contour is invariant under translation along its principal axis. An in�nite straight

line, for example, is perfectly invariant under this transformation. Since ~e1 is cal-

culated from the image each time it is required, this measure is invariant under

rotations, dilations and translations of the image. The vector �eld for the transla-

tion invariance case is thus:

~gtrans(x; y) =
�
e1x e1y

�T
(36)

It should be noted that this representation of the image is not unique. The

combination of individual Invariance Measure Densities into an Invariance Space

does, however, increase its discriminating properties. As an example, removing two

opposite sides of a square will not alter its rotation or dilation Invariance Signatures,

but it will change the translation Invariance Signature. Likewise, a single straight
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line has the same translation Invariance Signature as any number of parallel straight

lines, however they are spaced. The rotation and dilation Invariance Signatures,

however, are sensitive to these changes.

4.5. Discrete Invariance Signatures

For a computer application of Invariance Signatures, a discrete version is required.

The natural choice is the frequency histogram of �G. For a continuous contour, this

is obtained by dividing the interval [0; 1] into n \bins" and integrating I(�G) over

each bin. For bins numbered from b0 to bn�1, the value in bin k is

bk =

Z k+1
n

k
n

I(�G)d�G: (37)

Since I(�G) is a probability density function, the sum of the values of the bins must

be one.

When using sampled images, a true frequency histogram of the estimated local

measures of consistency may be used. The system designer must choose the number

of bins, n, into which the data is grouped. It will be seen in x6 that this choice is

not arbitrary.

1. Original Contour 2. Tangent Estimates

FIG. 4. Example of a sampled contour and its estimated tangents. In Figure 4(2), the �lled
circle indicates the centroid of the contour, and the dashed line shows the direction of ~e1.

An example of a sampled contour and the estimated tangent vectors at each point

is shown in Figure 4. The estimated discrete Invariance Signatures are shown in

Figure 5, for 60 bins. It would be expected that this \ower"-shaped contour would

have Invariance Signatures which reect a quite strong dilation-invariant compo-

nent corresponding to the approximately radial edges of the \petals". These edges

should also cause several distinct modes in the Invariance Signature with respect

to translation, corresponding to edges at given angles to the principal direction

~e1. The Invariance Signature with respect to rotation should be more uniform,

though with a rotation-invariant component due to the ends of the petals which

are approximately orthogonal to the radial edges. This is indeed what is observed

in Figure 5.

4.5.1. Occlusion
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1. Rotation 2. Dilation 3. Translation

FIG. 5. 60 bin discrete Invariance Signatures for the contour in Figure 4. Histogram bin
heights are normalized by the height of the largest bin (rightmost bin of the Dilation Invariance
Signature), which has a value of 23%.

The Invariance Signature is vulnerable to occlusions of the contour, since these

can alter the position of the contour centroid and the direction of ~e1. In the applica-

tions for which the Invariance Signature was designed, i.e. recognizing text and/or

symbols in engineering or architectural drawings, occlusion should never occur. In-

deed an occlusion can transform an alphabetic character into a completely di�erent

valid character. Nevertheless, if invariant contour points (e.g. bitangents, corners,

etc.) were used to de�ne this point and direction, occlusion invariance (in the

histogram intersection sense, see x7.2) could be achieved.

4.5.2. Hough Transform Interpretation

It is interesting to note that the discrete Invariance Signature of a contour can

be interpreted as a sort of Hough Transform [2]. Tangents at points on the contour

are mapped to accumulators in Invariance Space. These can be interpreted as votes

for the presence of a contour with a particular degree of invariance with respect to

a given transformation. A circle, for example, is perfectly rotation-invariant, and

all its tangents will be mapped to the same \circle" bin in the Invariance Signature

with respect to rotation. Likewise, there is a trajectory in invariance space to which

all circles are mapped.

5. THE INVARIANCE SIGNATURE NEURAL NETWORK

CLASSIFIER

We have proposed a Model-Based Neural Network to compute the discrete In-

variance Signature of an input pattern and to classify it on that basis [38, 37].

This system will be referred to as the Invariance Signature Neural Network Clas-

si�er (ISNNC). MBNNs, introduced in [8] and further elaborated in [37], allow a

network to be constructed in which the supervisor's knowledge of the task to be

performed is used to specify, partially or completely, the roles of some hidden units,

or of whole hidden layers or modules, in advance. Thus the supervisor's knowledge

of which features of the training data are signi�cant for the task is incorporated into

the network geometry and connection weighting functions, serving as a constraint

on the state space searched during training.
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The ISNNC consists of a system of neural network modules, some hand-coded

and some trained on sub-tasks. A schematic diagram is shown in Figure 6. Whilst

Computation
Centroid Image

Invariant Vector
Field Generator Extractor

Local Orientation

Rotation Invariance
Signature Signature

Dilation Invariance
Signature

Translation Invariance

Conventional Neural
Network Classifier

onN

onN

in Input Image
Number of Ones
Compute

Centroid Image

Rot x Rot y Dil x Dil y Trans x Trans y

Dominant Image
Orientation Unit

Y ComponentX Component

Dot Product Dot Product Dot Product

Rotation Invariance
Image

Dilation Invariance
Image

Binning Unit Binning Unit Binning Unit

Translation Invariance
Image

Final Classification

Input Image

FIG. 6. Invariance Signature-based contour recognition system.

