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The stationary incompressible Navier-Stokes equations are discretized with a finite volume
method in curvilinear coordinates. The arbitrarily shaped domain is mapped onto a rectangular
block, resulting in a boundary-fitted grid. In order to obtain accurate discretizations of the trans-
formed cquations certain requirements on geometric quantities should be met. The choice of
velocity components is of importance. Contravariant flux unknowns and the pressure are used
as primary unknowns on a staggered grid. The system of discretized equations is solved with a
nonlinear multigrid algorithm, in which a robust line smoother, called Symmetric Coupled Al-
ternating Lines, is implemented. All unknowns on a line of cells are updated simultaneously with
alternating zebra sweeping. The solution algorithm shows satisfying average reduction factors for
arbitrary domains, cven when highly stretched cells are present., @ 1993 Academic Press, Inc.

1. INTRODUCTION

One way to approximate flows in complicated geometries is to discretize
the incompressible Navier-Stokes equations in general coordinates. Using a
finite volume or a finite difference discretization method, it is not at all trivial
to obtain accurate discretizations in boundary-fitted coordinates for arbitrarily
shaped domains. Several choices have to be made, for example, between con-
travariant, covariant, Cartesian, or other velocity components, and between
a staggered and nonstaggered grid arrangement. Recent articles in which one
of these approaches is adopted are [4, 7, 8, 19, 21]. We choose a staggered
grid with contravariant flux components as velocity unknowns. Discretization
accuracy depends strongly on the way in which geometric quantities related
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FiG. 2.1. The mapping of a physical domain Q onto a rectangular block G,

to the coordinate mapping are discretized. It is assumed that the mapping is
given only in terms of the physical coordinates associated with the points in
the uniform computational grid. The geometric quantities require differen-
tiation of the mapping once (for the base vectors and the metric tensor) or
twice (for Christoffel symbols). The resulting work and the inaccuracy which
occurs if certain rules are not followed have led many authors to consider
noncoordinate-invariant discretizations and/or colocated (nonstaggered) grid
arrangements. This usually compromises generality, stability and robustness.
It seems attractive to use coordinate invariant discretizations of physical laws,
provided discretization accuracy can be maintained, and this is the approach
followed here. Discretization accuracy can be maintained if the geometric
quantities are discretized in a special way, and if flux components rather than
velocity components are used as velocity unknowns. In Section 2 the dis-
cretization and the requirements to obtain accuracy are presented.

Major developments have taken place in the domain of solution algorithms
for discretized equations. For general problems, in principle the fastest solution
method to solve the system is the nonlinear multigrid method. Many articles
have appeared in which multigrid methods are presented for the Navier—
Stokes equations in Cartesian coordinates [ 3, S, 24, 26-28, 31, 32, 35]. Many
methods are not robust, usually due to lack of robustness of the smoother.
Difficulties arise at high Reynolds numbers or in problems in which stretched
cells occur. However, due to numerical grid generation procedures and also
for accuracy reasons highly stretched cells (which causes strong coupling of
some unknowns) are not unusual in arbitrarily shaped domains, and therefore
robustness of the smoothing method is a necessary requirement. A survey of
some smoothing methods is given in Section 3, where the multigrid method
and the smoothing method used are also presented. Some test problems and
results are presented in Section 4 to show accurate solutions and good con-
vergence rates,

2. THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS
IN GENERAL COORDINATES

We use boundary-fitted coordinates, mapping the arbitrarily shaped domain
Q onto a rectangle G, as shown in Figure 2.1; x are Cartesian coordinates, £
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boundary conforming curvilinear coordinates. In order to obtain a coordinate-
invariant formulation tensor analysis is used [1, 25]. We briefly recall a few
facts that will be used in the sequel.

Covariant base vectors a,, contravariant base vectors a'*, the covariant
and contravariant metric tensors g,s and g are defined as

ox 82"‘
— (a) o 25 . — afl . () (B)
o £ [7 ¢ 3 =a ‘a . 2. 1
A(n) aga a ox ’ 8ap = A(a) * A(p) 8 ( )

The determinant of the covariant metric tensor g is denoted by g; \/} equals
the Jacobian of the transformation given by

— 2 2
Vg'—aél)a(z)—ama{z) (2.2)

Summation over repeated Greek indices is implied.
The covariant derivative of a contravariant tensor of rank one is defined
as

58107 (2.3)

where {;} represents the Christoffel symbol of the second kind, defined by

(a), 6am = 65“ 62):"

