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RESUME

Nous réexaminons la version discrete du modéle axiomatique de partage de codts.
Nous proposons une condition de cohérence (informationnelle) qui exige que la solution
d'un probleme soit identique a celle donnée a au moins un de ses raffinements. Nous
prouvons qu'une regle linéaire strictement cohérente doit étre une regle d'ordre aléatoire

simple.

Mots clés : partage de codts, additivité, ordre aléatoire

ABSTRACT

We reconsider the discrete version of the axiomatic cost-sharing model. We
propose a condition of (informational) coherence requiring that not all informational
refinements of a given problem be solved differently from the original problem. We prove

that strictly coherent linear cost-sharing rules must be simple random-order rules.

Key words : cost sharing, additivity, random order



1. Introduction

This paper reconsiders the problem of allocating the cost of a bundle of goods or
services among a set of consumers. Numerous examples have been studied in the
literature: How should we split the overhead costs of a firm among its various divi-
sions (Shubik (1962))? How should we price the use of public facilities (Loehman
and Whinston (1974)), telephone systems (Billera and Heath (1982)), computer
networks (Shenker (1995)), transportation systems (Henriet and Moulin (1996)),
airport runways (Littlechild and Owen (1973)), irrigation networks (Aadland and
Kolpin (1998))7 For more examples, we refer the reader to Shubik (1982); Young
(1994) and Moulin (1995b).

The bulk of the axiomatic literature on the cost sharing problem has developed
in the context of the following model. Agent i = 1,...,n demands a quantity g; of
a personalized good and the total cost C(qy, ..., ¢,) must be split equitably among
the n agents. The demand vector ¢ = (qi, ..., ¢,) and the cost function C' are the
only data of the problem.

Two special cases of this model have received much attention. If ¢; = ... =
¢, = 1 and C is defined on {0,1}", we obtain the cooperative game model (upon
identifying a coalition with the vector in {0, 1}"™ whose coordinates corresponding
to the members of that coalition are 1 while the others are 0). This corresponds
to an assumption of complete indivisibility of the goods. In the Aumann-Shapley
pricing model, on the other hand, ¢, ..., ¢, are arbitrary nonnegative real numbers
and C' is defined on R’}. Goods are thus assumed to be perfectly divisible. The
vast literature on the so-called Aumann-Shapley prices makes that assumption
(see, e.g., the survey by Tauman (1988)) and so does most of the recent literature
spawn by Moulin and Shenker’s (1992) seminal article on the serial mechanism
(see, e.g., Friedman and Moulin (1998), Kolpin (1996), Koster et al. (1997),
Moulin and Shenker (1994), and Sprumont (1998)).

In a recent paper, Moulin (1995a) proposes a discrete reformulation of the
Aumann-Shapley model in which goods come in indivisible units: ¢y, ...,q, are
arbitrary nonnegative integers and C' is defined over N". This approach avoids
the technical assumptions and complications of the continuous formulation (this
turns out to be extremely helpful when addressing the difficult problem of strate-
gic manipulability: see Moulin (1997)) and nicely encompasses the traditional
cooperative game model as the special case where all agents demand a single
unit.

Our purpose here is to take further advantage of that discrete model to discuss



informational issues that do not arise in either the cooperative game model or the
continuous framework of Aumann and Shapley. Our starting point is the following
trivial observation. In a problem where the demand vector is q, the only relevant
information is the restriction of the cost function to the vectors between 0 and q.
In the discrete model, this amounts to (g1 + 1)(g2 + 1)...(¢» + 1) numbers: The
relevant information, therefore, gets richer as ¢ grows!.

Going one step further, we observe that a cost-sharing problem may be “re-
fined” by adding (or learning) information about costs at “intermediate” produc-
tion vectors. The simplest refinements obtain by blowing up the measurement
scales: instead of knowing costs, say, per ton, we would know them per kilogram.
It makes sense for a cost-sharing rule to use such additional information and,
perhaps, to revise the cost shares originally decided upon. If the rule is coherent,
however, there should exist at least one conceivable refinement of the problem at
hand for which the cost shares remain unchanged. This informational coherence
property, formally defined in Section 4, is the subject of the paper.

In the tradition of much of the cost-sharing literature, our analysis will be
confined to linear cost-sharing rules, i.e., rules that satisfy the straightforward
extensions of the additivity and dummy axioms from cooperative game theory to
our model. Our main result is Theorem 1 in Section 5: it states that every linear
and demand-monotonic rule satisfying (a strict form of) our coherence axiom is
a random-order rule in the traditional cooperative game-theoretic sense. (The
demand monotonicity property, introduced in Moulin (1995a), merely requires
that an agent’s cost share does not decrease when his demand increases.) Theorem
1 may be interpreted as an argument for the cooperative game model: even though
we have much more information than what is summarized in a cooperative game —
but still less than the “complete” information assumed by the continuous model—,
it is difficult to use it in a coherent way.

