UC Irvine
ICS Technical Reports

Title
Towards a theory of the cognitive processes in computer programming

Permalink
https://escholarship.org/uc/item/58h312nk

Author
Brooks, Ruven

Publication Date
1977

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/58h312nk
https://escholarship.org
http://www.cdlib.org/

' Towards a Theory of the
Cognitive Processes
in Computer Programmin

o

by

~ Ruven Brooks

e F

Notice: This Material

may be protected
by Copyright Law
(Title 17 U.S.C.)

Department of Information and Computer Science
University of California Irvine -
Irvine, CA 92717

Technical Report #100

Abstract

 While only in the past ten years have large numbers of
people been engaged in computer programming, a small body of
studies on this activity have already been accumulated These

studies .are, however, largely atheoretical. The work

described here has . as its goal the 'creation of an

information processing theory sufficient to describe the

‘findings of these studies. The theory postulates
understanding,u méthod—finding, and coding processes in
‘Aw:iting programs, and presents an explicit. model for the

coding process.

In»the éasﬁ.thirty yea;s, computers héve moved from
aCadeﬁic curiosities to essential ,toolé in Dbusiness,
'»government, and education. With the rapid growth in the
nﬁmbers of machines'has_éome an equélly rapid expansion in
the nUmbe;s .Qf personnel working with-' thé machines,
paﬁticularly ‘ in 'the area of softwafe igeneration and
programming.. One estimate is,that, in_the U.S., more ﬁhan a
million pedple aré involved lin some aspect of the

'pfogtamming process (Boehm, 1972).

The large'numbe; of people engaged 'in this work, as
well as thé'tcoﬁpléXity of the task itself should make
pfégrammingibehavior of,cdnsiderable interest to 'cognitive
péyéhblbgy. “Ihdeed} :’though significant quantities of
ptogrémmérs‘have‘beeﬁ available»for only the past 14 vyears,
fesearchers"haVe been’ Quick‘ to turn their attention to
éognifivevaspécts.of ptogramhing, énd a small, but growing
body of_studies now exists. As is reasonable to expect in a

newly deVelppéd_field, most of the studies are atheoretical.
'&ﬁey attempt to establish Ehe validity of various parametérs
for describing programming beha?ior, rather than attempting
v_toi‘ specify‘junderlying processes ‘which determine these
parametérs. The intent'of this paper is to begin to develop
a _theoretidal.vframeﬁork' for the study of some of the

cognitive processes involved in one kind of computer

programming. .The goal of this effort is not to ‘immediately

derive testable_cénsequences from the theory, but, rather,
to demonstratg_ the sufficiency of the theory, or of direct
deriyations_from_it, for explaining observed programming
behavior,' In this respect, the theory very much shares the
philosophy behind the work of Winograd(1972) and of Anderson
and Bower (1973). |

Review of Existing Work

A useful starting poiﬁt for presentation of this theory
is é review of the éxisting body of studies, with the aim of
identifying some of ‘the more characteristic features of
programming behavior. Essentially, these studies can be
_divided'into three grohps.' The oldest of'thése grew out of
an early controVersy about the relative merits of
interactive'versus~batch 5ystems. (Grant &_ Sackman, 1967;
Smith, 1967; Schatzoff, Tsao, and Wiig, 1967; Gold, 1968).
While changing economics have rendered the main thrust of.
these studies moot, they» did succeed in establishing one
important aspect of programming behavior. Even among
programmers of - very similar experience levels, differences
-of és mﬁéh as 1@0 £o 1l were found across programmers in the
time taken to write a given program. Additiohally, across
problems cohstrﬁcted to be of similar difficulty, an

individual programmer then displayed a six-fold difference

in writng time.

A second. group of studies has been addressed to
features and'error characteristics of particular programming
language (Rubey,1968; Knuth,1971; Litecky and Davis, 1976).
While thece studies have not been intended to provide
information on cognitive éspects of programming, they have
produced the important finding that errors or difficulties
in‘programming are not random occurences, produced by random
occurrences in the_pfogrammer’s environment. Instead, they
are clearly‘linked to specific features or propefties of

programming languages.

A third group of studies shares the common property of
attempting to specify factors or characteristics of
cognitive aspécts of programming, other than strictly

language dependent ones. Among the earlier of these is

"Young ‘s (1974) study of error rates in programming which

‘revealed, surprisingly, that experienced programmers

initially make about the same number of errors as beginning
programmers, but are able to find their errors faster. The
work of Sime, Green, & Guest (1973) is aimed at establishing
links between programming behavior and psycholinguistic
theory; using one such 1link, it successfully predicts a
performance difference in the use of two different
programming language constructs. Finally, the work of Boies

and Gould (1974), Gould and Drongowski (1974) and Weissman

(1975) all seek to establish the validity of an experimental

methodolbgy for studying various ‘facﬁots in programming

behavior. i ‘)

Inladdition>to‘exPerimental'research oh programming, a
‘large' body of ihformal‘data exists in work on programming
practices and techniques, 6ften discussed under the heading,
"softwate' >engineering.“ While much of. this work is
pfescriptiVe“}ather than obsérvétional'or experimental, it
'doés"5uggest some important characteristiqs of programming
behavior not yet studied. experimentally. Pefhaps one of the
most“impo:tant of these comes from the work on producing ..
well—structufed programs (Dijkstré,1972 : Yourdon,l975);
While most.of this work is very controversial and there is,
asgyét, no universal'égreemeﬁt on goalé or methods, much of
it ‘seems’ baséd on the assumption that the "cognitive load"
(Bruner, qudnow, & Austin, 1956) involved in understanding
how 5a,"p;ogram" should function will be . an important
deﬁerminant of how easy thé program is to write, debug or
modify. The proposed methods . for reducing this load are
esséntially aimed at constraining programmérs to organize
programs 'heifarchically and modularly in such a manner that
an_bperation at any one lévei can- be broken down into a
small number of simpler}operatibns} The aim of this process
is to reducg the numbér of units of information' which are

necessary to understand any given piece of program, and,

thereby, to minimize the cognitive load.