()= (el =0t 2 = S g (2.4)
It can be shown that
1 aVg0"
Of=7=—"777. 2.5
Ve o (2.5)
Further it can be shown that
o _ 3Ve0"
(V05 = =5+ (34} V0" = (34} Ve, (2.6)
The covariant derivative of a tensor of rank two is defined as
aff 6Qﬂﬂ @ &3 B é
oy = +{75}Q +{76}Qa~ (2.7)

oE"
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It can be shown that

w1 3Vgo
0y = =5+ e, (28)

In general curvilinear coordinates the stationary incompressible Navier—Stokes
equations are given by

Ui=0 (2.9)
TH = (pUUP s+ (g%p)y ~ 7% = pF*, (2.10)

where p is the fluid density and 7** represents the deviatoric stress tensor
given by

Tuﬁ - #(ga'YUf?y +g7ﬁU?y) (211)

with u the viscosity coefficient.
The convection tensor is linearized using a Picard iteration:

(pUSUPyy = (pUstntiysimy (2.12)

The convection term is discretized with a so-called hybrid discretization
scheme [14]. Depending on the mesh-Reynolds-number Re ("’ (i.e., the ratio
between the absolute magnitudes of the flux part of the convection term and
the viscous term in point (i, j) in the £°-direction) the flux part of the con-
vection term is discretized with a central difference scheme (when Re /) <
1) or with a first-order upwind scheme (when Re{” > 1).

In order to obtain accurate discretizations on nonsmooth grids, some re-
quirements should be met [11, 13, 22, 33]:

(i) The geometric identity §, a§”dS ., = 0 (coming from the applica-
tion of the divergence theorem to a constant vector field) should be satisfied
numerically. (S, represents the physical surface element.) This requirement
imposes rules on the numerical approximation of covariant and contravariant
base vectors.

(ii) When representing a constant velocity field u on the staggered grid
in terms of its contravariant components U®, and recomputing u from U®,
the original vector field u should be recovered exactly.

(iii) Uniform flow fields should satisfy the discrete equations exactly.
From this requirement the use of the contravariant flux components VV'* =

g+ U®, arelative contravariant tensor of weight one, as velocity unknowns
is found to be preferable, instead of U®, although this by itself is not sufficient
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to meet this requirement; we will not go further into this here. Details can be
found in {22].

The first two requirements ¢an be met if one proceeds as follows. The base
vectors a, are computed according to

o, o

Ik aty = 582 (2.13)

a?1)=

in the V2 and ¥V '-points, respectively, in the staggered grid to be presented
shortly. Furthermore,

i 1
a“)*‘*"‘[z’(fi’%z), —ay), 3(2)=fg(‘ﬂ%r),a%n), (2.14)

taking averages where required.

For convenience we introduce the local cell coordinates given by Figure
2.2, which shows part of the computational grid in the £-plane. Integration
of the incompressibility constraint over a pressure cell with center at (0, 0)
gives, using (2.5) and 8Q = Vgd¢' dg?:

aVgU*"
LUf:,dQ=fG—a£§;—dg‘dgz. (2.15)
Discretization of (2.15) gives
VgU*
L—‘g;— det de? = V' 190882 + V2|§L 8, (2.16)

where V'* = ‘/_éU“. Let u be a constant vector field. Substituting V' =
‘/ga £4# and using (2.14) one finds that

0,2 .22
I I I
1 — 01 — 1,1 — 21 — 31
| | |
-1,0 0,0 1,0 2,0 3,0
l t l
— 1l = 01— 10— 241 — 81 —

F1G. 2.2, Local cell coordinates.
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V1190082 + V8L 86 = 0 (2.17)

so that requirement (i) is satisfied. Requirement (ii) is verified as follows. Let
w be a constant vector field. Its representation in terms of V' © on the staggered
grid is Vo = Vga{”w#. Hence, using (2.14),

VI = a%z)wl - aég)wz, V2 = —a%l)w’ + aél)wz. (218)
Now recompute the Cartesian components % from (2.18) in the cell vertices,
"
== {Z (@) +Z (aqV?)}, (2.19)
I 2\/2 1,1

| 2

ue

where X, indicates summation over grid points (1, 0) and (1, 2), and 2,
indicates summation over (0, 1) and (2, 1). Substitution of (2.18)in (2.19),
and evaluation of V;_g; according 1o (2.2) results in

Uty = w. (2.20)

We also have (2.20) in cell centers (0, 0). Hence, requirement (ii) is satisfied.
If U¢ is used as primary unknown instead of ¥* (2.20) would not hold exactly,
which is why the use of V' “ is to be preferred. This is confirmed by numerical
experiments on the Navier-Stokes equations. With use of ¥ the covariant
differentiation rule of (2.6) should be used.