2. Model and notations

The model is essentially that of Moulin (1995a). Let N = {1,2,....n}, n > 2, be
a finite set of agents. Agent i € N demands good i only; N is therefore also the
set of goods. A demand vector is an element q of NV, where N = {0,1,2,...}; that

is, goods are not perfectly divisible. A cost function is a nondecreasing function
C : N¥ — R such that C(0) = 0. The set of all cost functions is denoted by

I Notice that nothing of the sort happens in the continuous model.



C. A (cost-sharing) problem is a pair (¢;C) in N¥ x C. A (cost-sharing) rule
x associates with each problem (g; C) a list of nonnegative cost shares x(g; C)
satisfying the budget balance condition ), . x;(¢; C) = C(q). The only difference
with Moulin’s model is that we do not allow for capacity constraints.

It may be worth noting that this formal framework can be given another
interpretation than the one suggested by our terminology. One can think of g; as
the quantity of some input, perhaps some type of labor, contributed by agent 4,
and reinterpret C' as a production function. The function z is then an output-
sharing rule. In the sequel, we will stick to the cost-sharing terminology.

Vector inequalities are written >, >,>>. If ¢ is a demand vector in NV and
S C N, g5 denotes the restriction of g to S. We sometimes write ¢ as (¢s,qn_s)-
We also use the notation —S instead of N — S and write i instead of {i}. If
t < g, the notation [tg, gs] stands for the integer box X;cg{ts,t; + 1,...,4:}. We
write |ts gs| for [ts,qs]\{ts} and Jts, gs| for [ts, gs]\{ts,qs}. A corner of the box
[ts,qs] is a vector in X,es{t;, ¢;}. We denote by A(q) the set of active agents at
q, ie., Alq) = {i € N : ¢ > 0}. We let 1 stand for the vector in NV whose jth
component is 1 if j = i and 0 otherwise. If (¢; C') is a problem and ¢; > 0, we
define 9;,C(q) = C(q) — C(q — 1%).

3. Linearity

This paper is exclusively concerned with additive rules satisfying the so-called
dummy axiom.

Definition 1. A rule z is additive if z(q; C + C") = x(q; C) + z(q; C") for every
demand vector ¢ and any cost functions C' and C’. Tt satisfies the dummy axiom
if z;(q; C) = 0 whenever §;C(t) = 0 for every demand vector ¢t € NV such that
t; > 0.

Additive rules satisfying the dummy axiom admit a familiar representation.
An agent’s cost share is a weighted sum of his marginal costs:

Lemma 1. A rule x is additive and satisfies the dummy axiom if and only if, for
every q € NV and i € A(q), there is a mapping of : [1%,q] — R, such that
zi(q; C) = Y. o (t)0;C () for each C € C, (3.1)

te[1t,q]

and

3 ST ad(t;,s-) =1 for each t €]0,q]. (3.2)

t€A(t) s_s€[t—5,9-4]



This lemma corresponds in our discrete framework to Friedman and Moulin’s
(1997) representation lemma in the continuous model and to Weber’s Theorem 2
in the cooperative game model. A proof of it may be found in Wang (1998). We
call the collection o = (] ) e 4c A(q) the weight system associated with the rule
x. This system is unique. Condition (3.2) ensures budget balance and implies
that z;(q; C') = 0 whenever ¢; = 0.

From now on, we adopt the following terminology.

Definition 2. A linear rule is an additive rule satisfying the dummy axiom.

A simple but useful implication of the budget balance condition may be noted
right away.

Lemma 2. Let x be a linear rule with associated weight system «. Then, for
every ¢ € NV and every t €]0, q|,

>oooft)= ¥ ot+1). (33)

1€ A(q):t;>0 1€ A(g):t;<qi

Proof. Let x be a linear rule with associated weight system o, let ¢ € NV and
t €]0, q[. Define the cost functions C; and C}* as follows:

Ci(s) = 1ifs>t and 0 otherwise,
Cr*(s) = 1if s>t and 0 otherwise.