the ISNNC appears complex, it retains the basic characteristics of a traditional feed-

forward neural network (The term MLP will be used to denote a fully-connected,

feed-forward multilayer perceptron). It consists entirely of simple nodes joined

by weighted connections.3. Each node i in the network computes the sum of its j

weighted inputs, neti =
P

j wijxj . This is used as the input to a transfer function f ,

which is either linear, f(neti) = neti, or the standard sigmoid, f(neti) =
1

1+e�neti
.

3With the exception of the Dominant Image Orientation Unit, for which a neural network
solution is still to be developed
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There is a number of distinct levels. Computation at one level must be completed

before computation at the next level begins.

The only departure from a traditional neural network is that some weights are

calculated at runtime by nodes at prior levels. We call these dynamic weights. They

allow the ISNNC to compute dot products, and for nodes to act as gates controlling

the transmission of the output of another node. Since connection weights in any

implementation are only references to a stored value, this should not present any

di�culty. Alternatively, the same functionality can be achieved by allowing nodes

which multiply their inputs, as used in Higher Order Neural Networks [29, 36].

It is acknowledged that several calculations performed by modules of the ISNNC

need not be carried out by neural networks. Indeed tasks such as centroid location

and local orientation extraction can be more simply performed by direct calculation

or table lookup, particularly if the ISNNC is implemented as a software simulation,

as is in the present work. The classi�cations of the Invariance Signatures could

be done by computing multidimensional histogram intersections with those of a

database of known patterns [40, 41]. This work, however, was carried out as part

of an investigation of the capabilities of MBNNs, with a view to hardware imple-

mentation. Consequently, neural solutions for all modules were sought.

6. CHARACTER RECOGNITION WITH INVARIANCE

SIGNATURE NETWORKS

It remains now to demonstrate that Invariance Signatures retain enough informa-

tion to be usable for pattern recognition, and that they are not unduly sensitive to

the noisy data encountered in real applications. To this end, the system is applied

to the classi�cation of Roman alphabetic characters, both for \perfect" machine-

generated training and test data, and for scanned data. The term \perfect" will be

used throughout to describe data which is both noise-free and unambiguous.

6.1. Perfect Data
6.1.1. Departures from Exact Invariance

Despite the proven invariance properties of Invariance Signatures calculated for

continuous contours in the plane, departures from invariance occur in real appli-

cations in several ways. Scanned data contains noise from the sensor, although

the present quality of scanners makes this negligible for this application. More

important sources of error are discussed below.

Quantization Noise. Noise is introduced into the tangent estimation procedure

by the sampling of the contour. Since the estimated orientation is quantized, the

Local Measure of Consistency can change when a contour is quantized at a new

orientation. It is possible to compensate partially for this e�ect by using su�ciently

wide bins when calculating the Invariance Signature, but errors still arise when the

new estimated orientation moves the resultant �G across bin boundaries.

Ambiguous Characters. In many fonts some letters are rotated or reected ver-

sions of others, such as fb, d, p, qg and fn, ug. Consequently, it is impossible to

classify isolated characters into 26 classes if shift, rotation, scale and reection in-

variance is desired. Admittedly, reection invariance is not usually desired, but it is

an characteristic of the ISNNC. In commercial OCR systems, context information
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(i.e. surrounding letter classi�cations and a dictionary) is used to resolve ambigu-

ities, which occur even in systems without inherent invariances. This approach

would be equally applicable as a post-processing stage for the ISNNC.

6.1.2. The Data Set

A computer can be used to produce a perfect data set, which is free from quan-

tization noise and contains no ambiguous characters. This set can be used to show

that Invariance Signatures retain su�cient information for classi�cation in the ab-

sence of noise, and these results can be used to assess the performance of the system

on real data.

A training data set was created using a screen version of the Helvetica font. Only

the letters fa, b, c, e, f, g, h, i, j, k, l, m, n, o, r, s, t, v, w, x, y, zg were used, so

that ambiguity was avoided. An 18� 18 binary image of each letter was produced.

This training data set is shown in Figure 7.

FIG. 7. Training set of canonical examples of unambiguous characters.