Requirement (iii) is not fully met in our discretization. The consequence
is that inaccuracies may show up where the mesh-size changes rapidly, but
on reasonably smooth grids the accuracy is satisfactory; results will be pre-
sented later.

As a preparation for the discretization of the momentum equations we
discuss the discretization of a general conservation law of the form

T = fo (2.21)

This equation is to be integrated over finite volumes. On the staggered grid
used here, integration takes place over cells with vertices in UZ-points and
center in a U'-point for & = 1, and vice versa for &« = 2. Taking a cell with
center at (1, 0) as an example finite volume discretization gives, using (2.8),

f TYdAQ = f Mdg'dgz +f {13 TV gdt' dg?
Q Q

9¢? o
= (VeT') (398> + (VeT 2|1t 68!
+ (Ve{ s} T, 0)08 582 (2.22)

With T4 from (2.10) this is the discretization used for the momentum equa-
tions. It is found that the variable V* = VEU“ appears naturally in many
places in (2.22).
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The total number of variables linked together in a momentum equation is
19. Figure 2.3 shows the staggered grid and for the V'-momentum equation
the 19-point molecule with indices. The linearized system of discrete equations
can be represented in vector notation by

A“ AIZ A!J Vl F)
AN AP 4P || V] =| F? or AV =F. (2.23)
A31 A32 0 p 0

In the general nonorthogonal case A'! and 4** contain nine nonzero elements
per row, A'2 and 42" four, A4'> and 4% six and 4*' and 4* contain two
nonzero elements per matrix row. On orthogonal grids 4'' and 42 reduce
to five and 4'% and A% to two nonzero elements per row.

3. THE NONLINEAR MULTIGRID ALGORITHM

The discretized equations are solved with the standard nonlinear multigrid
algorithm |2, 6]. Details of this algorithm are presented in {(3, 32]. Here a
robust smoother to cope with stretched cells and arbitrary Reynolds numbers
is presented. In the system of discretized equations (2.23) a zero block appears
on the main diagonal. Therefore 4 is not an M-matrix, and iterative methods
based on a splitting 4 = M — N according to

MVt = NV'+ F (3.1)
will not converge in general,
nw3 ned
nw | . n_j_ . | me
nw?2 ne2

—- V1-flux unknown

w3 el
w + e ¢l e Te | V2-flux unknown
1 | e -pressure unknown
! T
sw?2 se2
e g e e
sw
sw3 sel

FIG. 2.3. Staggered grid and molecule for the ! momentum equation.
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In order to solve these systems of equations iteratively matrix 4 can be
postconditioned by a matrix B, such that the zero block disappears; the sit-
uation is too complex to guarantee that AB will be an M-matrix. The resulting
system can now be split as follows:

AB=M—N. (3.2)

This gives rise to the so-called distributed iteration methods
MB™'V"! = NB™IV" 4+ F, (3.3)

In the context of distributed iteration methods three methods have been used
as smoothing methods in a multigrid algorithm [34, 35]. With

I O _(Sll)-—lAB
B=|0 I —(8®)7'4%|, (3.4)

0 0 1

where (S7)~! is an easy 1o evaluate approximation to (4%)~!, we find the
SIMPLE-type algorithms [15]. They are used as smoother in Cartesian co-
ordinates in [24], and recently in arbitrarily shaped domains in [18]. Diff-
culties with SIMPLE are found when the Reynolds number is high, due to
the diagonal term in matrix AB: — (A3 (S"') 714" + 432(S5%) 7' 4%), which
approaches zero for Re — oo [35]. Therefore underrelaxation parameters
are introduced depending on the shape of the domain and the Reynolds num-
ber, but robustness is impaired. With

I 0 AB
B=j0 I AB
0 0 A31Al3+A32A23

) (3.5)

the DGS (Distributive Gauss-Seidel) method [3] is obtained.