Applying budget balance to (¢; C}) and (gq; C;*) yields, respectively,

>, >, allt,s ) =1

iEA(q):ti>0 S_i€[t_i,q—s]

and

> S alltys)+ Y alt+1) =1

iEA(q):ti>0 S_i€lt_i,q-5] iEA(q):ti<Qi
Combining these two equations gives (3.3). B

It is convenient to introduce at this stage a few examples that will play a role
in the sequel. The simplest linear rules are the incremental rules. Let ¢ € NV and
write > . n ¢ = q(IN). A path to g is a mapping 77 : {0,1,...,¢(N)} — [0, ¢ such
that 1) 77(0) = 0 and ii) for each k € {0,1,...,q(N)}, 7(k) is identical to 77(k—1)
in all coordinates but one, say, the ith, for which 7}(k) = 7f(k — 1) + 1. A path
system associates with each demand vector ¢ € NV a path to ¢. The incremental



cost-sharing rule generated by a path system 7, or m-incremental rule, obtains by
charging each agent the sum of his marginal costs along the path recommended
by the system 7. More precisely, if (¢; C') is a problem and i € N | we compute
for every t; € [1,¢;] the unique integer k =: k(t;) for which 7}(k —1) =, — 1 and
7i(k) = t;, and then charge agent i

27 (¢ C) = Y 90 k(L))

tze[lyq'b]

The best known rules are convex combinations of incremental rules. One
possibility is, for each demand vector ¢, to average over all paths to ¢ with identical
weight. This was first suggested by Aumann and Shapley (1974).

Definition 3. The Aumann-Shapley rule % recommends the arithmetic average
of the cost shares computed by the incremental rules: for each problem (g; C') and
1€ N,
1
AS 7
2 (4 0) = 75—~ z; (¢;0),
’ P(Q) ’ wee P(q)
where P(q) denotes the set of paths to g.

An appealing feature of the Aumann-Shapley rule is that it gives positive
weight to the marginal costs at all intermediate production vectors.> This implies
the nice Converse Dummy axiom: only the dummies pay nothing. Formally,

Converse Dummy. For every problem (¢; C') and i € A(q), z;(¢; C') = 0 only if
9;C(t) = 0 for every t € [17, q].

One could also concentrate, for each q, on those paths that follow the edges of

the box [0, g]. Let X(N) be the set of permutations on the agent set N. For each
o € %(N) and g € NV, denote by w%(o) the unique path in [0, g that assumes the
values (¢s,0_5), S = {c(1)},{o(1),0(2)},...,{c(1),0(2),...,0(n)}.
Definition 4. Let A : NV x 3(N) — RY be a weight function assigning to each
demand vector g and each permutation o on N a nonnegative weight A(q, o), with
> oesvy Mg, 0) =1 for every g. The A—random-order rule 2> charges to agent i
in problem (g; C') the cost share

Mg O)= ¥ Mg, 0)af (g 0).

geX(N)

2This expression should be understood to be zero if ¢; = 0.
3This property is lost in the continuous model.



If X\ is constant in g, i.e., A(q,0) = (¢, 0) for all q,q¢, 0, we call z* a fized-
random-order rule. The most famous example is the so-called Shapley-Shubik rule
2% where A(q,0) = 1/n! for all (q,0): see Shubik (1962). If the demand vector
g has an impact only through the set of active agents, i.e., if A(q,0) = A(¢,0)
whenever A(q) = A(q'), we call z* a simple random-order rule.

Perhaps the main drawback of the random-order rules is that they violate the
converse dummy property. To see how acute a problem this may be, suppose
n = 2,q = (1000, 1000), C(t) = 0 if t; + t5 < 1000 and t; < 1000, and C(¢) = 1
otherwise. Although this cost function is almost perfectly symmetric (replacing
(1000, 0) with zero would restore symmetry), the Shapley-Shubik rule charges
nothing to agent 2.

4. Coherence

We come now to our central axiom, which imposes on the cost-sharing rule a form
of coherence with respect to the information available to compute the cost shares.
Consider the example of a two-division firm producing, say, beer and soda. The
demand for each product is fixed and data on the joint costs of production are
available on a per-hectoliter basis. Knowing this cost function, the firm applies a
cost-sharing rule to compute each division’s cost share. Suppose next that the firm
comes to learn its cost function more precisely, say, on a per-liter basis. Sticking
to its favorite cost-sharing rule but having more information, it may well decide
to modify the original cost shares. However, if the new cost shares differ from the
old ones no matter what the refined cost function turns out to be, the rule lacks
informational coherence. This is precisely what the axiom that we are about to
define rules out.

Let N, = {1,2,...}. For every demand vector ¢ € NV and every r =
(11,72, ...;7) € N¥, define the vector r @ ¢ := (r1g1,79¢2, ..., "ngs). Say that a
cost function C” r-refines a cost function C if C™(r @t) = C(t) for every t € NV,

Coherence. For every problem (¢;C) and every r € NY, there exists a cost
function C" which r-refines C' such that z(q; C) = z(r @ ¢; C").

