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Summary. In this paper we present a comprehensive approaelttonatic organization
and hybrid navigation dext databases. Aorganizing stage first builds @articular lattice
representation of the data, through text indexing followethttige clustering of the indexed
texts. The latticerepresentation, then, suppott® navigation stage of theystem, avisual
retrieval interface thatombines threemain retrieval strategiedrowsing, querying, and
bounding. Browsing and querying are used to search the retrieval space, bounding is used to
restrict it based othe information thatuisers have, oget during their interactionwith the
system. We showhat such a hybridparadigm permits higHlexibility in trading off
information exploration and retrievahd, in addition, has goaetrieval performance. We
compared information retrievalsing lattice-basedhybrid navigation with conventional
Boolean querying. The results of anexperiment conducted oriwo medium-sized
bibliographic databases showed that the performaniedtio€ retrievalwas comparable to or
better than Boolean retrieval.

1. Introduction

1.1 THE ORGANIZING/NAVIGATING PARADIGM

In most information retrieval systentbge user provides some descriptiontbé information
being sought, and the system retriedatabase items that match thescription.The query-
based paradigm has a long and predominant tradition in information retriev&ijsbergen,
1975; Salton & McGill, 1983): various models have beeoposed,e.g., boolean,vector
space (Salton & McGill1983), probabilistic (Turtle &Croft, 1991),some of whichhave
been incorporated into commercially availalgstems. However, one recently, another
approach to information retrievtiat explores a different assumptiorthat hunans seem to
prefer recognitiortasks to description tasks (Marchionini, 1992) - haseghiwidespread
acceptance. ktonsists oforganizing the information intsome sort of structure, anekting



the user navigatethrough it, therefore it is sometimesalled the organizing/navigating
paradigm (Bowman, Danzig, Manber, & Schwartz1994). Hypertexts (Nielsen,1990),
cluster browsers (Crouch, Crouch & Andreas, 1988)] object-oriented retrieval interfaces
(Lucarella, Parisotto & Zanzi, 1998an all beseen as variations of this basic theme. The
chief advantage of this kind of approach is flexibility. As the user may retrieve a document of
interest without specifying a query perfectly martially matchingsome description of the
document, this approaatoes notrequire prior knowledge abothe query language or the
content of the dathase, nor does fequire theuser tohave some specific goal in mind.
Therefore it is also suitable for casual users and for exploration of new domairchi@viini

& Shneidermann, 1988), twieaturesthat have become moesd more important with the
continuously growing amount of Internet accessible information resources.

However, the organizing/navigating paradigm also presents some serious limitations. One

problem is the construction of tiseipporting structureAlthough thepossibility of building

the structureautomaticallyhasbeen investigate@e.g., Thompson & Croft, 1989Maarek,

Berry & Kaiser, 1991; Savoy, 1993; Agosti, Melucci & Crestani, 1995), this often requires a
large amount of manualork aswell as thepossession of amitial set of index terms
representing each document (e.g., Frei & Jauslin, 1983; FrisSeu&ins,1989;Pedersen,
1993). Another, perhaps are important, imitation of navigationalapproaches igheir
retrieval ineffectiveness, even for databases of mausstThe difficulty of finding specific
information is related, ipart, tothe wellknown difficulty of orientation of theuser in the
information space, for whichsophisticated navigational aids have been develdpegl.,
Furnas,1986; Mackinlay,Robertson, & Card, 1991But thereseems to be deast two

other fundamentafjuestions to addres§he first is that theuser should begiven the
opportunity to locate the sought information without having to navigate thitbegtructure.

The second is that the organization of the information should be adapted to the gpecHic
needs and knowledge, while in most systems it is predefined and cannot be easily changed.

Thus, one of the major challengésr navigation system design is to fimew ways of
exploiting the flexibility of the basic approach while reducing the accompanying
disadvantages. Tattackthis problem, as weavill see in the nexsection, several hybrid
approaches have begroposedthat try to incorporate other knowledgsources and
interaction strategies into a conventional navigation system.