Difficulties arise because of the off-diagonal terms in AB: A" A3 + 41247
+ AIS(ABIAIJ + A32A23) and A2IA13 + A22A23 + A23(A31A 13 + A32A23),
which can be dominant over the diagonal term, for example for certain values
of the Reynolds number. Difficulties with DGS are found for several problems.
For driven cavity problems the multigrid method did not converge for Re >
100 [5]. Distributive ILU smoothing on matrix AB from (3.5) is performed
in [35], with

AB=LU - N, (3.6)
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where LU is an incomplete LU factorization of AB. This smoother is robust
and efficient. Another class of smoothing methods, not of distributive type,
is introduced in [27]. The Symmetric Coupled Gauss-Seidel method (SCGS)
is a method of collective Gauss-Seidel type. A system of coupled equations
per cell (2%V '-momentum, 2%V *-momentum, and continuity) is updated
cell by cell, as follows.

Suppose the residual R before a SCGS-update is given by

Rl Fl All Al?_ A13 Vl(n)
RZ — FZ _ A2l AZZ A23 V2(n) , (37)
R3 0 All A32 0 p(M)

where (V' V2 nUNT represents the current solution.
Corrections [8V', §V2, 8p]” are calculated and added to the current solution.

So:
All AIZ Al3 avl Rl
AZI AZZ A23 6v2 = R2 . (3.8)
ASI A?_Z 0 6]) R3

The system is solved with a Gauss-Seidel-type smoother per cell. For cell (/,
i

(AD)i-172.5 (AD)icij2

(AD)is12.) (A3)is172,)

(ADij-112 (AN j-172

(ADijerz (ADijein
l l 1

i = s YS 0

ok 5 b o

oV i, Rl

OV teisa Rl

X 6V%,j_1,2 R,z,jﬁl/z . (3.9)
8V 1w R} i)z
opyj R?j

Underrelaxation is implemented as in [27]:

(Ag)itl/Z.j = (Acl')i:lﬂ,j/al

(AD)ije1 /2= (A2)er 2/ o2

(3.10)

(3.11)
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Equations (3.7) are solved with an explicit formula, after which the corrections
are added to the current solution, the residual is updated, and the computation
continues with the next cell.

The SCGS smoother performs very well for several problems in Cartesian
domains [27-31, 36] and in arbitrarily shaped domains [12, 13]. However,
it is a well-known fact that point Gauss-Seidel-type relaxation methods are
not good smoothing methods in multigrid algorithms when the equations
involve strong coupling of unknowns in some direction, which is the case
when stretched cells occur. When the cell aspect ratio is high SCGS smoothing
factors tend to one.

A line version of SCGS, in which only the pressures along a line are coupled
is given in [20, 23], and is called SCGS/LS (Line Solver). In arbitrarily
shaped domains this is found not to be a good smoother when the aspect
ratio is much larger than one. All unknowns in a line of cells must be updated
simultaneously. An attempt by the authors of this article to construct a two-
stage smoother was not successful. In stage one the two momentum equations
were updated with an Alternating Damped Line Jacobi method (ADLJ).
This is a robust method with damping parameter 0.7 for the rotated convection
diffusion equation and for the anisotropic diffusion equation [32]. In stage
two the continuity was taken into account and the pressures were updated
with SCGS or SCGS/LS. However, the underrelaxation parameter was prob-
lem dependent and large aspect ratios could still not be handled.

A fully coupled line version of SCGS is given in [26] and called Symmetric
Coupled Alternating Lines (SCAL). All unknowns on a line of cells are up-
dated simultaneously with alternating zebra-sweeping. The ordering is odd
horizontal lines, even horizontal lines, odd vertical lines, even vertical lines.
If for a sweep along horizontal lines the unknowns per line are ordered in the
following way: V%1, pii, V1, V }1, etc., the resulting matrix is a band
matrix [26]. For the equations in curvilinear coordinates the band contains
13 elements (in Cartesian coordinatesitis 9). In [26] it is reported that SCAL
is much more robust than SCGS and less sensitive to variations of the un-
derrelaxation parameters. This is the smoother implemented in our multigrid
algorithm.