Let T'(C;r) be the set of cost functions which r-refine C. Note that T'(C;r)
is a nonempty convex set, so that its relative interior is nonempty as well. Very
much in the spirit of Coherence but slightly stronger is the following condition.

Strict Coherence. For every problem (g; C) and every r € N¥, there exists a
cost function C" in the relative interior of I'(C'; r) such that x(g; C) = z(r@g¢; C7).

6



Combined with linearity, Coherence turns out to be very demanding. We start
off with the following disappointing observation.

Proposition 1. The Aumann-Shapley rule is not coherent.

Proof. Consider the two-agent case n = 2. The weight system « associated with
the Aumann-Shapley rule is given by

_ P || Pla—1)|
| P(q) |

for every g € N?, i € A(q), and t € [1*, q], where we recall that P(t) is the set of
paths from 0 to ¢. In particular, one finds

a; (1)

2 3
aP(2,1) = = and a"2(3,1) = a"?(4,1) = =

Consider the problem ((3,2); C) given by
Ct)y=1ift > (2,1) or t5 > 2, and C(t) = 0 otherwise.

Observe that 9,C(2,1) =1 and 0,C(t) =0 if t # (2,1). Therefore,

719((3,2);C) = o (2, 1) C(2,1) = %

Let 7 = (2,1). For every cost function C” which r-refines C, 8;C"(t) = 0 for
allt ¢ {(3,1),(4,1)}, and 5;C"(3,1) + &,C"(4,1) = 0,C(2,1) = 1. Therefore,

#15((6,2);C7) = (3,100,073, 1) + A DACT (4 1) = 2 £

contravening Coherence. B

5. Simple random-order rules

We begin by taking a second look at the simple random-order rules defined in Sec-
tion 3. Given a demand vector g, every cost function C' generates a (cooperative)
game'! C, through the formula

C,(S) = C(gs,0n_g) for every S C N.

4That is, a real-valued mapping defined on the set of subsets of N assigning zero to the
empty set.



The number C,(S) is just the cost of fully serving the members of S, and C, is
therefore often called the stand-alone cost game generated by C, given q. This
game is monotonic (L.e., Cy(S) < Cy(T) whenever S C T') and, conversely, given
q, every monotonic game is the stand-alone cost game generated by some cost
function C. If z is a simple random-order rule, there is a collection <£S)SCN of
random-order values® on the set of monotonic games, one for each subset of agents,
such that
x(q; C) = SA(Q)(C'Q) for every problem (g; C).

This means, first, that a simple random-order rule uses very little information
to solve any particular cost-sharing problem, namely, the associated stand-alone
cost game. But it further means that this information is used in a fairly rigid
way: the same random-order value is used for all demand vectors with the same
set of active agents.

These features — simplicity and rigidity — guarantee that a simple random-
order rule z is always trivially strictly coherent. In fact, for every problem (g; C')
and r € N¥, the equality x(¢; C) = x(r @ ¢; C") holds not only for some, but in
fact for every, cost function C" which r-refines C'. As we shall see in Section 6,
there are other strictly coherent linear rules. All of them, however, turn out to
violate the appealing requirement of Demand Monotonicity introduced by Moulin

(1995a):

Demand Monotonicity. For every problem (gq;C) and every agent i € N,
2:(q; C) < ws(q + 1% C).

Theorem 1. A linear rule satisfies Strict Coherence and Demand Monotonicity
if and only if it 1s a simple random-order rule.

Proof. It is well known (and easily checked) that simple random-order rules are
demand-monotonic, and we have just seen that they are strictly coherent.

Conversely, let x be a linear rule with associated weight system «. This rule
is fixed for the rest of the proof.

Step 1. A consequence of (Strict) Coherence.
Let ¢ € NV i € N,r; € N, ,t € [1°,q]. Denote by I(rt;) the integer interval
|rs(t; — 1),75t;] and write (r;q;, 9 ;) =: ¢'. We claim that if z is coherent, then

,oin af (t;,t;) < af(ti ) <, Dax af (t;,t-3) (5.1)

®In the usual cooperative game-theoretic sense of Weber (1988, Section 8).



and if x is strictly coherent, both these inequalities must be strict unless ozg/(., t ;)
is constant on I(r;t;).

