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Abstract

While only in the past ten years have large numbers of

people been engaged in computer programming, a small body of

studies on this activity have already been accumulated These

studies are, however, largely atheoretical. The work

described here has as its goal the creation of an

information processing theory sufficient to describe the

findings of these studies. The theory postulates

understanding, method-finding, and coding processes in

writing programs, and presents an explicit model for the

coding process.



In the past thirty years, computers have moved from

academic curiosities to essential tools in business,

government, and education. With the rapid growth in the

numbers of machines has come an equally rapid expansion in

the numbers of personnel working with the machines,

particularly in the area of software generation and

programming. One estimate is that, in the U.S., more than a

million people are involved in some aspect of the

programming process (Boehm, 1972).

The large number of people engaged in this work, as

well as the complexity of the task itself should make

programming behavior of considerable interest to cognitive

psychology. Indeed, though significant quantities of

programmers have been available for only the past 10 years,

researchers have been quick to turn their attention to

cognitive aspects of programming, and a small, but growing

body of studies now exists. As is reasonable to expect in a

newly developed field, most of the studies are atheoretical.

They attempt to establish the validity of various parameters

for describing programming behavior, rather than attempting

to specify underlying processes which determine these

parameters. The intent of this paper is to begin to develop

a theoretical framework for the study of some of the

cognitive processes involved in one kind of computer

programming. The goal of this effort is not to immediately



derive testable consequences from the theory, but, rather,

to demonstrate the sufficiency of the theory, or of direct

derivations from it, for explaining observed programming

behavior. in this respect, the theory very much shares the

philosophy behind the work of Winograd(1972) and of Anderson

and Bower (1973) .

Review of Existing Work

A useful starting point for presentation of this theory

is a review of the existing body of studies, with the aim of

identifying some of the more characteristic features of

programming behavior. Essentially, these studies can be

divided into three groups. The oldest of these grew out of

an early controversy about the relative merits of

interactive versus batch systems. (Grant & Saqkman, 1967;

Smith, 1967; Schatzoff, Tsao, and Wiig, 1967; Gold, 1968).

While changing economics have rendered the main thrust of-

these studies moot, they did succeed in establishing one

important aspect of programming behavior. Even among

programmers of very similar experience levels, differences

of as much as 100 to 1 were found across programmers in the

time taken to write a given program. Additionally, across

problems constructed to be of similar difficulty, an

individual programmer often displayed a six-fold difference

in writng time.



A second group of studies has been addressed to

features and error characteristics of particular programming

language(Rubey,1968; Knuth,1971; Litecky and Davis, 1976).

While these studies have not been intended to provide

information on cognitive aspects of programming, they have

produced the important finding that errors or difficulties

in programming are not random occurences, produced by random

occurrences in the programmer's environment. Instead, they

are clearly linked to specific features or properties of

programming languages.

A third group of studies shares the common property of

attempting to specify factors or characteristics of

cognitive aspects of programming, other than strictly

language dependent ones. Among the earlier of these is

Young's (1974) study of error rates in programming which

revealed, surprisingly, that experienced programmers

initially make about the same number of errors as beginning

programmers, but are able to find their errors faster. The

work of Sime, Green, & Guest (1973) is aimed at establishing

links between . programming behavior and psycholinguistic

theory; using one such link, it successfully predicts a

performance difference in the use of two different

programming language constructs. Finally, the work of Boies

and Gould (1974), Gould and Drongowski (1974) and Weissman

(1975) all seek to establish the validity of an experimental



methodology for studying various factors in programming

behavior.

Ihj addition to experimental research on programming, a

large body of informal data exists in work on programming

practices and techniques, often discussed under the heading,

"software engineering." While much of this work is

prescriptive rather than observational or experimental, it

does Suggest some important characteristics of programming

behavior not yet studied experimentally. Perhaps one of the

most important of these comes from the work on producing

well-structured programs (Dijkstra,1972 ; Yourdon,1975) .

While most of this work is very controversial and there is,

as yet, no universal agreement on goals or methods, much of

it seems' based on the assumption that the "cognitive load"

(Bruner, Goodnow, & Austin, 1956) involved in understanding

how a program should function will be an important

determinant of how easy the program is to write, debug or

modify. The proposed methods for reducing this load are

essentially aimed at constraining programmers to organize

programs heirarchically and modularly in such a manner that

an operation at any one level can be broken down into a

small number of simpler operations. The aim of this process

is to reduce the number of units of information which are

necessary to understand any given piece of program, and,

thereby, to minimize the cognitive load.