Underrelaxation is implemented in the “classical” way. Instead of calcu-
lating corrections §V new values V* are being calculated and V"*! is found
as follows:

Vl(n+l) — Vl(n)+ C\!](V]* _ Vl(n))
o) = VZ(n) + aZ(VZ* . VZ(n))
P = p™ + ay(p* — p™), (3.12)

The underrelaxation parameters o depend on the Reynolds number.
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4. RESULTS

Two types of flows have been investigated: driven cavity flows and channel
flows. The discretization in curvilinear coordinates is tested on domains in
which some grids with severe jumps in mesh size and mesh direction are put.
For the multigrid solution algorithm average reduction factors r,; are calcu-
lated, defined as

. Y/ nit
resy;
Foit = (“ ”“) 3 (41)

|| resoll

i.e., the 2-norm of the residual after nit iterations divided by the 2-norm of
the starting residual to the power (1/nit).

When the quantity ( [jres,|i /|| res,—;l) becomes constant for n = N (some
iteration number) then this is the asymptotic convergence factor p, defined
as

p=ra. (4.2)

The number of MG-iterations that were performed depended on the reduction
factor ry;, as follows:

P < 0.15; nit = 10
0.15 < 1y < 0.25; nit = 15
Frig > 0.25; nit = 20. (4.3)

The multigrid schedule used in the W-cycle, For all problems the number of
pre-smoothing iterations is 1, as is the number of post-smoothing iterations.
On the coarsest grid the problem is solved “exactly” by performing many
smoothing iterations ( 10 or more). Underrelaxation parameters depend only
on the Reynolds number. For Re < 150, ay, = 0.7 for k = 1, 2, 3 seems to be
good and gives level-independent reduction factors. For Re = 1000, ax = 0.4
fork=1,2and a3 = 1.0.

Driven Cavity Problems

First the driven cavity flow in a square cavity is investigated. To study the
robustness of the smoother the grids were strongly refined near the boundaries.
Four grids were tested:

(i) the equidistant grid;
(ii) a grid in which the boundary cells have aspect ratio 10, see Fig. 4.1;
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R R

i = il

FIG. 4.1. The 32 X 32 mesh with aspect ratio 10 at the boundary.

(iii) the boundary cells have aspect ratio 100;
(iv) the boundary cells have aspect ratio 1000,

This is a severe test on robustness; stretched cells occur in all directions.

Table 4.1 shows r,;, and (where available) p for grids with 5 to 7 levels.
The average reduction factors are to a satisfactory extent level independent
and for many aspect ratios and many Reynolds numbers below .25. The
performance of SCGS (not shown ) is poor in the cases with large aspect ratios.

In Table 4.2 the CPU times on a Convex 3820 computer are presented for
one smoothing iteration and one W-cycle, Parallelization is not employed
here, further no special ordering strategies for the data structure are employed
to profit from vectorization. From Table 4.2 it can be seen that the work for
a W-cycle is about 4.8 times the work for one smoothing iteration, which is
not surprising, since the theoretical ratio counting only smoothing work would
be 4 in this case.

Another interesting cavity problem is the flow through a lid driven L-shaped
cavity. This cavity problem causes extra problems, because boundary IT and
boundary 1V, see Fig. 4.2, consist of two parts. The top half of T'; is moving
from right to left. This problem is suited for a multidomain solution technique
application, which is shown in [16]. For a single domain discretization in
curvilinear coordinates it is a severe test case due to the 90° change in mesh
direction. The grid is shown in Fig. 4.2. The grid has been made non-smooth
on purpose. Table 4.3 shows r,, for two fine meshsizes for a flow at
Re = 100 and Re = 1000. Figure 4.3 shows the streamlines for both cases.
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TABLE 4.1
AVERAGE AND ASYMPTOTIC REDUCTION FACTORS FOR DRIVEN CAVITY PROBLEMS

(i (i) (iii) (iv)
eq. grid ratio: 1:10 ratio 1:100 ratio 1:1000
No. levels = 5
grid: 32 X 32
P p P 0
Stokes 074 — 058 — 079 —_ 098 -~
Re = 100 .104 — 284 37 257 40 .099 —
Re = 1000 339 .36 .326 41 297 — 371 .53
No. levels = 6
grid: 64 X 64
Stokes 055 — .085 — 093 — 127 —
Re = 100 061 .092 244 331 .246 .330 15 —
Re = 1000 443 550 361 421 287 313 294 —
No. levels = 7
grid 128 X 128
Stokes 053 —_ 144 — 127 — 150 —
Re = 100 .052 — ,207 — 235 350 222 —
Re = 1000 460 .58 441 — .389 .640 251 —

The reduction factors of the SCAL smoother are much better than for SCGS
[12], while the cost of using the line solver is only about 50% larger than the
SCGS solver [26]. Furthermore, SCAL is more robust in the choice of domain
parameters. For this complicated flow problem #,; is good and the discret-
ization seems accurate.