The argument extends the proof of Proposition 1. Define the cost function ¢
as follows:

C(s)=1ifs>tor s; >t;+ 1 for some j # i, and C(s) = 0 otherwise. (5.2)

Note that 9;C(t) = 1 while 8;C(s) = 0 whenever s # t. For any cost function C’
which (r;,0_;)-refines C, the derivative 9;C’ is zero everywhere except possibly at
the points (t;,t ), t; € I(rit;), and

ool (L, t;) =1.

t;E I(T’iti)

Ifal(t;,t ;) < Ming ¢ 17,1, oz?/ (t:,t_;), we must therefore have z;(q; C) < z;(¢'; C").
Likewise, if of (ti,t5) > maxyer(ru,) af (t,,1_;), we obtain z;(q; C) > z:(¢; C").
This proves (5.1).

To prove the second part of our claim, assume now that, say,

af(ti,t-s) =, moin af (ti,t-3) <, max af (ti,1-4). (5.3)

Observe that a (r;,0_;)-refinement C’ of C' is completely determined by the val-
ues it assumes at the points (t),t ), t. €|r;(t; — 1),r;;[. Calling these values
Y15 Yy 1, We may identify the set of (r;, 0_;)- refinements of C' with the set

P - {(717 "'777’1‘71) . 0 S 71 S ‘e S ’YT171 S 1}.

The relative interior of I' obtains by replacing all weak inequalities in the de-
finition of I with strict inequalities. This relative interior corresponds exactly to
the subset of cost functions C' for which 9;C’(t,,t_;) > 0 for every t, € I(r;t;).
For such functions, (5.3) implies z;(q; C) < z;(¢;C"), contravening Strict Co-
herence. A similar contradiction arises if we assume MINg e [ (rit;) oz?/ () <

MaXy! e 7(ryt;) oz?/ (it ;) = al(t;,t_;) instead of (5.3).

Step 2. The consequences of Demand Monotonicity.
We claim that if x is demand-monotonic, its weight system « satisfies the
following property:

Vg e NV Vi€ A(q),¥t € [I',q], o®*V' (1) = ad(t). (5.4)

7

9



Suppose (5.4) fails: there exist ¢ € NV i € A(q) and t € [1°,q] such that

oz?“i (1) # «f(t). By budget balance, there is no loss in assuming

a2t (1) < ad(1) (5.5)

7

for if the opposite strict inequality holds, there must anyway exist some ', €
[0,¢ 4] such that o™ (# ,,t;) < (' ;,t;) in order to ensure that 3

-7 72 5_;€[0_4,q9—4]

af(ty,s4)=1=3 ozq“i(ti, $_;), as Is required by (3.2) specialized to

s 4€[0_45,9-5] 77
the vector (t;,0_;). Consider again the cost function C' previously defined in (5.2).
From (5.5),

2i(q + 15C) = o2 (1) < (1) = 2:(g; ©),

violating Demand Monotonicity.

Step 3. Combining the consequences of Strict Coherence and Demand Monotonic-
ily.

Fix ¢ € NV. From Step 2, we know that for each i € A(q) there is a mapping
a; : Ny x [0,q9 ;] — R, such that

Vg, € Ny VE € [1, () q-s)], a7 (t) = ai(t). (5.6)

7

We claim that for every t € [0, q], the following is true:

{ Vi e A(q),a;(.,t_;) is a constant map and, if } (5.7)

t_; is not a corner of [0, q_;], a;(.,t_;) is zero.
The proof of this claim is by induction on the number of active agents whose
demand is fully met at ¢, namely, w(t) :=| {i € A(q) : t; = ¢} | .
Step 3.1.We prove that (5.7) holds if w(t) = 0.

Fix t € [0,q] such that w(t) = 0, ie., t; < ¢; for all i € A(q). We use an
auxiliary induction argument on the number of active agents whose demand is
partially met at ¢, namely, 6(¢) :=| {i € A(q) : 0 <t; < g} |-

3.1.1. We start off by showing that (5.7) holds true if w(t) = 0 and 6(t) = 0,

Le., t = 0. In this case (5.7) reduces to the following statement:

Vi € A(q),a;(.,0_;) is a constant map. (5.8)

10



To prove (5.8), note first that each a;(.,0_;) is nonincreasing;
Vi € A(q),VsZ < N+, ai<3i7 071) Z CLZ'<SZ' + 1, O,Z) (59>

This is a consequence of (5.6) and budget balance; it follows, e.g., by choosing
¢; > s; and using (3.3) with ¢t = (s;,0_;). Invoking now Coherence, we see that
a;(.,0_;) must be constant on Ny — {2} : for if a;(s;,0_;) > a;(s; +1,0_;) for some
$; > 2, then (5.6) and (5.9) would imply, upon choosing ¢; > s; and noting that
28; > 8; + 1, that
/ (a},9-4) (24}.q-4) s 4
Vs, € 1(2s;), o, (8i,0-;) > a (s;,0_;).