A perfect test data set was created by computing reected and rotated versions

of the training data, where rotations were by multiples of �
2 radians, so that there

was no quantization error. This test data set is shown in Figure 8.

FIG. 8. Test set of ideally shifted, rotated and reected letters.
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6.1.3. Selected Networks Applied to this Problem

Simulations showed that this training set could be learnt by a network with no

hidden layer: it is linearly separable [27]. This was was also be true of the Invariance

Signatures calculated from these data. Two di�erent network architectures were

constructed for comparison. The �rst was a MLP with a 18 � 18 input layer, no

hidden layers, an 1� 22 output layer and standard sigmoid transfer functions. The

other was an ISNNC, with an 18�18 input layer. Within this ISNNC, the Invariance

Signature was calculated using 5 bins for each transformation. The resultant 15

node Invariance Signature layer was connected to a 1� 22 output layer, forming a

linear classi�er sub-network.

6.1.4. Reduction of Data Dimensionality

Although the Invariance Signature calculation stage of the ISNNC has to be run

every time a new pattern is classi�ed, Invariance Signatures of the training and test

data need only be calculated once. The classi�cation stage of the ISNNC can then

be trained and tested as a separate module. This can lead to a great reduction in

development time. The number of weights np in a MLP is:

np =

N�1X
i=1

(nodes in layer)i�1 � (nodes in layer)i (38)

where N is the total number of layers, and i is the layer number, (the input layer

is layer 0). The iteration time during training and testing is proportional to np, so,

for this example, each iteration for the Invariance Signature classi�cation module

will be 18�18
3�5 = 21:6 times faster than for the MLP.

The calculation of the Invariance Signatures is time-consuming, but this time

is recouped during training and testing when the input image is large, which is

typically the case in real applications. ISNNCs can reduce the dimensionality of

the training and testing data signi�cantly, and thus the development time for the

classi�cation network. Moreover, an ISNNC simulation on a sequential computer

cannot take advantage of the parallel, local computations that characterize many

of the ISNNC modules. A parallel implementation would be much faster.

6.1.5. Perfect and Network-Estimated Local Orientation

The neural orientation extraction module (NOEM) had some residual error [37].

Consequently, two versions of the Invariance Signature training and test data were

created, one with the tangents calculated directly from the covariance matrix eigen-

vectors, and the other using the NOEM. Results from these are compared to eval-

uate the importance of accurate tangent extraction.

Ten instances of each network were made, each with a di�erent parameter ini-

tialization. All were trained for 1000 iterations, using backpropagation. Patterns

were assigned to the class corresponding to the highest output node value, so no

patterns were rejected.

Results for MLPs trained using backpropagation. The results obtained with

MLPs are summarized in Table 1. In this and subsequent tables, the \Best Perfor-

mance" �gures show the classi�cation accuracies on both test and training data at

the iteration at which the best test data performance was obtained during training.
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The \Final Performance" �gures are those obtained after the full (�xed) number

of training iterations. The �nal test data performance is often inferior to the best

performance, due to the over-�tting of the training data. The \best" perform-

ing network could easily be obtained by storing the state of the network at this

iteration, or by applying a comprehensive cross-validation scheme.

As expected, the MLPs do not exhibit invariance, since the training data con-

tained no transformed versions of the patterns.

TABLE 1

Classi�cation performance (% correct) of traditional neural network

classi�ers trained for 1000 iterations with the data shown

in Figure 7 and tested with the perfect data set

in Figure 8.

Best Performance Final Performance

Training Data Test Data Training Data Test Data

�� � 100 � 0.0 15 � 0.5 100 � 0.0 14 � 0.0

The �nal performance of the MLPs is better than chance ( 1
22 = 4:5454%). It

might be thought that this is because some transformations of highly symmetrical

training patterns resulted in patterns very similar to the untransformed version

(e.g. o, s, x and z). Analysis, however, shows that this is not the case. The 12

correctly classi�ed test patterns are shown in Figure 9.

f1 i2 i4 j1 k1 k4 l1 m1 n1 n3 n4 y1

FIG. 9. Test patterns classi�ed correctly by the MLPs.

No reason for these patterns being classi�ed correctly is apparent. It seems clear

that chance must play a part. For instance, i4 shares no \on" pixels with the

training example of i. Marginally better performance on the test data could have

been achieved by employing an early-stopping scheme. This would, however, have

been at the cost of less than 100% correct performance on the training data. It

should be noted that the sum squared-error on the test set decreased throughout

training. A scheme based on the test set error would not improve performance in

this case.