The need for such tactics indicates that an important
_elemeht in determining how'easy a program will be to write
or understand‘is the cOnceptual'organizatioh imposed on it
by the progfammér or readér. Thus, a programmer may find a
program eésier‘to wfite.if hé can break it down into an
inpu; routine, a sort rbutine,_and an outpqt routihe than if
he viewé‘if 55:57 distinct linés of code. if this is true,
then .it suggests that the size and kind of conceptual units
that a 'programmer haé' availablé will be an important
déterminaht of his programming behavior.

A Theory of Programming Behavior

‘Thé'theory of programming that will be presented here
' is inA.the .context of the problem-solving theory of Newell
and Simon.f1972), and shafes‘their,view of 4prob1ém solvers
as information §r0cessing systems. Like their theory, this
theory. of programming is oriented towards explaining the
thaviors seen.'in transcriptions, called protocols, of the
Qerbal behavior of subjects asked to» "talk aloud" while
performing programming taéks. It also éhares their bias

towards modeling and predicting the specific bhavior _of'

individuals, rather than aggregates.

Though‘cbmputer'pfogramming has been thus far treated
as a single activity,”in mény situations a variety of tasks,
such as wfiting specifications of programs or implementing a

set -of specifications are included under this heading. For

the focué of the theory, one pafticular type of task has
been selected. 1In this type of task, a programmer is given
a déscription of the input data and of the processing that
is to. be performed on it. The programmer must find an
algorithm, including the selection of internal
reptesentations for the data, and implement the algorithm in
a programming language. As a working situation, it isr one
which occuré by 'ifself frequently only in scientific and
educational environments, but it is often a sub-part of

other programming tasks in commercial situations.

The theory hypothesizes that three distinct sorts of
behaVior, understanding, method-finding, and coding, are
involved in performing this programming task. Understanding
behavior is defined to be that by which the programmer
acquires knowledge of the basic elements of the problem.
These include the objects with which the ©problem is
concerned, their properties and relations, the initial and
final state of the bbjects, and the operations available for
going from the_initial to final states. Behavior such aé
reading or 1listening to directions, asking quéstions about
conditions. of limitations of the problém, etc. are

considered to be part of understanding behavior.

In a protocol, the following kinds of statements can be

classified as understanding behavior:

1. Reading the directions or problem statement.

2. Questions © to the experimenter about - problem
interpretation.
3.~ References to knowledge other than that about

programming, if used to determine limits or conditions of
the problem. An example would be a question about the
method »Qf‘rrotation to be used in a factor analysis

program.

" The underlying process in this behavior is presumed to
be close to that described by Hayes and- Simon (1974) for
understanding written task directions. In their theory,
phases of . extraéting nf'information from external sources,
such as the nritfen directions, alternate with phases of
internal repfesentation building in which new information
gets_inco:poréted. Avsimilar‘ process is hypothesized to
underlie understanding of the problem in writing a program.
'Repeated passes are made across the written directions or
through other rinformation sources. .initial passes
conéentrate on éstablishing the- basic objects of the
pnoblem, while'laternones are‘concerned with adding details

_about the properties and relations of the objects and’ about

their initial and final states.

The second type of behavior hypothesized to occur 1in

pProgramming :is method-finding. A method is a plan or

outline of the program to be constructed, similar in
function .to an architectural plan or blueprint (as vérsus a
plan of actions to be taken).. It consists of specifications
of the way in which information from the real world is to be
representeq in the program (data structures) and of the
operations to be performed on these representations to
achieve thccdesired effect of the program- (algorithms).
Organizafion of thése methods is heirarchical, with smaller

methods serving as pieces of larger ones.

An important characteristic of methods is the extent to
which.' they .are independént of specific programming
linguages. Possibilities exist along a continuum ranging
from having each method be uniqUe to a specific programming
language to having methods thch are general Aacross all
programming - languages. Part of the hypothesis about the
existénce of methods is that; in fact, ﬁethods are specific
to groups of programming languages which share common data
and control strcctures. Thus, the same set of methods would
be used for ‘programs in FORTRAN and BASIC while a
substéntialiy different set would be used for programs in

LISP.

Behaviorally, method-finding behavior should be

identifiable by the occurence of the following types of

behavior in a protocol of work on a programming task:

19

1. Statements of a general solution to the problem,

in terms which are not constructs er'legal statements of
. 1

' the programming language. Often, the statements are

preceeded by phrases such as "the way I would do this

would be ...%"

2., -Statements noting the similarity of this problem

to one solved previously.

3. Solutions to the problem stated in: a language
-othetv,than~ the one in which the program will be finally
written, if no’attempt is made to check or verify the
»syntex of the 1lines of code. (This is meant to cover
'coding in metalanquages or informal, design languages;
the reason for this particular distinction will be

explained in the discussion of the coding process.)