According to Step 1, this contradicts Coherence. Strengthening Coherence to

Strict Coherence allows us to finally obtain (5.8). For suppose a;(1;,0 ;) >
a;(2;,0_;). Choosing ¢; > 1, we get

max ozl(-Qqé’qfi)(s;,O,i) = ozl(-qé’qfi)(li,o,i)
sie{1,2}
> ang{,qﬂ‘) <2z‘7 O,Z')

: 245,94
= min ozl(- : Z)(s;,O,i),
sie{1,2}

which contradicts the consequence of Strict Coherence established in Step 1.
3.1.2. Having proved (5.8), we now complete the auxiliary induction argument.
Pix an integer d,0 < d <| A(q) |, and assume that
(5.7) is true whenever w(t) = 0 and 6(¢) < d. (5.10)

We will prove that (5.7) holds for every ¢ such that w(t) =0 and 6(¢) =d + 1.

PFix such a t. It can be written ¢t = (37,05 1), where 0y < t3y < gpr and
M has cardinality d + 1. To prove (5.7), consider first the agents in M. For any
i € M, construct t' by replacing t; with 0 and keeping all other coordinates of
¢t unchanged, i.e., ¢ = (tar—i,0n—(mr—4)). Since w(t’) = 0 and 6(t') = d, we may
apply the induction hypothesis (5.10) and conclude, since t' ; = t_;, that

Vi€ M, a;(.,t_;) is constant, (5.11)

and is zero if t_; is not a corner of [0,q_].

11



Next, apply Lemma 2 to ¢. This yields

> oa(t)= 3 at+1)

€M 1€ A(q)
Because of (5.11), this means that a;(t+1") = a;(1;,t_;) = 0 for every i € A(q)— M.
Invoking now the consequence of Strict Coherence derived in Step 1, we conclude
that, in fact, the whole map a;(.,t_;) is zero for every i € A(q)— M. This completes
our auxiliary induction argument and proves that (5.7) is true whenever w(t) = 0.

Step 3.2. We carry the main induction argument.

Returning to the main induction argument, {ix an integer w,0 < w < | A(q) |,

and assume that
(5.7) is true whenever w(t) < w. (5.12)

We will prove that (5.7) is true for any ¢ such that w(t) = w + 1. Exactly as in
Step 3.1, we use an auxiliary argument by induction on §(t).

3.2.1. We start off by showing that (5.7) is true if w(t) = w + 1 and §(¢) = 0.
In this case, we may write t = (0pr, gv—ar), where | (N — M)N A(g) |=w+ 1. In
this case, since t_; is a corner of [0,q ;] for every i € A(q), (5.7) reduces to the
following statement:

Vi € A(q), a;(.,t_;) is a constant map. (5.13)

To prove (5.13), consider first an arbitrary agent i € (N—M)NA(q). Construct
t" by replacing t; = ¢; with ¢, < ¢; while keeping all remaining coordinates of ¢
unchanged. Since w(t') = w, we may apply the induction hypothesis (5.12) and
conclude, since t ; =1’ ,, that

Vie (N —M)n A(q), a;(.,t_;) is a constant map, (5.14)

To complete the proof, consider next an arbitrary agent ¢ € M. We first show
that a;(.,t_;) is nonincreasing, that is to say,

CLZ'<SZ', t,Z) Z Cli(SZ' + 1,t,i) (515>

for every s; € N;. To see why (5.15) is true, recall (5.6), choose ¢ > s;, and apply
(3.3) in Lemma 2 to the vector (s;,t ;) = (s;,00 4, qn_ar) to get

a;(s;,t )+ > a;(sit ) =" a;((si;,t ;) +19). (5.16)

JE(N-M)NA(g) jem
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Now, for any arbitrary j € (N — M) N A(q), replace t; = g; with ¢} < ¢; in
the vector (s;,t ;) and apply the induction hypothesis (5.12): this yields that
a;(8;,t_;) = 0. Therefore (5.16) implies (5.15).

Since a;(.,t—;) is nonincreasing, Strict Coherence implies that it is, in fact,
constant: the argument is the same as in 3.1.1 above. Since this is true for every

i€ M, (5.13) is proved.
3.2.2. Having established (5.13), we now complete the auxiliary induction
argument. Fix d,0 < d <| A(q) |, and assume that
(5.7) is true whenever w(t) = w4 1 and §(¢) < d. (5.17)

We will prove that (5.7) is true for every ¢ such that w(t) = w+1 and 6(t) = d+1.
Pix such a ¢t and write it ¢ = ((t,0p-1),qv-n), Where 0 < t, < qr, | L |=
d+1,and | (N —-M)NA(g) |=w+ 1.

