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Résumé

Dans ce rapport, nous nous intéressons a la classification d’image par algorithmes de relaxation multi-
échelle mis en ceuvre de fagon massivement paralléle. Les techniques multi-grille sont bien connues pour
améliorer nettement les taux de convergence ainsi que la qualité des résultats des techniques itératives
de relaxation. Tout d’abord, nous présentons un modeéle multi-échelle classique qui consiste a travailler
sur une pyramide des étiquettes mais a conserver tout le champ d’observation. Le calcul des fonctions
de potentiel aux grilles grossiéres est obtenu trés simplement. L’optimisation est d’abord réalisée a une
échelle grossiére grace a une algorithme paralléle de relaxation, puis le niveau plus fin suivant est initialisé
par la projection du résultat obtenu a 1’échelle plus grossiére. Dans un deuxiéme temps, nous proposons un
modele Markovien hiérarchique construit & partir du modéle précédent. Nous introduisons des nouvelles
interactions entre les niveaux voisins de la pyramide. Ceci permet de travailler avec des cliques dont les
sites sont assez eloignés a un coit raisonable. Ce modéle conduit a un algorithme de relaxation utilisant
un nouveau type de recuit: le Recuit Multi-Température. Il s’agit d’associer de hautes températures
aux niveaux les plus grossiers, étant ainsi moins sensibles aux minima locaux. Nous avons prouvé la
convergence de cet algorithme vers un optimum global en généralisant le théoréme de Geman et Geman.

Mots Clefs

champs de Markov, multi-échelle, modele hierarchique, algorithmes de relaxation, classification
d’image supervisée.
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Abstract

In this report, we are interested in massively parallel multiscale relaxation algorithms applied to image
classification. It is well known that multigrid methods can improve significantly the convergence rate and
the quality of the final results of iterative relaxation techniques. First, we present a classical multiscale
model which consists of a label pyramid and a whole observation field. The potential functions of coarser
grids are derived by simple computations. The optimization problem is first solved at the higher scale by a
parallel relaxation algorithm, then the next lower scale is initialized by a projection of the result. Second,
we propose a hierarchical Markov Random Field model based on this classical model. We introduce
new interactions between neighbor levels in the pyramid. It can also be seen as a way to incorporate
cliques with far apart sites for a reasonable price. This model results in a relaxation algorithm with a
new annealing scheme: The Multi-Temperature Annealing (MTA) scheme, which consists of associating
higher temperatures to higher levels, in order to be less sensitive to local minima at coarser grids. The
convergence to the global optimum is proved by a generalisation of the annealing theorem of Geman and
Geman.
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1 Introduction

arkov Random Fields (MRF') have become more and more popular during the last few
M years in image processing [1, 7, 10, 12, 14, 30]. A good reason for that is that such a
modelization is the one which requires the less a priori information on the world model. On
the other hand, the local behavior of MRF permits to develop highly parallel algorithms in the
resolution of the combinatorial optimization problem associated with such a model.

In this report, we are interested in massively parallel multiscale relaxation algorithms applied
to image classification [8, 9, 16, 26, 28]. It is well known that multigrid methods can improve
significantly the convergence rate and the quality of the final results of iterative relaxation
techniques.

There are many approaches in multigrid image segmentation. F. Marques et al. [26] propose
a hierarchical Compound Gauss-Markov Random Field model with a label pyramid and an
observation pyramid. Bouman [8, 9] proposes a multiscale MRF model, where each scale is
causally dependent on the coarser grid field above it. This model yields to a non-iterative
segmentation algorithm and direct methods of parameter estimation. The basis of our approach
is a consistent multiscale MRF model proposed by F. Heitz et al. in [16, 28] for motion analysis.
This model consists of a label pyramid and a whole observation field. The original energy
function can be decomposed as a sum of potential functions which are defined on neighbor
blocks and only depend on the labels associated with these blocks and on the observation field.
Using this decomposition, the parameters of coarser grids can be computed very easily. This
model results in a multigrid relaxation scheme which replaces the original optimization problem
by a sequence of more tractable problems. Using a top down strategy in the label pyramid,
the optimization problem is first solved at a higher level, then the lower grid is initialized
with the previous result by a simple projection. This algorithm is very efficient in the case
of deterministic relaxation (for instance ICM [4, 18]) which gets stuck in a local minimum
near the starting configuration. In the case of stochastic relaxation (for instance Simulated
Annealing [13, 24, 27]), which are far less dependent on the initial configuration, the results are
only slightly better, but the method is still interesting with respect to computer time, especially
on a sequential machine. After a brief introduction to the theory of Markov Random Fields
(Section 2), we give a general description of this model and the relaxation scheme associated
with it in the Section 3.

Then, we propose a new hierarchical MRF model defined on the whole label pyramid (Sec-
tion 4). In this model, we have introduced a new interaction scheme between neighboring levels
in the pyramid yielding a better communication between the grids. It can also be seen as a way
to incorporate cliques with far apart sites for a reasonable price. This model gives a relaxation
algorithm with a new annealing scheme which can be run in parallel on the entire pyramid.
The basic idea of this annealing scheme, which we propose to call Multi-Temperature Annealing
(MTA) is the following: to the higher levels, we associate higher temperatures which enable the
algorithm to be less sensitive to local minima. However at a finer resolution, the relaxation is
performed at a lower temperature (at the bottom level, it is closed to 0). The complete con-
vergence study of the relaxation algorithm in the case of a homogeneous, inhomogeneous and
Multi-Temperature Annealing schedule can be found in Section 5. In the multi-temperature case,
our annealing theorem is a generalisation of the well known theorem of Geman and Geman [13]
and the proof can be found in Appendix A.
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2 2  Markov Random Fields

In Section 6, we apply these models to supervised image classification. Using a first order
MREF model to take into account the context and a Gaussian representation of the classes, we
define the energy function for the monogrid, multiscale and hierarchical models.