1.2 HYBRID NAVIGATIONAL APPROACHES

A great deal of theesearch on hybrithavigational approaches to informaticgtrieval has
concentrated on the combination of browsing and querging. typical choice is to maintain
different retrievalmethods in parallel, fornstance a hierarchicddrowsing systemand a



boolean query system (Maarek, Berry & Kaiser, 1991). In this case, the integrated system is,
in practice,like a switch wherebythe usermay select eithestrategy. Atighter form of
integration is achieved by cascading the strategies. Avell known approach ighat of
browsing through a term space to refthe queries to submit to eetrieval system operating

in a distinct document space (FreiJauslin, 1983; Pederset93). Alternatively, one can

use query prior tdorowsing. For instancd,ucarella(1993) presents a graph-basaglect

model inwhich browsing isapplied to pattern instancéisat have beeformerly extracted

from the database schemsing query-patterns. In this kind cdmbined schema the output

of the first module is used as an input to the next module to focus its search.

A more activeapproach is presented by Thompson and Qu#89), where several
knowledgesources,including browsing throughdocument association maps and cluster-
based searchesre combinedthrough a blackboard architecturéhe system provides
guidance as to whichction toperform next based on agvaluation of thesystem user
interaction. In particularbrowsing becomes available after tlmther search methodsave
failed to achieve acceptable results, and subject to the system's assessment of a user profile.

One practical major disadvantage of masthintegrated approachestizat theuser must
map different representations amesults, while the system has tomaintain different
structures. Amapproachthat helps overcome these problems is presentetianvorks of
Godin, Missaoui,and April (1993) and Agosti, Mlucci and Crestani (1995), where
browsing and query formulation can be combined to search a ueigjie¥al space including
both terms andlocuments. This is deep form of integration, becauiee two strategies
share the same data space and exchange their sesutfls. Asimilar integrated paradigm is
also adopted for networkedformation retrieval by mangystemsavailable on thénternet,
in which a basic navigational paradigm, such as Gopher (base@rarchical filestructure)
or WWW (based on hypertext), hdeen complementedith gateways to other retwal-
oriented tools working on a homogeneous information space. Veronica, for example, indexes
the file and menu names @opher serverd,YCOS indexesthe title, content andURL of
WWW documents.

The development dfiybrid strategiecanalso be seen as attempt tobias the search
towards the user needs. This is consistent with arguments that contextual sourceplapould
a larger role in information retrievébalton & Buckley, 1990) awell as in interfac&lesign
(Totterdel etal, 1990).This question hadeenaddressed in somecentworks aimed at
developinguser nodel basednavigationalaids. For instance, ithe system described by
Kaplan, Fenwickand Chen(1993), users'specific information needs and preferences are
explicitly taken into accourt via simple associative matricego help thenfind their way
through a browsable networknother example is theork of Lokuge and Ishizaki1995),



where the authors advocate tiee of dearning mechanism to direct the seat@ivards the
information space regions chosen by the user in past interactions.

Adding query-based search mechanisms and introdusiegnformation into link-based
search areseen, therefore, as two mary meandor building more general aneffective
navigation systems. Our approach, described in the next section, shares the same perspective.

1.3 OUR APPROACH

The systemthat wepresent consists of twmain sages.The first stage is responsible for
building alattice representation of texdatabases. Given ampollection of texts, we first
automatically extract a set of indices representing each text; then we build a parétutank
of clustered texts the Galois lattice of thetext-index relation- characterizing thavhole
database. The resulting structsigoportsthe second stage ajur system, aisual interface
for exploring andretrieving the information contained in thedtice representation. In this
paper the major emphasis will be on the latter stage, named ULYSSES.

ULYSSES is based on a hybrithvigational paradigm thatombines thetwo main
interaction methodseen abovenamely browsing and querying, and a thirdinteraction
method, based dmounding Bounding,like organizing/browsing anduerying, is ageneral
search technique to find the sought elements of a set without exhaustively enunaériing
elements. It is based ahe utilization of the availablenowledge abouthe problem and
works towards progressivehgducing the original set into one or smaflebsetauntil their
elements can be easily evaluated. Althotlg central idea obounding is athe heart of
many search algorithms developedsimch diverse fields as operations reseaattificial
intelligence, and dynamic programming (e.g., Balas, 1968; Mitchell, 1982; Ki9&4), it
has been little explored in the navigational retrieval context. We have abplieding to the
structure beingised toretrieve information, withthe aim of complementing the other two
main interactiorstrategies. In our approach, browsemgd queryingare used to search the
current retrieval space bfocusing on some regions of ityhile bounding may be
incrementallyused torestrict the current retrievapace, based odtme knowledge about the
goal or the domain that the user has or learns from the system feetihadhkree interaction
modes work on the same retrieval space, using a single representation of results; therefore, as
will be seen more fully later, thegan be combined inarious ways bythe user to form
multiple retrieval strategy interaction sequences.

