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Ridge and valley structures are important image features, specially in
oriented textures. Usually, the extraction of these structures requires a pre-
filtering step to regularize the source image. In this paper, we show that
classical diffusion based filters are not appropriate for this task, and propose
a new filtering process. This new filter can be tuned to join broken valley
or ridge lines while preserving their junctions, thus preserving the general
topology of the lines obtained afterwards. This filter can be interpreted as
an example of the intrinsic introduction of structure on diffusion processes.
Keywords: diffusion process, structure tensor, ridges, valleys, anisotropic
diffusion, PDE’s.

1. INTRODUCTION

Ridge and valley structures are important linear image features, specially for
highly oriented textures. Usually, the extraction of these structures requires a pr-
filtering step to regularize the original image. There are many works devoted to
the extraction of ridge/valley structures [3, 8, 9]. In any case, some kind of reg-
ularization of the input image is needed to obtain stable and meaningful results.
Frequently, this regularization consists simply of a convolution by a Gaussian ker-
nel. In case of highly oriented textures, this approach is unsuitable because the
inner structures can be destroyed. A solution is to use non isotropic filters, like
the proposed by Perona and Malik [10, 11]. However, it has proved to be more
appropriated the use of an explicit directed diffusion process. A recent approach
in this context has been provided by Weickert [12, 13, 14]. In his work, he pro-
poses a new diffusion process based on the structure tensor, which provides a local
description of the anisotropy in a neighborhood of the image. This new diffusion
process has two important properties: it makes possible to close some interrupted
linear structures and enhances reliable linear structures in the input image. On
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the other hand, an undesirable effect of this diffusion process is that ridge/valley
junctions are destroyed and non linear structures are deformed. In this paper we
present a new diffusion process that enhances ridge/valley structures. This process
is based on a new diffusion tensor that includes the differential structure of ridges
and valleys in an image. This tensor, that we call creaseness tensor, provides the
creaseness direction in each point and a local measure of creaseness. In Sect. 2
we review what is a diffusion process. In Sect. 3 we define the creaseness tensor
and construct the corresponding diffusion process. Section 4 presents comparative
results. Finally, Sect. 5 summarizes the main conclusions.

2. DIFFUSION PROCESSES

Diffusion processes derive from Fick’s law [5] and the continuity equation. Fick’s
law expresses that a gradient concentration leads to a flow which compensates it.
If we include Fick’s law into the continuity equation, which expresses that mass is
only transported but can neither be created nor destroyed, we obtain the diffusion
equation:

% = div(D - Vu) (1)
where D is a diffusion tensor and u corresponds to the mass concentration. The
diffusion tensor define the diffusion process, for example, if we choose D as the iden-
tity matrix we have a particular case of the diffusion equation, the heat equation.
This special case can analytically be solved and one can prove that it corresponds
to a convolution of the initial function u with a Gaussian kernel. If we think of u
as the grey level of an image I, we obtain the Gaussian smoothing as a special case
of the diffusion equation [7, 15]. This diffusion process suffers from the well known
problem of displacement of edges due to Gaussian blurring. In order to solve this
problem, Perona and Malik proposed another diffusion process [10] (see also [11])
which can be seen as a special case of the diffusion equation:
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where K is a parameter controlling the diffusion strength. However, neither the
Gaussian diffusion nor the Perona-Malik’s are tuned to enhance linear structures
while regularizing the image. In these processes the diffusion directions are always
collinear to the image gradient VI and its perpendicular VI+. Then, with the
purpose of enhancing linear structures, Weickert proposed in [14] the tuning of the
diffusion directions according to the dominant orientation at each image pixel. This
dominant orientation at each pixel is obtained through the structure tensor analysis
[6]. The structure tensor can be defined as the convolution of the Gaussian kernel
with the tensor product of the regularized gradient by itself:

Spo =Gy * (VI VI]) 3)

The parameter ¢ is the differentiation scale and controls the size of the objects
whose orientation has to be determined, while p is the integration scale and con-
trols the size of the neighborhood in which an orientation is dominant. Weickert



proposed a diffusion process based on the construction of a diffusion tensor whose
eigendirections coincide with the eigenvectors of the structure tensor, but having
different eigenvalues, namely:
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where pu; and po are the eigenvalues of the structure tensor and m,C and « are
parameters controlling the exponential shape and the diffusion strength in the non
coherence direction. Since this diffusion process enhances coherent flow-like struc-
tures it seems appropriate for regularizing the image before extracting ridges and
valleys. However, we have observed that the inner structures of ridges and valleys
are modified by this filtering process. Specially, many junctions disappear and orig-
inal structures are deformed. In order to try to solve these problems we propose a
new diffusion process that introduces information about the crease structure of the
image.