The need for such tactics indicates that an important

element in determining how easy a program will be to write

or understand is the conceptual organization imposed on it

by the programmer or reader. Thus, a programmer may find a

program easier to write if he can break it down into an

input routine, a sort routine, and an output routine than if

he views it as 57 distinct lines of code. If this is true,

then it suggests that the size and kind of conceptual units

that a programmer has available will be an important

determinant of his programming behavior.

A Theory of Programming Behavior

The theory of programming that will be presented here

is in the context of the problem-solving theory of Newell

and Simon (1972), and shares their view of problem solvers

as information processing systems. Like their theory, this

theory of programming is oriented towards explaining the

behaviors seen in transcriptions, called protocols, of the
I

verbal behavior of subjects asked to "talk aloud" while

performing programming tasks. It also shares their bias

towards modeling and predicting the specific bhavior of

individuals, rather than aggregates.

Though computer programming has been thus far treated

as a single activity, in many situations a variety of tasks,

such as writing specifications of programs or implementing a

set of specifications are included under this heading. For



the focus of the theory, one particular type of task has

been selected. In this type of task, a programmer is given

a description of the input data and of the processing that

is to be performed on it. The programmer must find an

algorithm, including the selection of internal

representations for the data, and implement the algorithm in

a programming language. As a working situation, it is one

which occurs by itself frequently only in scientific and

educational environments, but it is often a sub-part of

other programming tasks in commercial situations.

The theory hypothesizes that three distinct sorts of

behavior, understanding, method-finding, and coding, are

involved in performing this programming task. Understanding

behavior is defined to be that by which the programmer

acquires knowledge of the basic elements of the problem.

These include the objects with which the problem is

concerned, their properties and relations, the initial and

final state of the objects, and the operations available for

going from the initial to final states. Behavior such as

reading or listening to directions, asking questions about

conditions or limitations of the problem, etc. are

considered to be part of understanding behavior.

In a protocol, the following kinds of statements can be

classified as understanding behavior;



1. Reading the directions or problem statement.

2. Questions to the experimenter about problem

interpretation.

References to knowledge other than that about

programming, if used to determine limits or conditions of

the problem. An example would be a question about the

method of rotation to be used in a factor analysis

program.

The underlying process in this behavior is presumed to

be close to that described by Hayes and Simon (1974) for

understanding written task directions. In their theory,

phases of extracting of information from external sources,

such as the written directions, alternate with phases of

internal representation building in which new information

gets incorporated. A similar process is hypothesized to

underlie understanding of the problem in writing a program.

Repeated passes are made across the written directions or

through other information sources. Initial passes

concentrate on establishing the basic objects of the

problem, while later, ones are concerned with adding details

about the properties and relations of the objects and about

their initial and final states.

The second type of behavior hypothesized to occur in

programming is method-finding. A method is a plan or



outline of the program to be constructed, similar in

function to an architectural plan or blueprint (as versus a

plan of actions to be taken). it consists of specifications

of the way in which information from the real world is to be

represented in the program (data structures) and of the

operations to be performed on these representations to

achieve the desired effect of the program (algorithms).

Organization of these methods is heirarchical, with smaller

methods serving as pieces of larger ones.

An important characteristic of methods is the extent to

which they are independent of specific programming

languages. Possibilities exist along a continuum ranging

from having each method be unique to a specific programming

language to having methods which are general across all

programming languages. Part of the hypothesis about the

existence of methods is that, in fact, methods are specific

to groups of programming languages which share common data

and control structures. Thus, the same set of methods would

be used for programs in FORTRAN and BASIC while a

substantially different set would be used for programs in

LISP.

' Behaviorally, method-finding behavior should be

identifiable by the occurence of the following types of

behavior in a protocol of work on a programming task:
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1. Statements of a general solution to the problem,

in terms which are not constructs or legal statements of
!

the programming language. Often, the statements are

preceeded by phrases such as "the way I would do this

would be "

2. Statements noting the similarity of this problem

to one solved previously.

3. Solutions to the problem stated in a language

other than the one in which the program will be finally

wirittsn, if no attempt is made to check or verify the

syntax of the lines of code. (This is meant to cover

coding in metalanguages or informal, design languages;

the reason for this particular distinction will be

explained in the discussion of the coding process.)

