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Adaptive infinite-impulse-response (IIR) filtering provides a powerful ap-
proach for solving a variety of practical problems. Because the error sur-
face of IIR filters is generally multimodal, global optimization techniques
are required in order to avoid local minima. We apply a global optimization
method, called the adaptive simulated annealing (ASA), to digital IIR filter
design. An important advantage of the ASA is the simplicity in software
programming. Simulation study involving system identification application
shows that the proposed approach is accurate and has a fast convergence
rate, and the results obtained demonstrate that the ASA offers a viable tool
to digital IIR filter design.  2001 Academic Press
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1. INTRODUCTION

Adaptive infinite-impulse-response (IIR) filtering has been an active area
of research for many years, and many properties of IIR filters are well
known [1, 2]. A major concern in IIR filtering applications is that the cost
function of IIR filters is generally multimodal with respect to the filter
coefficients, and the usual gradient-based algorithm can easily be stuck
at local minima. In order to achieve a global minimum solution, global
optimization techniques are needed. Global optimization methods require
extensive computations and are usually batch-type algorithms, as the cost
function employed must be evaluated on a block of data. In contrast, gradient-
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based learning can be implemented recursively to update the filter coefficients
as each new data sample is acquired. Despite these drawbacks, applying
global optimization methods to IIR filter design is attractive, since in many
applications a global optimal solution can be much better than local optimal
ones.

When considering global optimization methods for digital IIR filter design,
the genetic algorithm (GA) [3–5] seems to have attracted considerable atten-
tion [6–8]. Simulated annealing (SA) [9–11] by contrast has not received similar
interest in this application. SA represents a general global optimization tech-
nique with some strikingly positive and negative features. An attractive feature
of SA is that it is very easy to program and the algorithm typically has few pa-
rameters that require tuning. A serious drawback of SA is that the standard SA
algorithms can be very slow, often requiring much more number of cost-function
evaluations to converge, compared with a carefully designed and tuned GA.

An improved version of SA, referred to as the adaptive SA (ASA) [12–15],
is known to provide significant improvement in convergence speed over
standard versions of SA. This ASA is also known as the very fast simulated
reannealing. In this study, we apply the ASA to digital IIR filter design.
Simulation involving system identification application is used to illustrate the
effectiveness of the ASA. A batch-recursive version of the ASA is proposed
for adaptive applications. No attempt has been made to explicitly compare the
convergence speed of the ASA with that of the GA. However, the examples used
are well known and, compared with the results of using GAs for IIR filtering
available in the literature, the efficiency of the ASA appears to be on the same
order as GA. This suggests that the ASA offers a viable alternative to digital IIR
filter design.

2. THE ASA FOR DIGITAL IIR FILTER DESIGN

Consider the digital IIR filter with the input–output relationship governed by
the difference equation

y(k) +
M∑
i=1

biy(k − i) =
L∑

i=0

aix(k − i), (1)

where x(k) and y(k) are the filter’s input and output, respectively, and M (≥L)

is the filter order. The transfer function of this IIR filter is

HM(z) = A(z)

B(z)
=

∑L
i=0 aiz

−i

1 + ∑M
i=1 biz−i

. (2)

The IIR filter design can be formulated as an optimization problem with the
mean square error (MSE) as the cost function

J (wH) = E[e2(k)] = E[(d(k) − y(k))2], (3)
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where d(k) is the filter’s desired response, e(k) = d(k) − y(k) is the filter’s error
signal, and

wH = [aT bT ]T = [a0 a1 . . . aL b1 . . . bM ]T (4)

denotes the filter coefficient vector. The goal is to minimize the MSE (3) by
adjusting wH . In practice, ensemble operation is difficult to realize, and the cost
function (3) is usually substituted by the time-averaged cost function:

JN(wH) = 1
N

N∑
k=1

e2(k). (5)