3. CREASE DIFFUSION FLOW

In this section we propose a new diffusion process that smoothes the original
image while preserving and enhancing the intrinsic crease structure. First, we make
a brief review of the classical theory surrounding the problem of surface structure
classification, giving an intuitive and geometric interpretation of it. Then we make
use of this classical theory in order to define a new diffusion tensor, that we call
crease diffusion tensor.

3.1. Local surface classification

Consider a gray level image I(z,y) as a surface graph. Then we can describe this
image locally by means of its Taylor expansion. In fact, if we are only interested
in the shape of the image we only need the second order derivatives information,
that is the Hessian of I. The Hessian provides us an analytical local representation
of a surface z = u(x,y) in each point p = (g, yo). The corresponding eigenvectors
and eigenvalues, that we denote as vy, v2, h; and hs respectively, can be used to
make the classification presented in Fig. 1 (left) in terms of surface local structure.
In figure 1 (left) we can see the local surface classification obtained using only the
Hessian information. But there exists a more accurate definition for ridges and
valleys using also the gradient information. That is, we consider a point to be a
ridge/valley point if the gradient is orthogonal to the eigenvector corresponding
to the greatest eigenvalue of the Hessian. In addition, the following relationship

between the surface principal curvatures (k;) and Hessian eigenvalues (h;) holds:

hi .
ki=—— if Vu-v; =0 (5)
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That is, in the case of ridges and valleys the eigendirection v; and the normalized
eigenvalue (k;) coincide exactly with the principal direction and the maximum
principal curvature respectively. We can obtain directly this normalized eigenvalues
for the Hessian if we analyze the normalized Hessian below instead of the classical
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FIG. 1. Left: Surfaces obtained varying the h1 and ha eigenvalues of a quadratic function.
Right: Level sets corresponding to the surfaces on the left and its eigendirections corresponding
to k1 and k2 respectively.
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Unfortunately, for our purposes the classification provided in Fig. 1 (left) is not
adequate for two main reasons. The first reason is that we are looking for a positive
valued descriptor which reaches its highest value in the presence of ridges or valleys.
On the other hand we also need a bounded descriptor. In order to achieve these
requirements we propose the following shape descriptor:

ki — ko
ki + ko

7 (7)

where k1 = max(|k;|,|ks|) and k» = min(|ky,|kz|). It is easy to prove that p
is bounded, concretely 0 < pu < 1. Since we are interested in ridges and valleys
separately we can consider the following factorization of the descriptor u:

bk by
Ur = k1+k2 Uy = k1+k2
0 0

where p, and p, reaches its highest values in the presence of ridges and valleys
respectively. In fact we obtain the classification of the Table 1 (note that p =
ir + py)- The direction associated with the largest eigenvalue (in absolute value)
corresponds to the local crease direction of the surface. In Figure 1 (right) we can
see the crease direction (labeled as vs).

lf k1 <0
if k>0
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3.2. The Creaseness Diffusion Tensor
In order to construct a multilocal representation of the normalized Hessian (6)

we can make a double regularization step as in the case of the structure tensor (see



TABLE 1
Different surfaces grouped in function of El, k2.
k1 >0 | Ridge p=1
ko =0 | Valley
Saddle-Valley
k1 > k2 | Saddle-Ridge 0<p<l
Maximum-Ridge
Minimum-Valley