Channel Flow Problems

Because only Dirichlet boundary values are implemented in the code at
present we are somewhat restricted. However we are still able to investigate

TABLE 4.2
CPU TIMES ON A CONVEX 3820
Cycle grid 32 %32 64 X 64 128 X 128
1 sm, 0.33s 1.24 5 4,40 s

w 1.56 s 547s 214s
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FI1G. 4.2, The mesh for an L-shaped cavity.

some interesting channel! flow problems. For all channel flow problems nested
iteration [ 6] is used, so the algorithm starts on the coarsest grid. First the flow
through a straight channel is investigated. Results for this simple case are
presented only for comparison with more complicated cases. Figure 4.4 shows
a sketch of the channel. The length of the channel L = 100; the width d = 1.
An equidistant grid with cells of aspect ratio 100 is put over the domain.
Parabolic in- and outflow velocity profiles are prescribed. The exact Poisseuille
flow solution is recovered accurately. The pressure distribution is linear, as
expected.

Table 4.4 presents r,;, for the Stokes flow and for a flow at Re = 1000.
These reduction factors are satisfactory and level independent, whereas SCGS
reduction factors are close to 1 (r = 0.992).

Flow over a Cylindrical Protuberance

Another problem is the linear shear flow over a cylindrical protuberance
in a channel (Fig. 4.5). This flow is a two-dimensional version of the flow
over a spherical protuberance in the viscous sublayer in a turbulent boundary
layer, which is of interest to turbulent flow researchers. The problem is artificial
with only Dirichlet boundary conditions. We are restricted to a Stokes flow.
However, it is interesting to show the possibilities of a curvilinear discretization
for this case. Again a multidomain approach is a natural approach but we
forego this approach on purpose here, to study multigrid convergence on a
contorted grid. Figure 4.6 shows the 16 X 40 mesh, Boundary I'; consists of
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FiG. 4.3. Streamlines for the L-shaped cavity flow at (a) Re = 100 and (b) Re = 1000.

1

0 100
FI1G. 4.4, Sketch of the domain for the straight channel.
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TABLE 4.3
AVERAGE REDUCTION FACTORS FOR A FLOW IN AN L-SHAPED CAVITY
Levels Grid Re = 100 Re = 1000
6 64 X 64 21 A48
7 128 X 128 .19 52

three parts, where on the in- and outflow part a linear velocity profile is
prescribed:

U, =y, w, =0,

On the upper boundary u, is prescribed: ©, = y; u, = 0, while on boundary
I, 'y, and Tsu, = u, = 0. The multigrid algorithm performs well, and gives
rio = 0.105, Figure 4.7. shows streamlines and isobars for this problem.

The Hole-Pressure Problem

A rather difficult channel flow problem is the so-called hole-pressure prob-
lem [9]. The flow domain is depicted in Fig. 4.8. It consists of a uniform
channel of height 4 and length L, into which a cavity of width b and depth
h has been cut. Dirichlet boundary conditions are prescribed on the whole
boundary. In [9] this hole-pressure problem is proposed as new test case for
numerical codes. The problem is also of practical importance: It is the basis
of a scientific instrument to help characterizing non-Newtonian fluids.

The mathematical and experimental problem is to determine the difference
between the normal stress acting on the bottom of the slot and that acting on
the upper wall above the opening to the slot. This quantity is the so-called
“hole pressure” A, given by

!
A= if - p(x, l)dx——f - p(x, —d)dx. (4.4)
MECAN $2 Vs

TABLE 4.4
AVERAGE REDUCTION FACTORS FOR A FLOW THROUGH A STRAIGHT CHANNEL
WITH A MESH WITH ASPECT RATIO 100

Grid r, Stokes r, Re = 1000
32X 32 122 463
64 X 64 126 .487

128 X 128 129 500
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5 Iy
L, 0, Lo
0 T3 5

FIG. 4.5. A sketch of the problem of a flow over a cylindrical protuberance,

The geometry of the reference domain is defined by: L = 5;d =1, b= 1} h
= 1; 5, = 5, = 1. The boundary conditions are given by:

On I'; and T'y: Uy =0;u,=0
On Ty and T;: g = y(l —y)u = 0. (4.5)

So U™ = & pyaveree = L and the mass flow Q = £. For the Reynolds number,
defined as Re = /v, it follows that Re = 1/6w.