An important consideration during the adaptive process is to maintain the
stability of the IIR filter. The IIR filter (1) is in the direct form. An efficient way
of maintaining stability is to convert the direct form to the lattice form [16]
and to make sure that all the reflection coefficients κi , 0 ≤ i ≤ M − 1, have
magnitudes less than 1. We will adopt this approach to guarantee the stability
of the IIR filter during adaptation. Thus the actual filter coefficient vector used
in optimization is

w = [a0 a1 . . . aL κ0 . . . κM−1]T = [w1 . . . wD]T , (6)

where D = M + L + 1 is the dimension of the filter coefficient vector. For the
notational convenience, the cost function will still be denoted as J or JN .
Converting the reflection coefficients back to the direct-form coefficients bi ,
1 ≤ i ≤ M , is straightforward [16]. For instance, given M = 3, we have

b3 = κ2

b2 = κ0(1 + κ1)κ2 + κ1

b1 = κ0(1 + κ1) + κ1κ2


 . (7)

Because the cost function for IIR filters is generally multimodal, using a
global optimization method, such as ASA, is desired. Theoretic fundamentals
and convergence analysis of the ASA algorithm can be found in [12–14] and
the references therein. The appendix summarizes the search mechanisms of
the ASA method. Although there are many possible realizations of ASA, an
implementation of the algorithm is illustrated in Fig. 1, and this algorithm is
detailed as follows:

(i) In the initialization, an initial w is randomly generated, the initial
temperature of the acceptance probability function, Tc(0), is set to the initial
value of the cost function J (w), and the initial temperatures of the parameter
generating probability functions, Ti(0), 1 ≤ i ≤ D, are set to 1.0. A user-defined
control parameter c in annealing process is given, and the annealing times, ki for
1 ≤ i ≤ D and kc, are all set to 0.
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FIG. 1. Flow chart of the adaptive simulated annealing.

(ii) The algorithm generates a new point in the parameter space with

wnew
i = wold

i + gi(Ui − Vi) and wnew
i ∈ [Ui,Vi], for 1 ≤ i ≤ D. (8)

Here Ui and Vi are the lower and upper bounds for wi , gi is calculated as

gi = sgn
(
ui − 1

2

)
Ti(ki)

((
1 + 1

Ti(ki)

)|2ui−1|
− 1

)
, (9)

and ui a uniformly distributed random variable in [0,1]. The value of the cost
function J (wnew) is then evaluated and the acceptance probability function of
wnew is given by

Paccept = 1
1 + exp((J (wnew) − J (wold))/Tc(kc))

. (10)

A uniform random variable Punif is generated in [0,1]. If Punif ≤ Paccept, wnew is
accepted; otherwise it is rejected.
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(iii) After every Naccept acceptance points, reannealing takes place by first
calculating the sensitivities

si =
∣∣∣∣J (wbest + 1i δ) − J (wbest)

δ

∣∣∣∣, 1 ≤ i ≤ D, (11)

where wbest is the best point found so far, δ is a small step size, the D-
dimensional vector 1i has unit ith element and the rest of elements of 1i are
all zeros. Let smax = max{si ,1 ≤ i ≤ D}. Each Ti is scaled by a factor smax/si and
the annealing time ki is reset

Ti(ki) = smax

si
Ti(ki), ki =

(
−1

c
log

(
Ti(ki)

Ti(0)

))D

. (12)

Similarly, Tc(0) is reset to the value of the last accepted cost function, Tc(kc) is
reset to J (wbest), and the annealing time kc is rescaled accordingly:

kc =
(

−1
c

log
(

Tc(kc)

Tc(0)

))D

. (13)

(iv) After every Ngenera generated points, annealing takes place with

ki = ki + 1

Ti(ki) = Ti(0)exp
(−ck

1/D
i

)
}

1 ≤ i ≤ D (14)

and

kc = kc + 1

Tc(kc) = Tc(0)exp
(−ck

1/D
c

)
}

. (15)

Otherwise, go to step (ii).
(v) The algorithm is terminated if the parameters have remained un-

changed for a few successive reannealings or a preset maximum number of cost-
function evaluations have been reached; otherwise, go to step (ii).

As in a standard SA, the ASA contains two loops. The inner loop ensures
that the parameter space is searched sufficiently at a given temperature, which
is necessary to guarantee that the algorithm finds a global optimum. The
differences with standard SAs are that the ASA uses a much faster annealing
schedule and employs a reannealing scheme to adapt itself. The ASA is easy to
program, and the user only needs to assign a control parameter c and set two
values Naccept and Ngenera.