It must be acknowledged that MLPs could not be expected to perform better

than chance on this task. Their architecture provides no invariances, and general-

ization cannot be expected unless transformed versions of the patterns are included

in the training set. This argument can be used against all the comparisons between

MLPs and MBNNs in this paper: they are not fair. Nevertheless, these comparisons

between naive applications of MLPs and speci�cally-designed MBNNs demonstrate

that MBNNs can perform successfully using training sets completely inadequate for

MLPs. Moreover, these MBNNs are of lower dimensionality than the MLPs. Pro-

viding the MLPs with su�ciently large training sets would only make their training

still more computationally-expensive, with no guarantee of invariant performance.
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Results with Perfect Local Orientation. The results for the ten ISNNCs which

used perfect Local Orientation Extraction are summarized in Table 2. The average

number of iterations for 100% correct classi�cation to be achieved was 220. Since the

problem is linearly-separable, it could in fact be solved directly, using a technique

such as singular-valued decomposition [31]. Since weights may set by any method

at all in the MBNN paradigm, this makes the comparison of convergence times

somewhat irrelevant. Nevertheless the MBNN modules, although taking on average

4.4 times as many iterations to converge as the MLPs, were 4.9 times faster to train,

due to their lower dimensionality.

TABLE 2

Classi�cation performance (% correct) of 5 Bin Invariance Signature

Neural Network Classi�ers (with perfect Local Orientation

Extraction) trained for 1000 iterations with the

data shown in Figure 7 and tested with

the perfect data set in Figure 8.

Best Performance Final Performance

Training Data Test Data Training Data Test Data

�� � 100 � 0.0 100 � 0.0 100 � 0.0 100 � 0.0

The ISNNCs generalize perfectly to the the test set. The network architecture

constrains the system to be shift-, rotation-, scale- and reection-invariant in the

absence of quantization noise, so this is no surprise. Importantly, the result indi-

cates that su�cient information is retained in the 5 bin Invariance Signatures for

all 22 unambiguous letters of the alphabet to be distinguished. It is clear that if

this is the case, then it will also be so for any Invariance Signatures with higher

resolution. Inspection of the sum squared error values after each iteration indicated

that the error on the test set was indeed identical to that on the training set: for

perfect data, the ISNNC produces perfect results.

Results using the NOEM. The results above were obtained using a hybrid sys-

tem, which used a non-neural module to calculate the tangent at each point. The

Invariance Signatures for the test and training data were recalculated using the

NOEM, and classi�cation modules were trained using these Invariance Signatures.

Systems were produced with both 5 and 10 bin Invariance Signatures. The results

obtained are summarized in Tables 3 and 4.

TABLE 3

Classi�cation performance (% correct) of 5 Bin Invariance Signature

Neural Network Classi�ers (with neural Local Orientation

Extraction) trained for 1000 iterations with the

data shown in Figure 7 and tested with

the perfect data set in Figure 8.

Best Performance Final Performance

Training Data Test Data Training Data Test Data

�� � 100 � 0.0 96.6 � 0.00 100 � 0.00 96.6 � 0.0
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TABLE 4

Classi�cation performance (% correct) of 10 Bin Invariance Signature

Neural Network Classi�ers (with neural Local Orientation

Extraction) trained for 1000 iterations with the

data shown in Figure 7 and tested with

the perfect data set in Figure 8.

Best Performance Final Performance

Training Data Test Data Training Data Test Data

�� � 100 � 0.0 95.5 � 0.00 100 � 0.00 93.2 � 0.0

The misclassi�ed patterns for the 5 bin ISNNCs are shown in Figure 10. t1 and

t2 were classi�ed as f, which is understandable, since there is very little di�erence

between the patterns. t4 was misclassi�ed as a. All ten networks had these same

misclassi�cations.

t1

!

f t2

!

f t4

!

a

FIG. 10. Test Patterns Misclassi�ed by the 5 Bin Invariance Signature Neural Network Clas-
si�ers, and the training examples as which they were incorrectly classi�ed.

These results show that residual error in the NOEM causes a degradation of the

classi�cation performance of the ISNNCs. They are, however, still far superior to

those for the MLPs. Moreover, a more accurate NOEM could be constructed: it is

simply a question of network size and training time.

The results for the 10 bin system in Table 4 show that the e�ects of inaccuracies

in the NOEM are greater when the number of bins is increased. This is due to the

fact that the errors can cause the consistency measure at a point to change bins

more easily this way, thus altering the Invariance Signature histogram. This is of

course not the case when perfect Local Orientation Extraction is used.

6.2. Optical Character Recognition

Having demonstrated that Invariance Signatures retain su�cient information for

the classi�cation of \perfect" data, it remains to show that the system can be

used for transformation invariant pattern recognition in the presence of sensor and

quantization noise. To this end, it was decided to apply ISNNCs to the classi�cation

of scanned images of shifted and rotated printed alphabetic characters.

6.2.1. The Data Set

The training and test sets were created using all 26 letters of the English alphabet,

with each character appearing in 18 di�erent orientations, at increments of 20

degrees. Shifts arose also, because characters were extracted from the scanned

image of all these characters using a technique which took no account of centroid

position.