The presence of an identifiable, associated behavior is

by itself an insufficient basis for asserting that methods

play a particular role in the creation of programs or that

there is a, distinct method-finding process. A somewhat

stronger argument in favor of these hypotheses can be made

from the following considerations: The space of possible

programs is that of all possible statements or sequences of

statements. Since this space is extremely large,

constraints must exist which strongly limit the choice of

statements to be selected for addition to a program. The
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constraints must be ones which operate across long segments

of program, since statements written at one point in a

program can determine the content of statements several
I

hundred lines away. The problem statement cannot alone

supply them since it does not sufficiently closely determine

major characteristics of program structure, such as the

choice of algorithm. Therefore, some source of information

must exist which bridges between the problem statement and

the writing of individual lines of code. The notion of

method described here fills that role.

A Model of the Codinq Process

At this point, the internal operation of the processes that

make up the theory has only been presented in outline form.

For the sufficiency of the theory to be evaluated, the

structure of these processes must be more precisely

specified. Resource constraints have so far permitted such

a model to be constructed for only one of the processes,

coding; details of this model are available in Brooks (Note

1); only the more salient aspects of this model will be

presented here. As with the theory in which it is embedded,

the goal in creation of the model is to provide a set of

mechanisms which are sufficient to explain certain aspects

of coding behavior. In particular, the model is intended to

explicate two characterisics of coding behavior:
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1. The order in which code is generated in a

protocol, including the making of modifications and

corrections.

2. The change, a^ the program writing progresses,

of the programmer's knowledge about the program, as

evidenced in the statements in the protocol.

The model is cast in the form of a computer program.

Input" to the model is considered to be a the method that

the programmer has found for a section of code. As the

model operates, the methods are converted into actual code,

and the contents of certain data structures, which represent

the programmer s knowledge about the program, are updated as

this knowledge changes.
I

An Observational Basis for Constructing the Model

As is consistent with the general bias of this work

towards describing and explicating individual behavior, the

aim in constructing this model was to produce a structure

that could explain individual episodes of coding behavior.

Rather than producing such a structure by first generating
lan abstract model and then modifying it to fit individual

episodes, an alternative strategy was followed. In it, the

abstractions were made from a model that was initially

constructed to fit an actual body of observed coding
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behavior. A description of these observations is a useful

starting point for explication of the model.

The observations consisted of a set of 23 protocols by
a single subject. The problems for which the protocols were

collected were a set of 23 short problems, all of which

involved manipulations on an array of 100 numbers, called L.

A second array, called M, could be used to indicate

information about which manipulations had been performed.

^An example of one of the problems is:

Find all the odd numbers in L and move them to the

beginning of the array. Set the corresponding positions

in M to 1.

While working on these problems, the programmer could

use both paper and pencil and a 10 character-per-second,

hard-copy computer terminal connected to an interactive

computing system that the subject had used frequently before

participating in the study. Alternation between the two

could be made as frequently as the subject desired. His

behavior while working was recorded using a throat

microphone and a video tape recorder with the camera placed

behind the subject.

For each program, the programmer was given a printed

description of the problem to be programmed and the name of

a file (dataset) on the computing system which contained
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code to read in the values of L and to zero M. He was

instructed to write the program in the FORTRAN language and

then to debug and run it. While performing these tasks, he

was asked to "talk aloud" about what he was doing.

The subject employed in this study was a graduate

student in computer science with more than 10 years of

programming experience. This included writing several

interpreters and assemblers as well as extensive experience

in more than 10 programming languages. Additionally, he had

three years experience teaching introductory programming

courses.

Transcriptions of the tape recordings together with the

subject's notes and the print-out from the terminal provided

the basic data on the subject's behavior. The audio content

of the tapes was transcribed and annotated, using the video

information, to indicate the correspondence between writing,

or typing and the spoken material. A brief example of one

of these protocols is:

S35: Then we'll say switch it with the next

odd.

S36 Put a zero here.

A37 Changes NEXT0DD=1 to N£XTODD=0.

S38 And we'll say K equals L sub I.

A39 Writes K=L(I)

Lines beginning with "A" indicate annotation of an action.
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The breaking of spoken information into lines in the

transcription was made according to two rules: First, a

bfeak was made whenever the subject paused in speaking, even

if it was in the middle of a word or phrase. Second, if

speech was relatively continuous, breaks were made between

major clauses. The segmentation into lines in the protocol

was, thus, intended to give a rough indication of the

conceptual units used by the subject. x

\

Since these 23 protocols were used to construct the \

model, a more precise characterization of them in^

comparisioh with other programming behavior is use*ful
) /

background for the model. One dimension along which such a

characterization can be made is time, and timings were

obtained using the counter on the video tape recorder.