The'presence of an identifiable, assoeiated behavior 1is
by itself an insufficient basis for asserting that methods
play a partieular role in the creation of programs or that
there is a; distinct methed—finding process. A somewhat
stronger argument in favor of these hypotheses can be made
from the fbllowing considerations: The space of possible
programs is thet of all possible statements or sequenees of
statements. Since this space is exttemely large,
constraints must exist which strongly limit .the choice of

statements to be selected for addition to a program. The

11

constraints must be ones which operate across long segments
of program, since statements written at one point in a
program can determine the content of statements several
hﬁndred lines away. The problem statement cannot alone
supply them since it does not sufficiently closely determine
major characteristics of program structure, such as the
choice of algorithm. Therefore, some source of information
must exist which bridges between the problem statement and
the wfiting of individual lineé of code. The notion of
method described here fills that role.

A Model of the Coding Process

At‘this point, the internal operation of the processes that
make up the theory has only been presented in outline form.
For the sufficiehcy of the theory to be evaluated, the
structure of these processes must be. more precisely
specified. Resource constraints have so far pefmitted such
a model to be constrﬁctéd for only one of the processes,
coding;vdetails of this model are available in Brooks (Npte
1); only the more salient aspects of this model will be
présented hére. As with the theory in which it is embedded,
the goél in creation of the model is to provide a set of
mechanisms which are sufficient to explain certain aspects

of coding behavior. 1In particular, the model is intended to

explicate two characterisics of coding behavior:

12

1. The order in which code is generated in a
'protocol,‘ including the making of modifications and

corrections.

2. The change, as the program writing progressés,
of the programmer’s knowledge about ~the program, as

evidenced¢in the statements in the protocol.

The model is cast in the form of a computer program.
"Input" to the model is considered to be a thé method that
the programmervhas)found for a section of code. As the
model operates, the methods are converted into actual code,
and the coqtents_of certain data structures,_which represent
£he programmer's knowledge about the program, are updated as
this knowledge changes.
| v

An Observational Basis for Constructing the Model

As is consistant with the general bias of this work
towards describing and explicating individual behavior, the
aim in constructing this model was to produce a structure
that could explain individual episodes of coding behavior.
Rather than producing such a structure by first generating
ian abstract— model. and then modifying it to fit individual
episodes, aﬁ aiternative strategy was followed. In it, the
ébstractions ‘were made from a model that was initially

constructed to fit an actual body of observed coding

13

behavior. A description of these observations is a useful

starting point for explication of the model.

The observations consisted of a set of 23 protocols by
a singie subject. The problems for which the protocols were
éollécted were a set of 23 short problems, all of which
involved mariipulations on an array of 106 numbers, called L.
A second‘ array, called M, could be used to indicate
information about which manipulations had been performed.

An example of one of the problems is:

Find all the odd numbers in L and move them to the
beginning of the array. Set the corresponding positions

in M to 1.

While working on these problems, the programmer could
ﬁse both paper and pencil and a 18 character-per-second,
hard-copy compqter ‘terminal connected to an interactive
computing system that the subject had used frequently before
participating in the study. Alternation between the two
could be made as frequently as the subject'desired. His
behavior while working was recorded using a throat
microphone and a video tape recorder with the camera placed

behind the subject.

For each program, the programmer was given a printed

description of the problem to be programmed and the name of

a file (dataset) on the computing system which contained

14

code to read ~in »the values of L ahd to zero M. He was
instructed to write the program in the FORTRAN language and
then to debug and run it. While performing £hese tasks, he

was asked to "talk aloud" about what he was dding..

The subjéct employed in this study was a graauate<
student ihn‘computer écience with more - ;han 10 years of
_ progréﬁming exéerience; This included writing several
interpreters and assemblers as well as extensive experience
in more than 10 programming languages. Additionally, he had
three years eﬁpefignce teaching in;roductqry prpgramming'

courses.

Transcriptiéns of the tape recofdings together with the
subject’s notes and the print-out from the terminal provided
the basic data on the subject ‘s behavior. The audio content
"of the tapes was transcribed and annotated, using the video
information, to'indicate the'correspondencé between wfitinq
or typing and the spoken material.. A briefvexample of one
of these protocols is:

© $35: Then we’'ll say switch it with the next
.odd. '
$36 Put a zero here.
'A37 Changes NEXTODD=1 to NEXTODD=0.
S38 And we;ll say K equals_L'sub I.
A39 Writes K=L(I)

Lines beginning with "A" indicate annotation of an action.

15

The breaking of spoken information intp' lines in the
transcription was made acco;ding to two rules: First, a
break was made whenevér the subject paused in speaking, even
if \it ' was _in the middle of a word or phrase. Second, if
speech was relatively continuous, breaks were made between
major vclauses.:'The segmentation into lines in the protocol
wés, thus,.intended to- give. a rough indication of the

:conceptual units used by thé subject. ‘ S

Since these 23 protbCOls were used to construct the
model, a more precise characterization ' of them inq
cqﬁparision with- other programming behavior is usgful
background fo:.the model. One dimension along which such |a
characterization can be made is time, and timings were
obtained wusing the counter on the video tape recorder.
(Absoluté accuracy varied depending on the amouht of tape on
the reel, but relative accuracy was .3%, or an absolute
error df 5 seconds in a 25 minute protocol.) These figures
aré summarized in Table 1:

Mean Standard Dev. Range

Writing time. | 25.9 18.0 - 3.8-66.8

‘Debugging time. (minutes) 15.0 18.1 §.8-78.9

Ratio of times. o 3.13 2.81 . g.7-12.7

Lines of code written. - 24.4 16.96 9-74
Correlations |

Lines written x writing'time r=.69 p=.0005

16

Lines written x debugging time r=.75 p=.0005

Table 1

Writing time was defined to end and debugging time to
begin when the subject first attempted to compile the
program. The ratio of times refers to the ratio of writing

time to debugging time for each problem.