The above ASA is basically a batch algorithm. For adaptive applications, it is
desired to have some tracking capability. This can be achieved by employing a
moving window scheme, as illustrated in Fig. 2. The cost function is evaluated
using a block of N samples but the data block is shifted by "N samples
after every "N cost-function evaluations. We will refer to this version of the
algorithm as the batch-recursive algorithm.
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FIG. 2. Illustration of the batch-recursive method with a moving window. The data block
contains N samples and, after every "N cost-function evaluations, the data block is shifted by "N

samples.

3. SYSTEM IDENTIFICATION APPLICATION

System identification application, depicted in Fig. 3, is used in the experiment.
In this configuration, the unknown plant has a transfer function HS(z), and the
ASA is employed to adjust the IIR filter that is used to model the system. When
the filter order M is smaller than the system order, local minima problems can
be encountered [2], and this is used to simulate a multimodal environment. We
also apply the standard, batch gradient algorithm in the simulation to highlight
the problems caused by local minima. The batch gradient algorithm is defined
by

w(l+1) = w(l) − α
∂J (w(l))

∂w
. (16)

A variable gain α is adopted for fast convergence. For the cost function (5), 2000
samples are used in averaging for the batch ASA and gradient algorithms. The
signal-to-noise (SNR) ratio of the system is defined as

SNR = σ 2
s

σ 2
n

. (17)

Here σ 2
n is the noise variance, and the system signal variance σ 2

s is given by

σ 2
s = σ 2

x

j

∮
HS(z)HS(z

−1)
dz

z
, (18)

FIG. 3. Schematic of adaptive IIR filter for system identification.



Chen, Istepanian, and Luk: Digital IIR Filter Design 247

FIG. 4. Normalized cost function versus number of cost-function evaluations averaged over 100
random runs of the batch ASA for Example 1. Each run had a randomly chosen initial point. The
dashed line indicates the global minimum.

where j = √−1, σ 2
x is the input variance, and a numerical evaluation of the filter

power
∮

HS(z)HS(z
−1) dz/z can be found in [17]. The search ranges for the filter

coefficients are |ai | ≤ 1.2 and |κi | ≤ 0.99.

EXAMPLE 1. This example is taken from [2]. The system and filter transfer
functions are respectively

HS(z) = 0.05 − 0.4z−1

1 − 1.1314z−1 + 0.25z−2 , HM(z) = a0

1 + b1z−1 . (19)

The analytical cost function J in this case is known when the input is a white
sequence and σ 2

n = 0. The cost function has a global minimum at wglobal =
[−0.311 −0.906]T with the value of the normalized cost function J (wglobal)/σ 2

s =
0.2772 and a local minimum at wlocal = [0.114 0.519]T . The batch gradient
algorithm cannot find wglobal when the initial w is near wlocal. Figure 4 depicts
the evolution of the normalized cost function averaged over 100 different
random runs of the batch ASA. Each run had a randomly chosen initial w and a
random algorithm setting. Figure 5 shows the trajectories of the filter parameter
vector averaged over 100 different runs of the batch ASA, started from four
fixed initial positions. It can be seen that the batch ASA consistently found the
global optimal solution and the algorithm converged after 300 function calls.
The ability of the ASA to escape from a local minimum is clearly demonstrated
by this example.

EXAMPLE 2. This is a third-order system with the transfer function given
by

HS(z) = −0.3 + 0.4z−1 − 0.5z−2

1 − 1.2z−1 + 0.5z−2 − 0.1z−3 . (20)

In the simulation, the system input x(k) was a uniformly distributed white
sequence, taking values from (−0.5, 0.5), and the SNR = 30 dB. When the
filter order was equal to the system order, both the batch ASA and gradient
algorithms converged to the global optimum with the MSE JN reaching the
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FIG. 5. Trajectories of the filter parameter vector averaged over 100 different runs of the batch
ASA, started from the fixed initial positions: (a) [0.9 −0.9]T , (b) [−0.8 0.0]T , (c) [0.9 0.9]T , and
(d) [0.114 0.519]T for Example 1.