(Absolute accuracy varied depending on the amount of tape on

the reel, but relative accuracy was .3%, or an absolute

error of 5 seconds in a 25 minute protocol.) These figures

are summarized in Table 1:

Mean Standard Dev. Range

Writing time. 25.9 18.0 3.8-66.8

Debugging time, (minutes) 15.0 18.1 0.8-78.9

Ratio of times. 3.13 2.81 0.7-12.7

Lines of code written. 24.4 16.96 9-74

Correlations

Lines written x writing time r=.69 p=.0005
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Lines written x debugging time r=.75 p=.0005

Table 1

Writing time was defined to end and debugging time to

begin when the subject first attempted to compile the

program. The ratio of times refers to the ratio of writing

time to debugging time for each problem.

In viewing these statistics, two items are noteworthy.

The first is that even though the problems all involve only

manipulations on one array, they differ widely in

difficulty, with a 1 to 26 ratio between total time for the

easiest and hardest problems. This finding is comparable to

that found in the Grant and Sackman (1967) study.

Second, in these programs, writing time exceeds

debugging time by as high as a 12 to 1 ratio. This is in

extreme contrast to the results of other investigators

(Youngs, 1974; Rubey, 1968) in v/hich debugging time almost

invariably exceeds writing time, occasionally by as much as

4 to 1. The source of this difference is hard to pinpoint,

buti it may lie in the small size of the problems, the

availability of "canned" code for input and output, or in

the programmer s claim to use the techniques of "structured"

programmming cited earlier.

Further insight into the nature of this data may be

obtained by classifying the statements in the protocol
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according to the scheme specified by the theory. The
following tables gives the result of this classification:
Process Occurence/Problem Time spent (sees.) %time
Understanding 1.39 101.4 6.9
Method-finding 1.19 313.4 21.2

. 1 87 1060.5 71.9
Coding 1.0/

The Cccurence/Problem column indicates the mean number

of times each process occurred per problem. The Time spent
column indicates the mean total time spent on that process

in each problem, while %Time is the percentage of total
writing time accounted for per problem.

' Note that both method-finding and coding occur only

about twice per problem, and that coding accounts for more
than two-thirds of the time spent. Using this information,

a characterization of these problems is that they are easy

to understand and that it is easy to find a solution method
for them, but implementation of the solution is often quite
difficult.

Architecture of the Model

The essential architecture of the model is adopted from

the general theory of human problem solving of Newell and
Simon (1972). Their theory specifies a short-term memory
(STM) with a fixed, small capacity (less than 30?) of chunks
or symbols, and a long-term memory (LTM) of large or
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infinite capacity. Each symbol in STM "can designate an
entire structure of arbitrary size and complexity in LTM "

(Newell and SimOn, 1972; p.795). Access times for STM are

asserted to be quite short, on the order of a tenth of a

second, while those for LTM are on the order of several

seconds. (Readers are refered to the original reference for

arguments in favor of these sizes and capacities.)

Additionally, problem-solvers may make use of external

memories (EMs) such as chalk boards, paper and pencil, etc.

Capacities and characterizations of EMs will vary, but all
will be dependent on the presence of appropriate access

information in STM or LTM.

problem-solving behavior in the theory is controlled by
a production system. A producton system consists of a set

of pairs of conditions and actions to be performed when the

conditions are met. An appropriate resolution principle is
employed to insure that only one set of actions is taken at
a time. Executing the actions results in some change in the

state of the data that are checked by the conditions, so
that as the system operates, different sets of conditions

are met and different actions are invoked.

In the Newell &Simon theory, the production system is

considered to be part of LTM. The data for the conditions
are the contents of STM. The theory further specifies that

the production system is the only internal control mechanism
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for problem-solving behavior; an extensive defence of the

psychological suitability of this structure for modeling

human behavior is given in Newell & Simon (1972;p.804)..

In the particular implementation of this theory used

for this model of coding, the STM is presumed to consist of

a fixed number of ordered slots. When new elements are

introduced as the result of production actions, they are

placed into the first slot, and each of the other elements

is moved down one slot; the element that was previously in

the last slot is lost off the end. In addition to adding

new elements, the contents of STM may be altered by two

other types of production actions: modification of elements

already in STM, and moving elements into the.first slot of

STM that are already in some other slot. Brooks (Note 1)

discusses the memory phenomena that are realizeable with

such a structure, as well as the size requirements for the

STM.