In viewiné these statistics, two items are noteworthy.
The first is that even though.the problems all involve only
manipulations on one array, they differ widely in
difficulty, with a 1 to 26 ratio between toﬁal time for the
easiest and hardest problems. Thisvfinding is comparable to

that found in the Grant and Sackman (1967) study.

Second, in these programs, writing time exceeds
debugging time by as high as a 12 to 1 ratio. This is in
extreme contrast to the results of other investigators
(Youngs, 1974; Rubey, 1968) in which debugging time almost
invariably exceeds Writing time, occasionally by as much as
4 to 1. The source of this difference is hard to pinpoint,
buti it may lie in the small size of the problems, the
availability of "canhed" code for input and output, or in
the proérammer's claim to use the techniques of "structured"

programmming cited earlier.

Further insight into the nature of this data may be

obtained by classifying the statements 1in the protocol

17

according'to :thev.scheme specified by the theory. The

following tables gives the result of this classification:

Process Occurence/Problem Time spent (secs.) % time
Understanding® =~ 1.39 | 101.4 6.9
Method-finding 1.19 | 313.4 21.2

Codingr E o 1.87 : 1068.5 | 71.9

The.Cccurence/Problem column 1nd1cates the mean number
of. times each process occurred per problem. The Tlme spent
column 1nd1cates the mean total time spent on that process
in each problem, while % Time is the percentage of total

writing time accounted for per problem.

: Note that both method f1nd1ng and coding' occur only
about tw1ce per problem, and that coding accounts for more
than ‘two- —thirds of the time spent. Using this informatlon,
a characterlzatlon of these problems. is that they are easy
to understand and_that it is easy to find a solution method
for them, but lmplementation of the solution is often quite
difficult. | | | -

Architecture of the Model

The'essential architecture of the model is adopted from
- the general theory of human problem solving of Newell and
' Simon (1972). Their theory specifies a short-term memory

(s'TM) with a fixed, small capacity (less than 367?) of chunks

or symbols, and a long-term memory (LTM) of large oOr

18

infinite capacity. Each - symbol in STM "can designate an
entire structdre of arbitrary size and complexity in LTM "
(Newell and Simon, 1972; p.795). Access times for STM are
aseerted to ee quite short, on the order off a tenth of a
second, Whiie' those for LTM are on the order of several
'seconds. (Readers are refered to the original reference for
afguments in favor of these sizes and capacities.)
-Additionally, prbblem-solvers may make wuse of external
memories (EMs) sueh as chalk boarde, paper and pencil, etc.
.Capac1t1es and characterizations of EMs will vary, but all
w1ll be dependent on the‘ presence of appropriete access

information_in STM or LTM.

Probleﬁfsglving bepayiqr in}the theory is controlled by
a ﬁprodpption system. A producton system consists of a set
of pairsqu.conditions‘and actions to be performed when the
conditions vare met. An appropriate resolution principle is
employed to_inSure that only one set of actions is taken at
a time. Executing the actions results in some change in_the
etate'of the data that are checked by the conditions, so
that aé the system operates, different sets of condltlons

are met and different actions are invoked.

In the,Newell‘& Simon theory, the proddction system. is
considered to 'be part of LTM. The data for the conditions -
are the eontents of STM. The theory further specifies that

the production system is the only internal control mechanism

19

for problem-solving behavior; an extensive defence of ‘the
ps?éhplogical suitability of this structure for modeling

human behavior is given in Newell & Simon (1972;p.864)..

In the particular implementation of this theory used
fof -this model of coding, the'STM is presuméd to consist of
a fixed number of ordered slots. When néw lelements are
introduced as the result of production actions, they are
placed into the first slot, and each of the other elements
is moved vdown one'slot; the element that was previously in
.the last slot is lost off the end. ' In addition to adding
new eleménts, the contents of STM may be altered by two
- other types of production actions: modification of elements
already in STH, and moving elements intQ the first slot of
STM that are already in some othér slot. Brboks (Note 1)
disgusses the memory phenomena that are realizeable with
such a structure, ;s.well as the size requiremehts for the

STM.

The production system used in the model is written in a
formalism that 1is a Avariant of the PSG system (Newell &
McDermo£t, 1975). 1In this variant,.the inyoking conditions
are always tested in a fixed order, and the first production
whose conditions afe met is executed. The conditions are
specificatidns of'élements in tbe‘STM that are described in
a pattérn language. This pattern languagébvpermits the

specification of elements‘in terms of their general form, as

20

well as allowing the conjunction, disjunction, and absence

of elements to serve as part of the invoking conditions.

An example of the kind of rule that éan be ‘written in
‘this language is: |

Cbndiﬁions;

1;'PLAN¥ELEMENT"(1F *REST*)

2._OLD-PLAN—ELEMENT (LOOPFTHROUGH *ANY*)

Actions:

1. Remove ﬁhe'item matching condition #2.

2. Add GOAL TEST *REST* To STM.
' 3. Rehearse_thé item matching conditioh-#l. |
The *REST? and *ANY* tokens are patterns which match,
réspectively,_;hg rest of an item and‘any single token in an
item. Thus, .the first condition would match either
PLAN—ELEMENT (IF ODD—ﬁUMBER) or PLAN-ELEMENT (IF GREATER

SIZE, CURRENT SIZE).