An A4 page with these characters printed on it by a laser printer at 300 dots per

inch was scanned at 75 dots per inch using a UMAX Vista-S6 Scanner. The con-
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nected regions in this image were detected, and the minimum bounding-box for the

largest character was calculated (56 � 57 pixels). The image was then segmented

into separate characters, and each character was thinned using an algorithm due

to Chen and Hsu [11]. The training set consisted of the 234 characters rotated by

angles in the range [0�; 160�] relative to the upright characters, and the test set of

the 234 characters in the range [180�; 340�]. Examples of the resultant scanned,

extracted and thinned characters are shown in Figures 11 and 12.

FIG. 11. Examples from the training set of thinned, scanned characters.

FIG. 12. Examples from the test set of thinned, scanned characters.

It is interesting to compare the subjective visual similarity between the Invariance

Signatures both within and between classes for these data. Figure 13 shows the

�rst four training examples of the letter a, accompanied by images showing the

tangent estimates. The tangent estimate is represented by a line segment with the

orientation of the estimated tangent.

It is not easy to interpret the similarity between these tangent representations

of the contours. For this, it is necessary to see the Invariance Signatures. Fig-

ure 14 shows the Invariance Signature histograms for the patterns in Figure 13. It

is apparent that there is a signi�cant (subjective) similarity between these repre-

sentations. They are not identical, as a result of the noise discussed in x6.1. For

classi�cation purposes, however, it is necessary only that the signatures be more
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a00 Raw Image a00 Tangents a01 Raw Image a01 Tangents

a02 Raw Image a02 Tangents a03 Raw Image a03 Tangents

FIG. 13. Tangents estimated for training examples of the letter a.

similar within each letter class than between classes. This must be determined by

experiment.

Figures 15 and 16 show the equivalent data for the letter x. These again show

the marked within-class similarity, and are distinctly di�erent to the signatures for

the letter a: these letters were deliberately chosen since a is \quite rotationally-

invariant", whereas x is \quite dilationally-invariant".

6.2.2. Selected Networks Employed for this Problem

The methodology employed was identical to that used for the synthetic data,

described in x6.1.3. The MLP used had a 56 � 57 node input layer, and a 1 � 26

output layer, giving a massive 83018 independent weights to be estimated. With

only 234 training patterns and 83018 parameters, this problem is almost certain to

be linearly separable. This was veri�ed by simulation.

A variety of classi�cation modules was tried, for ISNNCs with both 5 and 10

bin Invariance Signatures. These included a linear classi�er, and a variety of MLPs

with di�ering hidden layer sizes. These experiments indicated that 5 bin Invariance

Signatures were insu�cient for this problem: there is a trade-o� between retaining

su�cient information about the Invariance Signature in the histogram and the

greater sensitivity to noise caused by using a larger number of bins. It was also found

that with these data the problem was not linearly separable. It also became clear

that the errors introduced by the slightly inaccurate NOEM caused a signi�cant

departure from invariance.

For these reasons, the results presented are for 10 bin ISNNCs with directly-

calculated (\perfect") Local Orientation and a MLP classi�cation module. The

MLP classi�er had a 3�10 node input layer, a 15 node hidden layer, and a 26 node

output layer. This classi�er has only 881 weights to be estimated, a reduction of

99% compared to the MLP linear classi�er. This translates to a dramatic reduction

in both the storage space and the training time required. Only �ve MLPs were
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a00 Rotation a00 Dilation a00 Translation

a01 Rotation a01 Dilation a01 Translation

a02 Rotation a02 Dilation a02 Translation

a03 Rotation a03 Dilation a03 Translation

FIG. 14. 5 bin Invariance Signatures for training examples of the letter a.

trained, partly because of the training time needed, and partly because the results

were so consistent.

6.2.3. Results for MLPs

It might have been expected that the MLPs would perform better on this task

than on that described in x6.1.3, since this training set contains di�erently trans-

formed versions of the canonical untransformed characters. As can be seen from
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x00 Raw Image x00 Tangents x01 Raw Image x01 Tangents

x02 Raw Image x02 Tangents x03 Raw Image x03 Tangents

FIG. 15. Tangents estimated for training examples of the letter x.

Table 5, the results are in fact slightly worse (average best percent correct of 13.932

� 0.300 compared with 15.000 � 0.454). Although better than chance (3.85% cor-

rect), these results are completely inadequate for an optical character recognition

system.

TABLE 5

Classi�cation performance (% correct) of Traditional Neural Network

Classi�ers trained for 200 iterations with the data described

in x6.2.1.