The production system used in the model is written in a

formalism that is a variant of the PSG system (Newell &

McDermott, 1975). In this variant, the invoking conditions

are always tested in a fixed order, and the first production

whose conditions are met is executed. The conditions are

specifications of elements in the STM that are described in

a pattern language. This pattern language permits the

specification of elements in terms of their general form, as
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well as allowing the conjunction, disjunction, and absence

of elements to serve as part of the invoking conditions.

An example of the kind of rule that can be written in

this language is:

Conditions:

1. PLAN-ELEMENT (IF *REST*)

2. OLD-PLAN-ELEMENT (LOOP-THROUGH *ANY*)

Actions:

1. Remove the item matching condition #2.

2. Add GOAL TEST *REST* To STM.

3. Rehearse the item matching condition #1.

The *REST* and *ANY* tokens are patterns which match,

respectively, the rest of an item and any single token in an

item. Thus, the first condition would match either

PLAN-ELEMENT (IF ODD-NUMBER) or PLAN-ELEMENT ( IF GREATER

SIZE, CURRENT SIZE).

As in the general theory, the production system is

contained in LTM. In addition, LTM contains another

structure called MEANINGS which is used to contain

information about quantities and data structures used in a

program for which code is being written. The reason for

requiring a separate structure for this information is that

the information of this kind is used over too long a period

to reasonably assume that it is kept in STM. Assuming it to

be stored in the production system would require the
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specitication of mechanisms for allowing the production

system to modify itself as information about the program

being written changed. In the absence of such mechanisms, a

separate LTM structure has been used in the model with

expectation of eventually incorporating it into the

production system. MEANINGS is assuin'ed to have an

associative structure in which a quantity or structure is

accessed by giving enough of its attributes to identify it

uniquely. Thus, a variable may be accessed by specifying

that it is being used to keep track of elapsed time and that

type, real, without specifying that its name is

ETIME. The particular set of attributes used will vary from

subject to subject and problem to problem. Information is

entered into MEANINGS and retrieved from it only by actions

of the production system.

In addition to the STM and LTM memories, the model

makes use of an "external memory" (EM) called CODE, which

represents the information that the programmer has "already

written on paper or typed qn a terminal. The basis for

proposing such a structure is to represent the information

that a programmer obtains from re-reading code that he has'

already written. Again, as in the case of MEANINGS, access

to CODE is only via actions of the production system which

adds new code to it and retrieves code that has already been

written by copying information about it back into STM. Note
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that this maans that inforination can only be retrieved from

CODE if the contents of STM causes the necessary production

rules to be used. . In one sense, CODE contains the "output"

of the model, since it is the receptacle for the code that

the model generates.

Figure 1 indicates the overall structure of the model

- insert Figure 1 here -

Operation of the Model

As was discussed earlier, the action performed by the

model is to take parts of a method and to convert them, via

the symbolic execution process, into actual programming

language statements. The production system, as center of

control for the model, is responsible for carrying out the

symbolic execution cycle. In particular, it must contain

rules for selecting, on the basis of the method and the

effects of previous code, the next piece of code to write

and, once this code is written, it must assign an effect or

result to the piece of code. The specific behavior of the

model is, thus, entirely determined by the particular rules

that make up the production system.

In generating the model, production rules were written

for a set of 4 segments of coding protocol, each selected

irom a different problem in the set of 23 problems described
previously. (The criteria used for selection are described
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in Brooks - Note 1). The number of lines of protocol in

each segment and the number of lines of FORTRAN that were

written by the subject in each segment are given in the

first two columns of Table 2.

-insert Table 2 about here-

For each of these segments, the model was presumed to

be initialized by placing the method, expressed in a

list-structured notation, into the STM. Figure 2 shows one

of these methods expressed both in natural language and in

system notation form;

- insert Figure 2 about here -

A set of rules was constructed which, when applied according

to the production system convention, progressively add new

code to CODE and update the contents of STM and MEANINGS as

specified by the symbolic execution cycles. The set

contained a total of 73 production rules for all 4 segments.

Before discussing the nature of these rules, it is

worth enquiring how well these rules did their job. Of the

46 lines of code in the written in the 4 segments, the model

generated all of them correctly, but 2 lines in one problem

were generated in a different order by the subject than by

the model. Since the rules were constructed from the

protocols, it is not surprising that they do a good job both

of generating the code in the same order as did the subject.