As in the general theory, the production system is
contained - in LTM. In addition, LTM contains another
structure called MEANINGS which is used to contain

information about quantities and data structures used in a

program for which code is.being written. “The reason for

requiring a Sepa:até structure for this information is that
the information of this kind is used over too long a period

'to»reasonably»assume that it is kept in STM. Assuming it to

be stored in - the production system would require the

21

speoitication‘ of mechanisms for allowing the production
-system to modify.itself as information about the program
‘being written changed. In the abSence of such mechanisms, a
separate LTM structure has been ‘used in the model with
expectation »?of ' eventually ~ incorporating it into the
production syStem. * MEANINGS is assuiied to have an
associative structure in which.a quantity or structure is
accessed by giving enough of its attributes to identify .it
unlquely Thus; a variable may be accessed by specifying
that it is belng used to keep track of elapsed time and that
it,;i? ~of type, real, wlthout specifying that its name is
ETIME. Tbe‘particular set of attributes used will vary from
subject"to subject and problem to problem, Information is
entered 1nto MEANINGS and retrieved from 1t only by actions

of‘the production system.

In addition to the STM and’ LTM memories, the model
makes use of an "external memory" (EM) called CODE, which
represents the information that the programmer has *already
- written on paper or typed on a terminal. The basis for
proposing such a structure is to represent the information
that a programmer obtains from re-reading code that he hasf
already written,» Again, as in the case of MEANINGS, access
to CODE is only via actions of the production system which

adds new code to it and retrieves code that has already been

written by copying information about it back into STM. Note

that this means that information can only be retrieved from
CODE if the coﬁtehts of STM causes the necessary production
rules to bé uséd., In one sense, CODE contains the "output"
of ‘the imodel,.since it is the receptacle for the code that

the model generates.

Figurell_indicates the overall structure of the model
- insert'Figure 1 here -

Operation of the Model

"' As was discussed earlier, thé'action pérformed by the
‘model is to take parté of a method and to convert them, via
the symbolic execution process, into actual programming
laﬁguage :stotemonts, :Tho production systém,'as‘center of
control for the model, is responsible for carrying out the
symbolic execution cycle. In particular, it must contain
rules for selecting, on the basis.‘of the method. and the
effects of - previous code, the next piece of code to write
and, once this code is written, it must assign -an effect or
result to,Athe‘piecé‘Of code. The specific bohavior of the
model is, thus, entirely‘determined'by the particular rules

that make up the production system.

In“generating the model, production rules were written
_ fori a set of 4 segments of coding protocol, each selected

from a different problem in the set of 23 problems described

previously. (The criteria used for selection_are described

23

in Brooks - Note 1). The number of lines of protocol in
each segment and the number of lines of FOKTRAN that were
written by the subject in each . segment are given in the
first two columns of Table 2.

-insert Table 2 about here-

For each of these segments, the model was presumed to
be initiélized' by placing the method, expressed in a
list—structured notation, into the STM. Figure 2 shows one
of these methods expressed both in natural language and in
system notation form:

- insert Figure 2 about here -

A set of rules was constructed which, when applied according
to the production system convention, progressivs}y add new
code to CODE and update the contents of STM and MEANINGS as
specified by the symbolic execution cycles., The set

contained a total of 73 production rules for all 4 segments.

Before discussing the nature of these rules, it is
worth enquiring how well these rules did their job. Of the
46 lines of code in the written in the 4 segmehts, the model
generated all of them correctly, but 2 lines in one problem
were generated in a different order by the subject than by
the model. Since ‘the rules were constructed from the
protssols, it is not surprising that they do a good job both
of generating'the code in the same order as did the subject.

More interesting, however, are the figures shown in the

24

third-'column of,Table 2, which indicate the number of rule
applicationS”ﬁecessary tomgenerate code for each segment,
.and the fourth“fcolumn; which indicates the.ratio between
lines of protocol and the number of rules. If the number of
lines of protocol are‘considered to be‘a.rough measure of
the amount of cognltive proce551ng done by the subject, then
the ratios 1nd1cate how well this corresponds to the amount
of proceSSIng done by‘the model. Only in one problem does
the£ ratio' differ appreciably from 2 to 1, and this was the
only problem in wh1ch there was any difficulty in generating
the code. Slnce no exp11c1t attempt was made to obtain this
correspondence while constructlng the rules, it serves as an

1ndependent indication of rule accuracy

The 73 produCtions‘or rules used by the model can be
divided into 4 groups on the basis of function. The first
group consists .ofb rules for overall control and goal
management Anv example of the 8 rules in this group is
NEXT PLAN- ELEMENT -1 which is responsible for getting the
next piece of a plan once the previous piece has been

completed. It states:

"Tf there is no PLAN- ELEMENT currently in STM, but

there is 'an OLD -PLAN- ELEMENT, then add the next element

of the plan to STM as a new PLAN-ELEMENT."

v

25

The second group consists of“gules for wupdating the
contents of the CODE EM. These rules all take some segment
of code that other productions have generated and use it to
add to. or replace previously written code. An example of

this group, ADD-ON-CODE, can be stated as follows:

- "If there is any code in the STM to be ADDED-ON and
there is a pointer to the CODE EM and there is an
indicator of the last code added then add the code to
CODE, mark the code as WRITTEN-CODE in the STM, and

rehearse the pointer to the CODE EM."