Consider first the agents in (N — M) N A(g). For any agent i in that set,
construct a vector ¢ by replacing ¢; = ¢; with some ¢, < ¢; and keeping all
other coordinates of ¢ unchanged. Note that w(?') = w. Applying the induction
hypothesis (5.12) yields

Next consider any agent i € L. Construct ¢ by replacing ¢; > 0 with ¢, = 0
and keeping all remaining coordinates of ¢ unchanged. Note that §(#') = 6 while
w(t') = w+ 1. Applying the induction hypothesis (5.17) gives us

Vi e L, a;(.,t_;) is a constant map (5.19)

and it is zero if t_; is a corner of [0, q_].
Finally, apply (3.3) in Lemma 2 to ¢. This yields

> ai(t)+ > a;(t) =3 a;(t+1°),

icL 1€(N—-M)NA(q) icM

which, along with (5.18) and (5.19), gives a;(1;,t ;) = 0 for every i € M — L.
Invoking Strict Coherence and Step 1 again, the latter statement implies that

Vie M — L, ai(.,t,i) = 0. (520>

Gathering (5.18), (5.19), and (5.20), we are done.
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Step 4. Concluding the proof.
Fix ¢ € NV. Gathering (3.1), (5.6), and (5.7), we get

a7i(Q3 C) = Z a?(QSUi;Of(SUi))[C<QSUi707(SUi)) - C(quofs)] (5-21>

SCN—1

for every i € A(q) and C € C,where o(gsus,0_(sus)) > 0 for every S C N —i
by (3.1) and > gy ; f(gsusi, 0-(suiy) = 1 by budget balance (as can be seen by
specializing (3.2) to t = (g;,0_;)).

This means that, for every i, there is an individual probabilistic value (in the
sense of Weber (1988, Section 2)) £/ defined on the set of monotonic games such
that for every cost function C, z;(¢;C) = &}(C,), where C, is the stand-alone
cost game associated with (¢; ). Invoking Theorem 13 in Weber (1988), we
conclude that there is a random-order value £ on the monotonic games such that
x(q; C) = £1(C,) for all C € C.

To complete the proof of our Theorem, we must show that Sq/ = &7 whenever
A(q) = A(q). Construct ¢t by replacing all zero coordinates of ¢ with ones, i.e.,
9" = (qa), 1- (). For every cost function C, define the cost function T C by

q+C’(t) =C(¢t @t) forallt e N,

Thus, C ¢t-refines 7' C and ¢ = ¢~ @ (1a(g),0-4(g))- Since x recommends the
same cost shares in all problems that have the same set of active agents and
generate the same stand-alone cost game, Coherence implies that z(q;C") =
2((Lacg), O,A(q));q+ C) for all cost functions C’ that g*-refine ¢"C. In particular,

2(q; C) = 2((1aggy, 0-a();* C).

Returning to (5.21), we conclude that a? = ala@0-4@), Since ¢ is arbitrary,
this means that af = af, hence €7 = £, whenever A(q') = A(g). B

Two corollaries are easily derived from Theorem 1. An unpleasant feature of
simple random-order rules which are not fired-random-order rules is that the cost
shares generally depend on the demands for dummy goods. The following axiom
rules out such dependence:

Independence of Dummy Demands. For every problem (¢;C) and every
agent 1 € N, z(q; C) = z((0;,q_;); C) whenever §;C(t) = 0 for all t € NV such
that ¢; > 0.

14



Corollary 1. A linear rule satisfies Strict Coherence, Demand Monotonicily,
and Independence of Dummy Demands if and only if it is a fixed-random-order
rule.

Proof. The “if” statement is clear. To prove the converse, fix a rule x sat-
isfying the four properties assumed in Corollary 1. By Theorem 1, z is a sim-
ple random-order rule with associated weight function A. Since this function is
constant over all demand vectors with the same set of active agents, we may
view it as a mapping on 2V x Y(N). Thus, with a slight abuse of notation,
x(q; C) = Egez(m A(A(g), U)x?q(g)(q; C) for every problem (gq; C'). Consider such
a problem. Suppose all agents outside A(q) are dummies, i.e., 3;C = 0 for every
i € N—A(q). Writing o ~ 4y ¢’ if 0 and ¢’ rank the agents in A(g) in the same or-
der (i.e., for alli,j € A(q),0(i) < o(j) if and only if ¢/(7) < ¢’(j)), Independence
of Dummy Demands implies

S AMA(g),0") = AV, 0) for all 0 € 3(N).

o'~ AT
Therefore xz(q; C) = Egez(m A(N, U)x?q(g)(q; C) for every problem (g; C), proving
the claim. &
The second corollary uses the familiar symmetry axiom.