More interesting, however, are the figures shown in the
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third column of Table 2, which indicate the number of rule

applications necessary to generate code for each segment,
and the fourth column, which indicates the ratio between

lines of protocol and the number of rules. If the number of

lines of protocol are considered to be a rough measure of

the amount of cognitive processing done by the subject, then

the ratios indicate how well this corresponds to the amount

of processing done by the model. Only in one problem does

the ratio differ appreciably from 2 to 1, and this was the

only problem in which there was any difficulty in generating

the code. Since no explicit attempt was made to obtain this

correspondence while constructing the rules, it serves as an

independent indication of rule accuracy.

The 73 productions or rules used by the model can be

divided into 4 groups on the basis of function. The first

group consists of rules for overall control and goal

management. An example of the 8 rules in this group is

NEXT^PLAN-ELEMENT-1 which is responsible for getting the

next piece of a plan once the previous piece has been

completed. it states:

"If there is no PLAN-ELEMENT currently in STM, but

there is an OLD-PLAN-ELEMENT, then add the next element

of the plan to STM as a new PLAN-ELEMENT."
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The second group consists of rules for updating the

contents of the CODE EM. These rules all take some segment

of code that other productions have generated and use it to

add to or replace previously written code. An example of

this group, ADD-ON-CODE, can be stated as follows:

"If .there is any code in the STM to be ADDED-ON and

there is a pointer to the CODE EM and there is an

indicator of the last code added then add the code to

CODE, mark the code as WRITTEN-CODE in the STM, and

rehearse the pointer to the CODE EM."

The third group consists of the 57 rules which are

actually responsible for generating code by the symbolic

execution process. As such, they are the most substantive

part of the model. Two examples of these rules are

METHOD-ORDER-1 and GOAL-LOOP-THROUGH-1. The first of these

rules can be stated as:

"If part of the method is to order a list, then

begin by setting up a goal to loop through the list."

The second can be stated as:

"If the GOAL to loop through a list, then make this

the current goal, prepare code for a DO loop running the

length of the list, which is retrieved from MEANINGS, and

update MEANINGS with information about the loop, and the

index and the labels used in creating the DO statement.
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Place the effect of the code into STM."

In operation of the model, these rules would be applied

successively. After the second rule had been used, another

rule would be applied which would compare the effect of this

loop with the method step. On the basis of the difference,

other rules would be invoked which would complete the code

for the sorting operation.

Overview of the Rules

An interesting perspective on the rules in this class

can be obtained by looking at the comparative patterns of

us^ of the productions in all 3 classes. All the production

rules in the first two classes are used repeatedly in all 4

program segments; in fact; 5 of these rules account for just

over half (53.5%) of total rules utilization across all 4

segments. In the third group, on the other hand, only 9 of

the rules are used in more than one segment. In terms of

the structure of the model, this is, of course, an expected

state of affairs. In each segment, different code is being

created and different behavior is exhibited by the subject,

even though the same basic control cycle and structures are

being used. The model reflects this by having the rules

that actually create code be different for each segment.

In terms of evaluating the sufficiency of this

approach, the total number of rules that would be required
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to model all 23 problems is of interest. Using the methods

from 4 additional protocols, it was estimated that somewhere

between 4 and 10 new rules will have to be added to the

third group for each new production to be modeled, assuming
that no new productions are added in the first groups. On

this basis, somewhere between 110 and 230 productions will

be needed in the third group. Since the problems done here

tap only a small fraction of a programmer's knowledge, the

total number of rules necessary to represent all of a

programmer's knowledge must be on the order of of tens or

hundreds of thousands.

Is this magnitude reasonable? An argument can be

advanced that it is. First, becoming a good programmer
usually takes, in addition to formal training, several years

of practical experience in actually writing programs. The

learning that takes place at this time can be viewed either

as the acquisition.of a large body of diverse knowledge or

as learning to apply a limited body of knowledge in a

diverse range of situations. Whichever view is taken, the

length of time needed suggests that the total amount of

information to be acquired is quite large.

Another problem solving task which seems to depend on

the acquisition of a large body of information by the

problem solver is chess (DeGroot, 1965; Chase and Simon,

1973; Simon and Gilmartin, 1973). Like programming, it
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takes several years to learn to do well and does not require

special motor skills. Additionally, like programming, it

does not seem amenable to explanation in terms of some

small, closed set of mental primitives, such as the problem

space concept (Newll & Simon, 1972) unless these primitives

are defined at a very low, atomic level. Using a simulation

based on memory and eye movement studies. Chase & Simon

(1973) have estimated that a chess master can recognize some

31,000 basic or primitive piece configurations which can be

combined to represent an entire position. If programming

knowledge is viewed as being built up out of some sort of

analagous primitives or components, then the number of them

required should be of similar magnitude. If each rule is

considered to represent one such primitive or component,

then an estimate of a need for tens or hundreds of thousands

of such rules is a reasonable one.