‘The third group consists of the 57 rules which are
actually responsible for generating code by the symbolic
execution process. As such, they are the most substantive
part of the model. Two examples of these rules are
METHOD—ORDERFI and GOAL-LOOP-THROUGH-1. The first of these

rules can be stated as:

"If part of the method is to order a list, then
begin by setting up a goal to loop through the list."

The second can be stated as:

"If the GOAL to loop through a list, then make this
the current goal, preparée code for a DO loop running the
length of the list, which is retrieved from MEANINGS, and
update MEANINGS with information aboutvthe loop, and ﬁhe

index and the labels used in creating the DO statement.

26

Place the effect of the code into STM."

In operation of the model, these rules would be applied
successively.‘v Aftep the second'rule had been ﬁsed, another
»rﬁle would be applied which would compare the effect of this
loop with the method step. On the basis of the difference,
other ruies would be invoked which would complete the code
for the sorting operetion.

Overview of the Rules

An interesting_perspective on the rules in this <class
can be obtained by Iooking at ﬁhe comparative patterne of
use of the prcductions in all 3 classes. All the productidn
rules’ in the first two classes are used repeatedly in all 4
program eegmentsf in facf; 5 of these rules account for just
over half (53.5%) of total rules utilization across all 4
segments. in the third group, on the other hand, only 9 of
the rules- efe used in more than one segment. 1In terms of
the structure of the model, this is, of course, an expected
~state of affairs. 1In each segment, different code is being
createdvéndvdifferent behavior is exhibited by the subject,
even though the eame basic control cycle and structures are
being used. The model'reflects.this by having the rules

that actually create code be different for each segment.

Iin terms of evaluating the sufficiency of this

approach, the total number of rules that would be required.

27

to model all 23 probleﬁs is of interest. Using the methods
from 4 additional protocols, it was estimated that somewhere
between 4 and 1% new rules will have to be added to the
third group for each new production to be modeled, assuming
that no new productions are added in the fiﬁSt groups. On
this basis, somewhere between 116 and 230 productions will
be needed_in the third group. -Since the problems done here
tap only a small fraction of a programmer s knowledge, the
total number of fuleé necessary to represent all of a
programmer'é knbwledge must be on the order of of tens or

hundreds of thousands.

Is this magnitude reasonable? An afgument can be
advanced that it is, First, becoming a good programmer
usually takes, in addition to formal training, several years
of practical experience in actually writing programs. The
learning that takes:place at this time can be viewed either
as the acquisition. of a large body of diverse knowledge or
as learning to apply a limited body of knowledge in a
aiverse range of situations, Whichever view is taken; the
length of time needed suggests that the total amount of

information to be acquired is quite large.

Another problem solving task which seems to depend on
the acquisition of a large body of information by the
problem solver is chess (DeGroot, 1965; Chase and Simon,

1973; Simon and Gilmartin, 1973). Like programming, it

28

takes several years to learn to do well and does not require
special motor skills. - Additionally, like programming, it
does not seem amenable to explanation in terms of some
small, closed set of ﬁehtal primitives, such as the problem
space concept (Newll & Simon, 1972) unless these primitives
are defined at a very low, atomic level. Using a simulation
based on memory and eye movement studies, Chase & Simon
(1973) have estimated that a chess master can recognize some
31,000 basic or primitive piece configurations which can be
combined to represent an entire position. If programming
knowledge is viewed as being built up out of some sort of
analagous primitives or components, then the number of them
required should be of similar magnitude. If each rule is
cbnsidered to represent one such primitive or component,
then an estimate of a need for tens or hundreds of thousands

of such rules is a reasonable one.

Sufficiency of the Model

At the beginning of the article, several important
findings from research on programming were cited. The
remaining task is to demonstrate the sufficiency of the

model for explaining them.

One of. the more striking findings in the early work on
programming was the large inter-subject and inter-problem

difference. On naive grounds, one would certainly expect

29

large differences between experienced and inexperienced
subjects, but not a large difference within subjects of the
same - general background, intelligence levels, and

experience. Further, a programmer who was good at writing

one kind of program would be expected to do.about_as well at

other, similarﬂp;ograms. That both these expectations do

~not hold ought to be one of the more important things that

this theory of programming behavior be capable of doing.

Both kinds of differences are, can, in fact, be handled
in the context of the theory and model presented here. 1If
programming behavior is seen as determined by rules, then
differences-among individuals must lie in differences in the
rules they have available. These differences must, in turn,
result from differences in the training or experience of
each subject. Since each rule encodes only a small piece of
knowledge, slight differences in such training or experience
ay .produce considerable differences in individual rules.
As an example, consider two programmers with identical
backgrounds except for which of two optional assignments
they did in one training course. One did the assignment

involving an odd-even test while the other 'did the one

Vinvolving a table look-up. When faced with a problem that

requires use of an odd-even test, one programmer will

already know how to write the test while the other will not.

Not knowing how to write the test directly does not, of
coursé, mean that he will be totally wunable to do the
problem. Instead, he will try and do it by an indirect
route. Say, he may remember if a number is odd, dividing it
by 2, dropping the fraction, and multiplying it by 2 will
yiéld a result differing from the original number by 1.
Usiﬁg ﬁhis fact, he may be able to apply several other rules
to eventually construct the test. Doing it this way will,
however, certainly take more time and will probably offer
more opportunity for a mistake. This theory thus provideé a
mechanism for explanation of relatively large behavioral
differences:pn the éame problem across programmers with very

similar background and experiences.