Finally, experiments are shown in Section 7 with the Gibbs sampler [13] and the Iterated
Conditional Mode [4, 18] using the three models for each algorithm (monogrid, multiscale and
hierarchical). These methods have been implemented in parallel on a Connection Machine

CM200 [17].

2 Markov Random Fields

First, we briefly give an introduction to the theory of Markov Random Fields (MRF) [1, 29],
then we describe a general image model used in the following sections. Finally, we recall a few
classical relaxation algorithms used for the optimization of the cost function of the model.

2.1 Neighborhood Systems
Let & = {s1,82,...,sn} be a set of sites.

Definition 2.1 (Neighborhood system) G = {G,|s € S} is a neighborhood system for
S if

1. s ¢ G

2.s€G. &reg;

Definition 2.2 (Clique) A subset C' C S is a clique if every pair of distinct sites in C' are
neighbors. C  denotes the set of cliques and deg(C) = maxcec | C'|.

The most commonly used neighborhood systems are the
homogeneous systems. In this case, we consider § as a lattice
L and define these neighborhoods as

G" = {G{; :(i,4) € L},
g(nM) = {(k,)e L: (k- i)2 + (1 —j)2 < n).

. Obviously, sites near the boundary have fewer neighbors
Cliques than interior ones. Furthermore, G = S and for all n >
0:G" c grtl, Figure 1 shows a first-order neighborhood

corresponding ton = 1. The cliques are {(z,7)},{(¢,7), (2,7
Figure 1: First order neighborhood- 1)},{£,j),(ig—}— 1,)}. q {6146 9), G gt

system with cliques
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2.2  (Gibbs Distribution and MRF’s 3

2.2 Gibbs Distribution and MRF’s

Let ¥ = {X;:s €8} denotes any family of random variables so that Vs € § : X; € A, where
A=4{0,1,...,L — 1} is a common state space. Let Q = {w = (wg,,...,wsy) 1wy € A, 1 <7 <
N} be the set of all possible configurations.

Definition 2.3 (Markov Random Field) X is a Markov Random Field (MRF') with re-
spect to G if

1. forallw e Q: P(X =w) >0,

2. for every s € § and w € Q:
PX;=ws | X, =wr,r#35) =P(X;=ws | X, =w,, 7 € Gs).

The functions in 2. are called the local characteristics of the MRI, and the probability dis-
tribution P(X = w) of any process satisfying 1. is uniquely determined by these conditional
probabilities. However, it is extremely difficult to determine these characteristics in practice.

Definition 2.4 (Gibbs distribution) A Gibbs distribution relative to the neighborhood
system G is a probability measure m on ) with the following representation:

ww) = o (T2, (1)

where 7 is the normalizing constant or partition function:
—U(w
Z = Z exp <%) ,
w
T is a constant called the temperature and the energy function U is of the form

Ulw) =Y Vo(w). (2)

cgec

Each Vi is a function defined on ) depending only on those elements w; of w for which
s € C'. Such a function is called a potential.

One of the most important theorem is probably the Hammersley-Clifford theorem [1] which
points out the relation between MRF and Gibbs distribution:

Theorem 2.1 (Hammersley-Clifford) X is a MRF with respect to the neighborhood sys-
tem G if and only if 7(w) = P(X = w) is a Gibbs distribution with respect to G.

The main benefit of this equivalence is that it provides us a simple way to specify MRF’s, namely
specifying potentials instead of local characteristics (see definition 2.3), which is usually very

difficult.
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4 2  Markov Random Fields

2.3 A General Markov Image Model

We now look at the image labeling model. Image labeling is a general framework to solve low
level vision tasks, such as image classification, edge detection, etc...To each pixel of the image,
we assign a label. The meaning of the labels depends on the task that we want to solve. For
image classification, for example, a label means a class; for edge detection, it means the presence
or the direction of an edge; etc...Thus, we have the following general problem:

We are given a set of pixels (an image) & = {s1, s2,...,Sn} with some neighborhood system
G={Gs; :s€8}and F ={f, : s € §} aset of image data (or observations). Each of these
pixels may take a label from A = {0,1,..., L — 1}. The configuration space € is the set of all
global discrete labeling w = (ws,,...,wsy),ws € A. We assume that X is a MRF relative to G
with a corresponding energy function U, and potentials {V}:

PX=w) = %exp <—U%(w))
Up(w) = Y Vo(w)
cec

Now, we will construct a Bayesian estimator to find the optimal labeling, that is the labeling
which maximizes the posterior distribution P(X = w | F) of the label field:

PF|X =w)P(X =w)

PX=w|F)= T (3)

Since P(F) is constant, the MAP estimator of the label field is given by:

P(X = = P X =w)P(X =w). 4
max P(¥ = w | F) = max P(F | ¥ = w) P(X = w) (4)
If we assume that the observed image F is affected at site s only by the pixel s itself (i.e. the
image is not blurred), one can prove, that P(F | X = w) is a Gibbs distribution over G = §
with an energy function U; and potentials Vi, (a blurred image model is studied, for example,
n [13]). Thus, the posterior distribution is also a MRF over G with the following energy function:

Uw) = Up(w)+ Uz(w) where (5)

Ui(w) = Z Visy(ws) and (6)
SES

Uz(w) = > Velwe) (7)
cecC

Using this function, the MAP estimator is given by:

. 1 —U(w)
o = argru?eag(P(X_w|]—')_argr$1€ag(§exp< T )
= argmin U(w). (8)
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