Best Performance Final Performance

Training Data Test Data Training Data Test Data

�� � 100 � 0.0 13.9 � 0.3 100 � 0.0 10.9 � 0.2

6.2.4. Results for Invariance Signature Neural Network Classi�ers

The results obtained with ISNNCs appear in Table 6. The ISNNCs achieved a

much higher correct classi�cation rate on the test set than the MLPs. The failure

of the ISNNCs to achieve 100% correct classi�cation of the training set is not

surprising. The test and training sets used for this problem have each character of

the alphabet mapped to a separate class. Yet, as was discussed in x6.1, the sets

of characters fb, d, p, qg and fn, ug are identical under rotations and reections:

transformations under which the ISNNC output is invariant. The expected training

set performance for noise-free data is thus 100� (20+0:25� 4+0:5� 2)=26 = 85%

correct. Any performance on the training data better than this must be the result

of the �tting of noise in the training data, indicating that results might be improved

by applying techniques such as cross-validation.

In order to assess this e�ect, training and test sets were created in which fb, d, p,
qg were assigned the same label, as were fn, ug. The results are shown in Table 7.
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x00 Rotation x00 Dilation x00 Translation

x01 Rotation x01 Dilation x01 Translation

x02 Rotation x02 Dilation x02 Translation

x03 Rotation x03 Dilation x03 Translation

FIG. 16. 5 bin Invariance Signatures for training examples of the letter x.

The average �nal test set performance was improved by 14.8% by this re-labeling,

which is very close to the maximum possible 15.4% achievable if this were the only

source of error.

The residual di�erence between training and test set error is generalization error,

rather than invariance error. These networks were trained with only 9 examples

of each character, and these examples are quite noisy. There is the unavoidable

quantization noise, but there are also some quite marked artifacts, such as loops
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TABLE 6

Classi�cation performance (% correct) of 10 bin Invariance Signature

Neural Network Classi�ers (with perfect Local Orientation

Extraction) trained for 40000 iterations with the

data described in x6.2.1.

Best Performance Final Performance

Training Data Test Data Training Data Test Data

Network 1 95.7 72.7 95.7 71.8

Network 2 96.2 72.2 96.2 70.9

Network 3 96.2 73.1 96.2 69.7

Network 4 95.3 73.9 95.3 70.5

Network 5 94.9 71.8 94.9 71.4

Network 6 95.7 72.7 95.7 68.8

Network 7 96.2 73.5 96.2 69.7

Network 8 97.4 72.2 97.4 70.5

Network 9 94.4 74.4 94.4 69.7

Network 10 96.2 70.9 96.2 70.9

�� � 95.8 � 0.8 72.7 � 1.0 95.8 � 0.8 70.4 � 0.9

TABLE 7

Classi�cation performance (% correct) of 10 bin Invariance Signature

Neural Network Classi�ers (with perfect Local Orientation

Extraction) trained for 10000 iterations with the

data described in x6.2.1, modi�ed to label

characters which can be transformed

into each other as the same

character.

Best Performance Final Performance

Training Data Test Data Training Data Test Data

Network 1 98.7 87.2 98.7 87.2

Network 2 99.1 83.8 99.1 82.9

Network 3 99.6 86.8 99.1 85.9

Network 4 99.6 86.8 99.1 85.0

Network 5 98.7 88.0 98.7 88.0

Network 6 99.6 85.9 99.1 85.5

Network 7 100 85.9 100 83.8

Network 8 98.3 86.3 98.3 85.0

Network 9 97.9 86.8 97.9 85.0

Network 10 99.1 84.6 99.1 83.8

�� � 99.1 � 0.6 86.2 � 1.2 99.1 � 0.6 85.2 � 1.5

introduced by the thinning algorithm, one of which can be seen in pattern a03 in

Figure 13. There are also two erroneous test patterns, the result of clipping in

the segmentation process. These were retained, as such errors can and do occur in

practical applications.
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6.2.5. Failure Analysis

The errors made by the ISNNCs are not random. To illustrate this, a failure

analysis is presented in Table 8 for Network 5 from Table 7, showing how the test

patterns were misclassi�ed. Patterns which are perceptually similar are responsible

for many of the misclassi�cations. This means that prior information about likely

errors could be used in conjunction with these classi�cations to aid error correction.

This analysis indicates that ISNNCs often make errors that appear \human", which

is a promising indication that the Invariance Signature measures contour similarity

in a way similar to humans.

TABLE 8

Failure analysis for Network 5 from Table 7.

Misclassi�cations

d ! n f ! t f ! j i ! l i ! l i ! l i ! l

i ! l i ! l j ! r k ! f k ! r k ! f l ! i

m ! h n ! b n ! b q ! n r ! f r ! y r ! k

r ! i t ! f t ! f t ! f t ! f u ! h w ! m

Inspection of the thinned patterns used indicated that the patterns for the letters

fi, j, lg were little more than straight lines. If these were to be relabeled as the

same character, �nal test set performance for Network 5 would improve to 91.026%

correct. If the same were done for ff, tg, which are also extremely similar, test set

performance would be 93.162% correct.