noise floor of 0.0002. The gradient algorithm in this case was much more
efficient than the ASA. However, when a reduced-order filter with M = 2 and
L = 1 was used, the MSE became multimodal and the gradient algorithm
converged to the two final states, depending on the initial conditions. Figure 6
shows the behaviors of the batch gradient algorithm when started from the two
quite closed initial positions. The batch ASA consistently reached the global

FIG. 6. Convergence behaviors of the batch gradient algorithm, started from the two initial
conditions: (a) [0.0 0.0 0.3 0.1]T and (b) [0.0 0.0 0.3 0.0]T for Example 2.
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FIG. 7. Cost function versus number of cost-function evaluations averaged over 100 random
runs of the batch ASA for Example 2. Each run had a randomly chosen initial point.

optimal solution, as shown in Fig. 7. The batch-recursive ASA algorithm was
also tested for this example. We used a moving window of N = 100 and "N = 1.
Figure 8 plots the evolution of the cost function averaged over 100 different
random runs of the batch-recursive ASA. Again each run had a randomly chosen
initial w and a random algorithm setting.

4. CONCLUSIONS

Although the digital IIR filter design is a well-researched area, major
difficulties still exist in practice. An efficient global optimization method
known as the ASA has been applied to overcome the problems associated
with local minima. Simulation study involving system identification application
has demonstrated that the ASA is robust and has a fast convergence speed.
Compared with the results of using GAs for adaptive IIR filtering available
in the literature, the efficiency of the ASA appears at least to be on the same

FIG. 8. Cost function versus number of cost-function evaluations averaged over 100 random
runs of the batch-recursive ASA for Example 2. A moving window of N = 100 and "N = 1 was used.
Each run had a randomly chosen initial point.
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order as GA. This study has confirmed that the ASA offers an alternative design
approach for IIR filtering.

APPENDIX: ASA SEARCH GUIDING MECHANISMS

The ASA is a global optimization scheme for solving for the following general
optimization problem:

min
w∈W

J (w). (A.1)

It evolves a single point w in the parameter or state space W . The seemingly
random search is guided by certain underlying probability distributions.
Specifically, the general SA algorithm is described by three functions.

1. Generating Probability Density Function

G(wold
i ,wnew

i , Ti; 1 ≤ i ≤ D). (A.2)

This determines how a new state wnew is created and from what neighborhood
and probability distributions it is generated given the current state wold. The
generating “temperatures” Ti describe the widths or scales of the generating
distribution along each dimension wi of the state space.

Often a cost function has different sensitivities along different dimensions
of the state space. Ideally, the generating distribution used to search a steeper
and more sensitive dimension should have a narrower width than that of the
distribution used in searching a dimension less sensitive to change. The ASA
adopts a so-called reannealing scheme to periodically rescale Ti , so that they
optimally adapt to the current status of the cost function. This is an important
mechanism, which not only speeds up the search process but also makes the
optimization process robust to different problems.

2. Acceptance Function

Paccept(J (wold), J (wnew), Tc). (A.3)

This gives the probability of wnew being accepted. The acceptance tempera-
ture Tc determines the frequency of accepting new states of poorer quality.

Probability of acceptance is very high at very high temperature Tc, and it
becomes smaller as Tc is reduced. At every acceptance temperature, there is
a finite probability of accepting the new state. This produces an occasionally
uphill move, enables the algorithm to escape from local minima, and allows a
more effective search of the state space to find a global minimum. The ASA also
periodically adapts Tc to best suit the status of the cost function. This helps to
improve convergence speed and robustness.
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3. Reduce Temperatures or Annealing Schedule

Tc(kc) → Tc(kc + 1)

Ti(ki) → Ti(ki + 1),1 ≤ i ≤ D

}
, (A.4)

where kc and ki are some annealing time indexes. The reduction of temperatures
should be sufficiently gradual in order to ensure that the algorithm finds a global
minimum.

This mechanism is based on the observations of the physical annealing
process. When the metal is cooled from a high temperature, if the cooling is
sufficiently slow, the atoms line themselves up and form a crystal, which is
the state of minimum energy in the system. The slow convergence of many
SA algorithms is rooted at this slow annealing process. The ASA, however, can
employ a very fast annealing schedule, as it has self adaptation ability to rescale
temperatures.
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