Sufficiency of the Model

At the beginning of the article, several important

findings from research on programming were cited. The

remaining task is to demonstrate the sufficiency of the

model for explaining them.

One of. the more striking findings in the early work on

programming was the large inter-subject and inter-problem

difference. On naive grounds, one would certainly expect
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large differences between experienced and inexperienced
subjects, but not a large difference within subjects of the
same general background, intelligence levels, and

experience. Further, a programmer who was good at writing
one kind of program would be expected to do about as well at
other, similar programs. That both these expectations do
not hold ought to be one of the more important things that
this theory of programming behavior be capable of doing.

Both kinds of differences are, can, in fact, be handled
in the context of the theory and model presented here. if

programming behavior is seen as determined by rules, then

differences among individuals must lie in differences in the
rules they have available. These differences must, in turn,
result from differences in the training or experience of
each subject, since each rule encodes only a small piece of
knowledge, slight differences in such training or experience
may produce considerable differences in individual rules.
As an example, consider two programmers with identical

backgrounds except for which of two optional assignments
they did in one training course. One did the assignment
involving an odd-even test while the other did the one
involving a table look-up. when faced with a problem that
requires use of an odd-even test, one programmer will
already know how to write the test while the other will not.
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Not knowing how to write the test directly does not, of

course, mean that he will be totally unable to do the

problem. Instead, he will try and do it by an indirect

route. Say, he may remember if a number is odd, dividing it
by 2, dropping the fraction, and multiplying it by 2 will

yield a result differing from the original number by 1.

Using this fact, he may be able to apply several other rules

to eventually construct the test. Doing it this way will,

however, certainly take more time and will probably offer

more opportunity for a,mistake. This theory thus provides a

mechanism for explanation of relatively large behavioral

differences on the same problem across programmers with very
similar background and experiences.

A slight variation on this same mechanism also can be

used to understand how problems which appear very similar in

structure may, nevertheless, differ greatly in difficulty.

Consider the two problems, "find all the perfect squares in
an array" and "find all the odd numbers in an array." The

only difference in the programs to solve these problems lies

in the test performed on array elements. if, however, a

programmer is unaware how truncation on integer division can

be used to test for oddness, he will find the second problem

vastly more difficult than the first.

Viewing code generation as being accomplished by a
large body of independent coding rules can also serve as a
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basis for theories of both debugging difficulties and of

differences in types of errors across programming languages.
The starting point for such theories is the assumption that
many or most errors are caused by incorrect or inadequate

code generation rules, rather than by external distractions

or other random events. During the generation of the code,

these faulty rules introduce errors or "bugs" into the

program. For example, a rule may be insufficiently specific

in Its invoking conditions and cause a piece of code to get
written in a circumstance for which it is not appropriate.
If the effect which gets assigned to this code also does not
make the needed distinction, the program will not perform
properly.

This assumption leads to theories of debugging which
are based on the premise that the same basic knowledge and

procedures are used in both debugging code and in writing
It. It suggests that debugging is essentially a process of

generating code a second time and comparing it against the

original for discrepancies. Such a viewpoint may prove a
fruitful one. it leads, for example, to the explanation as
to why debugging may occasionally prove exceedingly time
consuming in terms of recreation of the original bug when
the code is being generated again. It also can be used to

explain the finding that have erroneous output available
'does not substantially reduce debugging time (Gould and

\
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Drongowski, ) on the basis that such information would play

only a minor role in this recreate and compare process.

The assumption also leads to theories about the

relationship between errors and programming language

features. Since the rules encode a programmer's knowledge

about the features of a programming language, the
j-

characteristics of these rules will determine under what

circumstances an error will be made. While these rules will

vary across individuals, rules for writing a given

programming language construct may share certain common

characteristics. For example, most programmer's rules for

writing a GOTO statement in FORTRAN may require that the

label, which is the GOTO destination, be paired with a

specific, intended computation before it is used. Such

common characteristics could also be common sources of

error, perhaps because they require information which could

be easily lost from STM. If this is the case, then

particular programming language features would lead to high

error rates across programmers. Explanations of this kind

may be particularly powerful because they offer the

possibility of evaluating potential new programming language

features by constructing or hypothesizing the kinds of rules

that are likeJy to govern their use.