The misclassi�cations of patterns to the classes b and n may be due to the fact

that the re-labeled dataset implies a non-uniform prior probability distribution for

these classes: b was used as the target class for input patterns corresponding to

fb, d, p, qg, and thus occurs four times more frequently in the training data than

standard classes. Similarly, n was used as the target for inputs fn, ug. Networks

will tend to \guess" these classes more frequently than the others [3].

Given the extremely small training set, this is a remarkable result, comparable

with character recognition results achieved by others with thousands of training

patterns. Such re-relabeling is an essential feature of a truly invariant optical char-

acter recognition system, since some characters are inherently ambiguous. Others

are extremely similar, and noise can render them indistinguishable. In practical op-

tical character recognition systems, a dictionary is used to verify recognized words,

and context is used to correct erroneously labeled patterns. Alternatively, the ori-

entation of correctly classi�ed unambiguous characters could be used to infer the

correct labeling of ambiguous characters.

Perhaps most importantly, these results show that ISNNCs can correctly classify

patterns which have been transformed by arbitrarily large amounts. The shifts

and rotations of the input images are not restricted to small perturbations of the

training patterns. This indicates that the ISNNCs are performing truly invariant

pattern recognition, rather than interpolation-based generalization.

This study should be considered to be a \proof of concept", both for the In-

variance Signature as a contour descriptor, and for MBNNs which classify on that

basis. It is not intended to be a large-scale experiment which corresponds to a
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real application. Such a study would require much greater quantities of data than

are used here. We believe, however, that the experiments presented demonstrate

that the Invariance Signatures are genuinely useful for robust invariant pattern

recognition. The quality of the results obtained is very pleasing, when the size of

the training sets is compared to those used in other neural network approaches to

optical character recognition.

7. COMPARISON WITH OTHER METHODS

In order to compare the performance of the ISNNC with that of alternative

systems designed for shift-, rotation- and scale-invariant pattern recognition, a cor-

relation classi�er based on the Fourier-Mellin (FM) transform [10, 7] was applied

to the data described in x6.2.1.
For further comparisons, two-dimensional invariance signature histograms for the

data were created, in the space de�ned by
�
�rot �trans

�T
. These histograms were

classi�ed both by histogram intersection with the training set, and using a neural

network.

7.1. The Fourier-Mellin classi�er

As discussed in x2.1, the amplitude spectrum of the Fourier transform (denoted

F) of an image is shift-invariant. Rotation in the spatial domain maps to rota-

tion in the frequency domain, and scaling to inverse scaling. Applying a log-polar

transform in the frequency domain thus leads to a coordinate system (�; �) in which

rotations and scalings in the image domain are mapped to shifts. The amplitude

spectrum of the Fourier transform of the resultant function is thus shift-, rotation-

and scale-invariant. Since the Mellin transform of a function de�ned on R+ is just

the Fourier transform of the function after the coordinate has been logarithmically

distorted, this combination of transforms is sometimes known as the Fourier-Mellin

transform. Summarizing:

jF(I(x; y))j = jI!(!1; !2)j magnitude of Fourier transform: shift-invariant

I!(!1; !2)! Ilp(�; �) log-polar transform

jF(jIlp(�; �)j)j magnitude of Fourier-Mellin tranform: shift-,

rotation- and scale-invariant

It must be noted that the phases of both the initial and second Fourier transforms

have been discarded, meaning that this representation is very \lossy". Nonetheless,

as is shown below, su�cient information is retained for classi�cation purposes in

some applications.

Classi�cation can be performed by calculating the correlation between the mag-

nitude the FM tranform of the image to be classi�ed with those of the example

images for each class. The image is assigned to the class of the image with which

it has the greatest correlation.

Experiments were performed where the set of example images contained only the

�rst image of training data described in x6.2.1 for each character, and for the case

where correlations were performed with the entire training set.

7.2. The histogram intersection classi�er
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Histogram intersection is metric which is frequently applied in content-based

image retrieval applications, where it is most often used with colour histograms [40].

It is natural to apply it to Invariance Signatures, since they are in fact histograms.

The intersection d(H1; H2) between two N -bin histograms H1 and H2 is

d(H1; H2) =

PN

n=1min(H1[n]; H2[n])

min
�PN

n1=1H1[n1];
PN

n2=1H2[n2]
� : (39)

A simple classi�cation is performed by calculating the intersections between the

Invariance Signature of the image to be classi�ed with those of the example images

for each class. The image is assigned to the class of the image with which it has

the greatest intersection.