Minimum
k1 = k2 | Maximum p=0
Perfect Saddle

eq. (9)). First we regularize the initial image u in order to obtain robust derivatives
(derivation step) and then regularize the tensor field (integration step):
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where G, is a Gaussian kernel of size p. This tensor provides a multilocal version
of the eigendirections and normalized eigenvalues of the Hessian. We denote as v
the first eigendirection corresponding to the highest eigenvalue in absolute value
(k1) and v, the one corresponding to the lowest. The creaseness diffusion tensor
is constructed in order to have the same eigenvectors v; and vy and the following
associated eigenvalues:
= 1
{)\1 e €€(0,1) (10)
Ay = oy + IB/J/’U Oé,ﬂ € [05 ]-]

where a and § are parameters controlling the diffusion strength in the presence
of ridges and valleys respectively and e controls the diffusion in the direction per-
pendicular to the creaseness direction and assures the semidefinite property of the
diffusion tensor. Due to the regularization steps, the diffusion process which we pro-
pose here is well posed and the existence and uniqueness of solutions can be proved
in the same way as in [2, 4]. Interesting values for the couple (a, ) are (1,0), pure
ridge diffusion, (0,1) pure valley diffusion and (1,1) ridge-valley diffusion.

4. RESULTS

Figure 2 shows the behavior of our filter both in a synthetic image and on a real
fingerprint image. The synthetic image (Fig. 2 left)is formed by valley (darker)
and ridge (brighter) structures. In the central part the valleys and ridge are more
radial while as we move away from the center the crease structure become more
like concentric ellipses. The original image (top left) was filtered using our proposal
(left bottom) and their valleys were extracted (right hand of each image). We can
observe that the filtering process (which is tuned to enhance mainly the valley
structures) enhances the valleys of the original image leading to a better results on
the valley extraction. We have performed the same experiment in the case of the
fingerprint. One can also notice that the valley structure was enhanced leading to a
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FIG. 2. Left: Parametersa =1 3 =0.5 0 =1 p = 0.5. Right: Parameters a =1
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FIG. 3. ROIs from the fingerprint image (Fig. 2 right side). Each ROI was

filtered using Gaussian smoothing (second column, o = 2), Perona-Malik’s smoothing
(third column, K = 4, 10 iterations), Weickert’s smoothing (fourth column, o = 1,p =
1, 10 iterations) and finally our filter (fifth column, ¢ = 1,p = 1,a = 1,8 = 0.6, 10
iterations).



better valley extraction. The fingerprint is analyzed more precisely in the following
figure.

In Fig. 3 we zoom three regions of interest (ROIs of 32x32 pixels) from the
fingerprint image (Fig. 2 right). Each ROI was filtered using Gaussian smoothing
(second column), Perona-Malik’s smoothing (third column), Weickert’s smoothing
(fourth column) and finally our filter (fifth column). The corresponding valleys
(row below each ROI) were also computed in order to compare the effects of the
filtering step. The junctions in each valley image are surrounded with a gray oval in
order to make easy their localization. Although the structures are more preserved
in the case of the Perona-Malik smoothing than in the case of Gaussian smoothing
we can observe that some linear structures and also some junctions are destroyed.
Weickert’s filter preserves much more the linear information but also the topol-
ogy (junctions) are destroyed. In our case we observe a better behavior. Linear
structures are enhanced while preserving its own topology.

5. DISCUSSION

We have presented a new diffusion process to enhance ridge/valley structures,
that we term crease enhancement diffusion. It is based on two main ideas: a directed
diffusion process and a stable bounded creaseness operator. The advantages of this
filtering process are that while crease features are enhanced, artifacts in the image
do not appear, contours are preserved and junctions are not interrupted. We have
compared it with other classical filters like Gaussian or Perona-Malik smoothing,
showing their problems, specially in the case of highly oriented textures. Also
we have compared it with a recent approach proposed by Weickert, the coherence
enhancement diffusion, from which we have borrow the idea of coherence. We have
shown that although Weickert’s filter enhances linear structures (like ridges and
valleys) many junctions disappear and some artifacts appear, that is, the crease
structure is not preserved. Our filtering process avoids these problems to a large
extent. This new filter should be also interpreted as an example of introducing the
enhancement of specific geometric structures in diffusion processes. This is done
directly in the diffusion process, and not explicitly favored via outliers as in [1].
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