A slignt variation on this same mechanism also can be
used to understand how problems which appear very similar in
structure may, nevertheless, differ greatly in difficulty.
Consider the two problems, "find all the perfect squares in
an array" and "find all the 0odd numbers in an array." The
only difference in the programs to solve these problems lies
in the test performed on array elements. If, however, a
. Programmer is unaware how truncation on integer division can
be used to test for oddness, he will find the second problem

vastly more difficult than the first.

Viewing code generation as being accomplished by a

large body of independent coding rules can also serve as a

31

basis for theories of both debugging difficulties and of
differences in types of errors across programming languages.kg\\
The starting point for such theories is the assumption that
many or mbst errors are caused by incorrect or inadequate
code generation rules, rather than by external distractions
or other random events. During the generation of the code,
these faulty rules introduce Verrdrs or '"bugs" into the
program. For example, a rule may be insufficiently specific
in its invoking-conditions.and cause a piece of code to get
written in a circumstance for which it is not éppropriate.
If the effect which gets assigned tovthis code also does not
make the needed distinction, the program will not perform

properly.

This assumption leads to theories of debugging which
are based on the piemise that the same basic knowledge and
procedures are used in both debugging CCGe .énd“ in writing
it. It suggests that debugging is essentially.a.process of
generating code a second time and comparing it against the
original for discrepancies. Such a viewpoiht may prove a
fruitful one. It leads, for example, to the éxplanation as
to why debugging may occasionally prove exceedingly time
consuming in terms of recreation of the original bug when
-the code 1is being generated again. It also can be used to

- explain the finding that have erioneous output available

'does - not substantially reduce debugging time (Gould and

32

Drongowski,) on the basis that such information would play

only a minor role in this recreate and compare process.

The assumption also leads to theories about the
relationship betweeﬁ errors and programming '~ language
features. Since the rules encode a programﬁer’s knowledge
about the features - of a programming lénguage, the
charaéteristics of these rules will determine under what
circumstances an error will be made. While these rules will
vary across individuals, rules for writing a given
programming Jlanguage construct may sharé certain common
characteristics. For example, most programmer}s rules for
writing a GOTO statement in FORTRAN may require that the
label, which is the GOTO destination, be paired with. a
specific, intended computation before it is used. Such
common characteristics could also be common sources of
error, perhaps because they require information which could
be easily 1ost from STM. If this 1is the case, then
particular programming language features would lead to high
error rates across programmers. Explanations of this kirnd
may be particularly powerful because they offer the
possibility of evaluating potential new programming language
features by constructing or hypothesizing the kinds of rules

that are likely to govern their use.

The remaining behaviors to be brought within the

coverage of the model are those observed in connection with

33

the work on new pProgramming methodologies. The beneficial
effect of imposing a heirarchical cpgnitive organization is
a fairly direct consequenée of assuming an STM with a
capacity of a.fixed number of units. Since-the heirarchical
structuring would permit more information about the program
to be packed into each unit, fewer, separate units would be
needed, and the possibility of losing a unit, causing

errors, would be reduced.

In addition to providing a mechanism by which this
basic phenomerion can be produced, the model also can be used
to derive some related behaviors. Among the more striking
of these is a prediction of the conditions under which one
of the heirarchical organization 'techniques is likely to
succeed or fail. 1In "top-down" programming (YourGOn, 1975),
actual construction of the program follows the cognitive
organization. The ' programmer begins writingla program by
firs£ specifying. the top level of the heirarchy and then
successively specifying 1lower levels until the actual
programming code is reached. 1In terms of the theory this
corresponds to proceeding sequentially through
understanding, method~-finding, and.code-writing;. Under what
conditions will the programmer be able to proceed in this
direct sequential fashion, without backtracking? This will

only be possible if the programmer always has at hand an

appropriate set of rules at each step. Thiz will wusually

34

occur only if the problem is of a type that is very familiar
to the programmer and if the programming language is one
'with which the programmer has considerable experience.
Hence, the model predicts that only under these conditions
can top-down programming be used successfully.

Research Methodology

A concluding comment on this fheory concerns the plan
or course to be followed in doing research under it. As
mentioned earlier, the theory 1is a theory of specific
individual, rather than general behavior; and it focuses on
building models of the behavior of single individuals,_ as
was done here. The question remaining to be addressed
concerns the kinds of generalizations or broader conclusions
that can come out of building a set of such inividual
models. If such a set is built for the performance of the
same task by different individuals) a different set of rules
will, necessarily, bé used for each model. The sets,
however, will show similarities across individuals. Some of
these similarities will hold across all the individuals in

the set, while others will hold only for subgroups. The

course of work within this theory could be aimed at both

identifying such similarities and at establishing their
precursers in terms of the education and backgrounds of the
individuals involved. The theory thus offers a potential
for unified research into both individual aggregate

behavior.

35

Footnotes

<1>. The name, "coding," has been chosen for this procedure

because "code" is the generic term used'by programmers to
designate sequences of computér instructions written in a
programming language, regardless of whether these

instructions are part of a program, subroutine, function,

coroutine,or some other unit.

36

Reference Notes

1. Brooks, R. A Model of Human Cognitive Behavior in

Writing Code for Computer Programs. Unpublished doctoral"

dissertation. Psychology Dept., Carnegie-Mellon

University. 1975.

Newell, A. Personal communication. The elements of the

'Newell theory that are used here are (1.) Development of

methods by heuristic search consisting of successive
functional elaboration in which functional specifications
invoke structures which, in turn, require further
functiohsg (2) Generation of code by a symbolic
execution process in which, first, code is laid down and
then consequences are generated from it. (3) Further
generation of code based on recognition process driven by

previously written code.