Symmetry. For every problem (¢; C) and any two agents i, j, z;(q; C) = z;(¢; C)
whenever ¢; = ¢; and C is symmetric in 7 and j’s demands.

Corollary 2. The Shapley-Shubik rule is the only linear rule satisfying Strict
Coherence, Demand Monotonicity, and Symmetry.

Proof. Use Theorem 1 and the well-known fact that the Shapley value is the
only symmetric random-order value. B

6. Discussion

6.1. Dropping Demand Monotonicity

If we do not insist on Demand Monotonicity, we can construct strictly coherent
linear rules that are not simple random-order rules. Here is an example for n = 2
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and g > 0.% For every t; € [0, qi], let w(1,¢)(.) be the unique path to ¢ whose
range contains (t1,0) and (¢, ¢2). Likewise, for every ty € [0, go], 7(2,%5)(.) denotes
the path whose range contains (0, ¢) and (g1, t2). We refer to such paths as straight
paths because, informally speaking, they show no turning point in the interior of
the box [0, g]. Our rule is a convex combination of the incremental rules generated
by the straight paths. We do not weight these paths equally, however. Rather,
we attach weight 1/2¢, to every path 7(1,%1), 0 < t; < ¢y, and 1/2¢; to every
path 7(2,t5), 0 < ty < go. The two paths following the edges of the box, namely,
7(1,0) = m(2,¢2) and 7(1,q1) = 7(2,0), receive weight (g1 + g2)/4q1g2 each.

The weight system (in the sense of Lemma 1) associated with this rule is easily
computed: for every q > 0, we obtain

o (B2 + (¢ — t)ge) if 1o =0,

2q11q2 :
af(t) =1 35 0 <ty <go, (6.1)
ﬁ(% + (t1 — 1)go) if ty = gy,

and a completely symmetric expression for as. Straightforward algebra shows
that this weight system satisfies the condition shown to be necessary for Strict
Coherence of a linear rule in Step 1 of the proof of Theorem 1. As one easily
shows, that condition is also sufficient for Strict Coherence when n = 2: our rule
is therefore strictly coherent’.

The problem of characterizing all the coherent (or strictly coherent) linear
rules remains open.

6.2. Weakening Strict Coherence

Linear rules that are demand-monotonic and coherent, but not strictly so, need
not be random-order rules. An example (which we define again only for n = 2
and ¢ > 0) is the arithmetic average of the two incremental rules generated by
the straight paths 7(1,1) and 7(2,1). Note that this rule is symmetric.

We conjecture that the weight system « of any demand-monotonic and coher-
ent linear rule has the property that a(t) = 0 whenever 1 € t < gq.

5The rule is easily extended to more goods by adopting a simple random-order rule when
n > 3. The assumption that ¢ >> 0 is harmless since the case A(¢) < 2 is trivial when there are
only two goods.

"Interestingly, the weight system defined by (6.1) is strictly positive, thereby ensuring the
Converse Dummy property.
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6.3. Coherence and Scale Invariance

In the continuous version of the cost-sharing model, Friedman and Moulin (1998)
prove that Additivity, Dummy, Scale Invariance, and Demand Monotonicity char-
acterize the simple random-order rules. Scale Invariance is the well-known prop-
erty that changing the units in which goods are measured does not affect the cost
shares.

Perhaps surprisingly, that property has no obvious translation in our discrete
framework. For any cost function C' and every r = (ry,...,m,) € N¥, define
"C(t) = C(rity, ...rnty) for every t € NV, The requirement that

20 (L, L) = 2(Csg)

1 Tn

is not well defined if some coordinate of the vector (£, ..., 2*) is not integer. On

ey
the other hand, the property that

z("C;q) = x(C; (rq1, -, ngn))

for all C| q,r is certainly well defined but definitely too strong since it means that
every refinement of a given problem should be solved as the original problem.
On the face of it, Coherence bears some resemblance with the continuous Scale
Invariance axiom, and our Theorem 1 is reminiscent of Friedman and Moulin’s
characterization. The correspondence between the two models is far from perfect,
however. In particular, it should be kept in mind that the continuous Aumann-
Shapley rule is scale-invariant whereas its discrete relative is not coherent.
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