As for the FM classi�er, experiments were performed where the set of example

images contained only the �rst image of training data described in x6.2.1 for each

character, and for the case where intersections were performed with the entire

training set.

7.3. The histogram-based neural network classi�er

A problem with the simple histogram intersection metric de�ned above is that

it does not take into account the contributions from neighbouring bins. Quadratic

histogram intersection measures exist, which use weighted intersections of all bins.

How these weights should be de�ned, however, is a di�cult problem. An alter-

native is to train a MLP to classify the histograms. In x5, we described a neural

network classi�er which took as its input the three one-dimensional histograms cor-

responding to the Invariance Signatures with respect to shift, rotation and scaling.

Here we report results for a system using the 10 � 10 two-dimensional histogram

corresponding to the distribution of points in the invariance space with axes �rot
and �trans.

A variety of MLPs were tried, beginning with a linear classi�er. The data de-

scribed in x6.2.1 were used for training. In x6.2, it was noted that for the dataset

used sets of characters fb, d, p, qg and fn, ug are identical under rotations and

reections. The MLPs were thus trained with 22 output classes, corresponding

the the letters of the alphabet, taking into account these equivalences. Results are

presented for a network with a 10 node hidden layer. Larger hidden layers were not

found to improve classi�cation performance.

7.4. Classi�cation results

Table 9 shows the classi�cation performances of these methods. The shortcom-

ings of simple histogram intersection are apparent. The improvement gained by

using a MLP to classify the 2D histograms indicates that the use of relationships

between bins can improve performance signi�cantly. These results also show that

no signi�cant representational power was lost by considering the three separate In-

variance Signatures with the ISNNC, as opposed to the full invariance space. This

permits an extremely signi�cant improvement in e�ciency.

It is clear that the Fourier-Mellin classi�er using all training examples signif-

icantly outperforms all the others. It must be remembered, however, that this

comes at great computational cost. The classi�cation of a single pattern requires
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TABLE 9

Classi�cation performance (% correct) of various invariant classi�ers

for the the test data described in x6.2.1.

Classi�cation Performance

26 classes 22 classes

FM classi�er, single examples 79.1 89.7

FM classi�er, all examples 87.6 97.4

2D histogram intersection, single examples 33.3 39.7

2D histogram intersection, all examples 58.5 77.8

MLP with 2D histogram input 86.0 � 1.1

Invariance Signature Neural Network Classi�er 72.7 � 1.0 86.2 � 1.2

the computation of two Fourier transforms, a log-polar transform, and a correla-

tion with each of the 234 target pattern exemplars. In this study, each of these

operations had to be carried out on a 64� 64 image. This must be compared with

a single pass through the ISNNC.

It is also to be expected that the performance of the ISNNC would improve with

higher resolution input images which would allow more accurate tangent estima-

tion, and correspondingly more precise Invariance Signatures. Nevertheless, the

performance of the Invariance Signature technique on these low-resolution images

is quite impressive for a contour-based technique.

8. CONCLUSION

In this paper an invariant feature of two-dimensional contours was developed:

the Invariance Signature. We believe that the Invariance Signature is a powerful

descriptor of contour shape, which is closely-related to measures employed in human

perception. Its application is by no means limited to neural networks.

The development of the Invariance Signature was inspired by the desire to �nd an

invariant contour descriptor which was suitable for calculation in a neural network,

and which corresponded well to theories of human contour perception. Since Lie

group theory provides the link between the local changes in the positions of points

under the action of a transformation and the global speci�cation of the transfor-

mation, it provides the natural starting point. The Invariance Signature is a global

measure of the degree of invariance of a given contour with respect to a set of Lie

transformations, which, however, is constructed from local calculations. It is this

that makes the Invariance Signature attractive for use in an MBNN.

The core of the Invariance Signature approach is this: rather than seeking indi-

vidual invariant features of a contour, the Invariance Signature measures the degree

to which the contour is invariant under a transformation. The statistics of these

departures from invariance are themselves an invariant descriptor of the contour.

In order to be useful, the Invariance Signature must not only be invariant, but

must retain su�cient information for contour classes to be distinguished. That this

is so is demonstrated in x6. When applied to noise-free, unambiguous data, the

ISNNC produced perfect results. Pleasing results were also obtained using scanned

data. Although outperformed by 11% by a Fourier-Mellin classi�er, the ISNNC uses
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a more e�cient representation of shape. The fact that the entire feature extraction

and classi�cation procedure could be compiled into a simple neural network means

that the result was obtained at a very much lower computational cost. Moreover,

the low-resolution images used in this work are not ideally suited to a contour-

based invariant. These experiments indicate that the Invariance Signature can

be successfully employed for the recognition of scanned characters independent of

rotations and shifts, and that this technique can be implemented in a model-based

neural network.
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