The remaining behaviors to be brought within the

coverage of the model are those observed in connection with
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the work on new programming methodologies. The beneficial

effect of imposing a heirarchical cognitive organization is
a fairly direct consequence of assuming an STM with a

capacity pf a fixed number of units. Since the heirarchical

structuring would permit more information about the program
to be packed into each unit, fewer, separate units would be

needed, and the possibility of losing a unit, causing
errors, would be reduced.

In addition to providing a mechanism by which this

basic phenomenon can be produced, the model also can be used
to derive some related behaviors. Among the more striking
of these is a prediction of the conditions under which one

of the heirarchical organization techniques is likely to

succeed or fail. in "top-down" programming (YourdOn, 1975),

actual construction of the program follows the cognitive

organization. The programmer begins writing a program by
first specifying the top level of the heirarchy and then

successively specifying lower levels until the actual

programming code is reached. in terms of the theory this

corresponds to proceeding sequentially through

understanding, method-finding, and code-writing. Under what

conditions will the programmer be able to proceed in this

direct sequential fashion, without backtracking? This will
only be possible if the programmer always has at hand an

appropriate set of rules at each step. This will usually
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occur only if the problem is of a type that is very familiar

to the programmer and if the programming language is one

with which the programmer has considerable experience.

Hence, the model predicts that only under these conditions

can top-down programming be used successfully.

Research Methodology

A concluding comment on this theory concerns the plan

or course to be followed in doing research under it. As

mentioned earlier, the theory is a theory of specific

individual, rather than general behavior; and it focuses on

building models of the behavior of single individuals, as

was done here. The question remaining to be addressed

concerns the kinds of generalizations or broader conclusions

that can come out of building a set of such inividual

models. If such a set is built for the performance of the

same task by different individuals, a different set of rules

will, necessarily, be used for each model. The sets,

however, will show similarities across individuals. Some of

ttiese similarities will hold across all the individuals in

the set, while others will hold only for subgroups. The

course of work within this theory could be aimed at both

identifying such similarities and at establishing their

precursers in terms of the education and backgrounds of the

individuals involved. The theory thus offers a potential

for unified research into both individual aggregate

behavior.
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Footnotes

<1>. The name, "coding," has been chosen for this procedure

because "code" is the generic term used by programmers to

designate sequences of computer instructions written in a

programming language, regardless of whether these

instructions are part of a program, subroutine, function,
coroutine,or some other unit.
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Reference Notes

1. Brooks, R. A Model of Human Cognitive Behavior in

Writing Code for Computer Programs. Unpublished doctoral

dissertation. Psychology Dept., Carnegie-Mellon

University. 1975.

2. Newell, A. Personal communication. The elements of the

Newell theory that are used here are (1.) Development of

methods by heuristic search consisting of successive

functional elaboration in which functional specifications

invoke structures which, in turn, require further

functions, (2) Generation of code by a symbolic

execution process in which, first, code is laid down and

then consequences are generated from it. (3) Further

generation of code based on recognition process driven by

previously written code.
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1. Create a pointer to the next odd number, starting out at
the

I beginning of the array.
2. Loop through the array,
3. Test each element to see if it's odd. If it is.

Increment the pointer to the next odd.
Swap the element it points to with the element that was

j ust
found "to be odd, which was pointed to by the loop

index.
Set the corresponding element in M to one.

1. (CREATE (POINTER (NEXT ODD))(BEGINNING (LIST OF
NUMBERS)))

2. (LOOP-THROUGH (LIST OF NUMBERS))
3. (IF ((EVEN PARITY)

(ARRAY-ELEMENT (LIST OF NUMBERS)
' (VARIABLE (LOOP-INDEX))))

(GOTO^-LO'OP-END)
4. (BEGIN! (NOT-EVEN-PARITY))
5. (SWAP-AND-INCREMENT

((ARRAY-ELEMENT (LIST OF NUMBERS)(VARIABLE
(LOOP-INDEX)))

(ARRAY-ELEMENT (LIST OF NUMBERS)(POINTER (NEXT ODD))))
(POINTER (NEXT ODD))))

6. (SET (ARRAY-ELEMENT (AUXILLARY ARRAY) (POINTER (NEXT
ODD)))

7. (END! (NOT-EVEN-PARITY))
8. (END! (LOOP-THROUGH))

Figure 2

The top portion of the figure shows a method expressed
as English text.

The bottom portion shows the same method as it is
represented in the

model.



42

Problem Lines Cycles Ratio Code

#1 38 60 1.6 9

#2 47 65 1.4 10

#3 80 169 2.1 14

#4 89 110 1.2 13

Table 2
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