The mesh is generated as follows. Boundary part 'y is divided into five
parts (see Fig. 4.9). Each part is connected to a part of T'» in the manner
shown in the figure. This results in a coarse mesh, which is refined to a 32 X
112 mesh, which is then smoothed a little, Figure 4,10 shows a part of this
mesh. In [9] hole pressures are presented up to Re = [0 calculated with a
finite element code on a very fine mesh, However the hole pressures from
[9] are not calculated with the boundary conditions from [9], but with the
boundary conditions presented here [17]. In Table 4.5 the calculated hole
pressures from the 32 X 112 mesh are compared to them. Figure 4.11 presents

FI1G. 4.6. The mesh for a flow over a cylindrical protuberance.
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FiG. 4.7. Streamlines and isobars for a Stokes flow over a cylindrical protuberance.

streamlines and the isobars for Re = 10. They resemble the distributions in
{9] very well. The multigrid performance is satisfactory as well: r;s = 0.247
for Re = 10 and r»5 = .505 for Re = 100.

L

-~ 81—

f
h
L— 89—

-—b———

FI1G. 4.8. The domain for the hole-pressure problem.
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T4
F1 FS
Iy
F1G. 4.9, A sketch of the parts of the domain, which are connected when the mesh is
generated.

Backward-Facing Step

Another flow, heavily studied over the years, is laminar flow over a back-
ward-facing step. A GAMM workshop was held in 1983 in Biévres on this
flow problem [10]. Four cases were studied there, two of them are examined
here in curvilinear coordinates, namely, cases 2 and 4 as defined in [10]. The
domain for these two cases is sketched in Fig. 4.12.
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FIG. 4.10. A part of the 32 X 112 mesh for the hole-pressure problem.
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TABLE 4.5
HOLE PRESSURE A COMPARED WITH [9] FOR SEVERAL REYNOLDS NUMBERS
Re A calc. A 9]
1 0.064 0.049
5 0.236 0.226
10 0.426 0.383
a
e T
i:—*":’:

FI1G. 4.11, Streamlines and isobars for the hole-pressure problem.

Ty

|
|

I

FI1G. 4.12. The domain (not to scale) for the flow over a backward facing step.
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FIG. 4.13. A part of the 32 X 64 mesh,

The geometrical parameters are: L, = 22, L, = 3, H =1 and h = 0.5,
Computations presented are for Re = 50 and Re = 150, with the Reynolds
number defined as

Re = U™ «(H — h)/v, (4.6)

with U™ the maximum value of the velocity at the entrance, (the velocity
profile is prescribed: u, = 16 (0.5 — y) at the entrance and u, = 2y(1 — y)
at the outlet; 1, = 0) and v (=u/p) the viscosity.

Figure 4.13 shows a part of the 32 X 64 mesh. Deliberately, no attempt
was made to make this mesh more smooth. In Fig. 4.14 the isobars and
streamlines for the flow at Re = 50 are given, together with a more detailed
picture of the streamlines in the recirculation zone. In Fig. 4.15 these results
are shown for the flow at Re = 150, In Table 4.6 the MG performance is

7 .

c

©

FIG. 4.14. Isobars and streamlines for Re = 50,
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F1G. 4.15. Isobars and streamlines for Re = 150.

given for a 16 X 32 grid and a 32 X 64 grid. The coarsest grid is taken to be
the 4 X 8 grid. For the 32 X 64 grid the length of the recirculation zone, scaled
by (H — h) is calculated and presented in Table 4.6. This length resembles
the length found by many of the GAMM contributors very well [10]. The
reduction factors look satisfactory and level independent.

5. CONCLUSIONS

The discretization of the incompressible Navier-Stokes equations in cur-
vilinear coordinates shows accurate results for many geometries and fairly
nonuniform grids. A robust smoother is constructed, which can deal with
cells of varying size coming from a mesh generator. Multigrid reduction factors
for flows in domains in which stretched cells occur are good, well below 1,

TABLE 4.6
AVERAGE REDUCTION FACTORS AND REATTACHMENT POINT FOR A FLOW OVER A
BACKWARD-FACING STEP

ra0 (16 X 32) 10 (32 X 64) Reattachment point

Re = 50 449 482 2.03
Re = 150 654 656 5.00
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contrary to the reduction factors of SCGS in these domains, The SCAL
smoother is more robust in the variation of underrelaxation factors than the
SCGS smoother.
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