37

 ‘Bib1iograpHy \

Anderson, J.R. & Bower, G. Human Associative Memory V.H.

Winston & Sons. 'Washington, D.C. 1673."

Boehm, B.W. Software and Its Impact: A Quantitative

Assessment. Datamation 1973. 19(5):48-59

Boies, S.F. &fGQuld, J.D. Syntactic errors in computer

' programming. Human- Factors 1974 16:253-257

Brunér,»J.S., Goodnow, J.J. & Austin, G.A. A Study of

Thinking. New York. Wiley. 1956

Chase, W.G. & Simon, H.A. Perception in chess. Cognitive

Psychology 1973 4 55-81

DeGroot, A.D. ‘Thought and choice. in chess. The Hague:

Mouton, 1965{

Dijkstra, E.W‘_ The humble programmer. Communications of

the A.C.M. 1972. 15:859-866.

Gold, M.M. Time-sharing and batch-processing: an

experimental comparision of their values in a

problem-solving situation. Communications~9£ the A.C.M.

12 249-259. 1969.

Gould, J.D. & Drongowski, P, An exporatory study of

computer program debugging. Human Factors 1974,

16:258-276

38

Grant, E.E. & Sackman, H. An exploratory investigation of
programmer performance under on-line and off-line

conditions. I.E.E.E. Transactions on Human Factors in

Electronics HFE-8. 1967.

Hayes, J.R. & Simon, H.A. Understanding written problem

instructions. in L.W. Gregg (Ed.) Knowledge and

Cognition Lawrence Erlbaum Associates. Ptomac, Maryland.

1974.

Hewitt, C. Description and theoretical analysis (Using
Schemata) of PLANNER: A language for proving theorems and
manipulating models in a robot. .Unpublished doctoral

dissertation. Department of Mathematics. M.I.T., 1972.

Knuth, D.E. An empirical study of FORTRAN programs.

- Software- Practice and Experience 1(1971),1#5-133.

Litecky, C.R. & Davis, G.B. A Study of errors,
error-proneness, and error diagnosis in COBOL.

Communications of the A.C.M.

Newell, A. & Simon, H.A. Human problem Solving.

Prentice-Hall 1972. 1976. 19(1):33-37.

Rubey, R.J. A comparative evaluation of PL/1. Datamation

December, 1968.

39

Simon, H.A. & Gilmartin, K. A simulation of memory for

chess positions. Cognifive Psychology 1973, 5,29-46.

Schatzoff, H., Tsao, R. & Wiig,R. An experimental

comparision of time-sharing and batchv processiqg.

Communications of the A.C.M. v.16(5) 1967.. .

Simé,'MQE.; Green, T.R.G. and Guest, D.J. Psychological

§

evaluation of two conditional constructions wused in

computer languages. International Journal of Man-machine

Studies 5(1) 105-113. 1973.

Smith, L.B. A comparision of batch processing and instant

turnaround. Communicdtions of the A.C.M. v.16(6) 1967.

Sussman, G. A computational model of skill ~acquisition.
Unpublished doctoral dissertation. Massachusetts

Institute of Technology. 1973.

Sussman, G.J. & McDermott, D.V. Why CONNIVING is better
than PLANNING. (A.I. Memo No. 2554) Artificia1

Intelligence Laboratory. M.I.T. 1972.

Winograd, T. Understanding natural language. Cognitive

Psychology 1972. 3, 1-191.

Youngs, E.A. Human errors’ in programming. International

Journal of Man-machine Studies 1974. 6:361-376.

40

Yourdon, Edward Techniques of Program Structure and Design

Englewood Cliffs: Prentice-Hall 1975

4

41

1. Create a pointer to the next odd number, starting out at
the .
beginning of the array.
2. Loop through the array.
3. Test each element to see if it’s odd. If it is,
Increment the pointer to the next odd.
Swap the element it points to with the element that was
just
found to be odd, which was pointed to by the loop
index. : '
Set the corresponding element in M to one.

1. (CREATE (POINTER (NEXT ODD)) (BEGINNING (LIST OF
NUMBERS))) |
2. (LOOP-THROUGH (LIST OF NUMBERS))
3. (IF ((EVEN PARITY)
‘ (ARRAY-ELEMENT (LIST OF NUMBERS)
-~ (VARIABLE (LOOP-INDEX))))
(GOTO--LOOP-END)
. . (BEGIN! (NOT-EVEN-PARITY))
5. (SWAP-AND-INCREMENT .
' ((ARRAY-ELEMENT (LIST OF NUMBERS) (VARIABLE
(LOOP-~INDEX)))
(ARRAY-ELEMENT (LIST OF NUMBERS) (POINTER. (NEXT ODD))))
(POINTER (NEXT 0ODD))))
6. (SET (ARRAY-ELEMENT (AUXILLARY ARRAY) (POINTER (NEXT
ODD)))
7. (END! (NOT-EVEN-PARITY))
8. (END! (LOOP-THROUGH))
' Figure 2

The top portion of the figure shows a method expressed
as English text.
The bottom portion shows the same method as it is
represented in the
model.

42

Problem Lines Cycles Ratio Code

#1 38 60 1.6 9

#2 47 65 1.4 1p

#3 80 169 2.1 14

#4 89 110 1.2 13
Table 2

STM L

o

M

Production

S 55“’9“\

11

MEANINGS

F‘\iure. l |