To summarize, our approach presents three main features:

» The construction of the network supporting information retrieval is fully automatic, and it
does notrequire any preconstructed knowledgeuctures, oany unrealistiaeliance on
the availability of a set of index terms.



* The retrieval interfacerovides a noveinteraction modgi.e., bounding)that facilitates
the exploitation of personalizdchowledge intothe searchprocess.The concern is the
same as thaxpressed by Kaplan, Fenwiekd Chen (1993) and Lokuge alshizaki
(1995), but rather than recommending to users the best paths through an underlying fixed
network, ULYSSES provides users with the ability to restrict the network itself.

 ULYSSES takes the multiple interaction paradignme stepfurther, for it combines
browsing, queryingand boundingnto a single searciramework. As a result, users
may dynamicallychoose a hybrid search stratetipat best reflects theigoals, their
domainknowledge,and theresults ofthe interaction. The advantages include greater
flexibility - the systemmay beused for aspectrum oftasks ranging fromcasual
inspection to subject searching - and good retrieval capabilities.

We have to emphasize that using Galoisclestior supporting browsingetrieval is not a
new idea (Godin et al, 1986; Godin et al, 1989; Godin et al, 1993). This research takes a step
forward, extending previous work in many significant wallse main enhancements are the
introduction of the bound facility and the integration of this and several other fessiules,
such asautomaticindexing, fisheye view browser foattice, anduse of thesaurusnto a
basic lattice framework.

A major part of this papeis, then, anempirical evaluation thasupports our previous
claim that the system has good retrieval capabilities. We report the results of an experiment on
subject searching in two reasonably-sized databases, where our systaanedofavourably
with a conventional Boolean retrieval system. In the next two sections we dessmibstage
of our system in detail; we start with the construction of the supporting network.

2. Building lattice representations of text databases

2.1 AUTOMATIC TEXT INDEXING

The first task for building a global representation ¢&x database is to identify the content

of each text. Basically, there are two kinds of approachakeli\l-basedapproachpatural
language processing oraghine learning techniqués.g., Sowa,1984; Srihari &Burhans,

1994; Baudin, Pell & Kedar, 1994) can be used to build or refine an internal representation of
eachtext. Although most of these methodan producedeep conceptuaindices,they can

only work in restricted environments and usually require extensive knowledge about the
semantics of the applicatiaomain. Analternative approach to content extractibat is
domain-independent, knowledge-free, and mostly effective is adopted, with some variants, in



most information retrieval systems. Our indexing procedure is inspired by the latter approach.
It consists of the following steps.

1. Text segmentatiorOur system first identifieghe individualwords occurring in atext
collection, ignoring punctuation and case.

2. Word stemmingWe reducesachword to word-stem formThis is done by using a very
largetrie-structured morphological lexicdior English (Karp etl, 1992),that contains the
standard inflectiongor nouns (singular, plural, singular genitivelural genitive),verbs
(infinitive, third person singular, past tense, ppatticiple, progressivéorm), adjectives
(base, comparative, superlative).

3. Stop wording We use a stoflist to deletefrom the texts the(root) wordsthat are
insufficiently specific to represemontent.Our stop list, included in theCACM dataset,
contains 428 common functiomords, such athe, of, this, onetc. and someerbs,e.g.,
have, can, indicateetc.

4. Word weighting For eachdocument, wederive a measure of thesefulness ofeach
remainingword for indexing purposes.The goal is to identifywords that characterize the
document to which they asessignedwhile also discriminating it fronthe remainder of the
collection. In fact, most othe weightingfunctionsthat have beeproposedtend to favor
terms relatively frequent in thédocument,relatively rareoutside ofthe document. To
compute the weight of term k in document jfviior a collection of ndocuments we use the
following function, which has an information theory basis (Salton and McGill,1983):

Wik = FREQk SIGNAL,

whereFREQy is the frequency of term k in document i,

SIGNAL, = log,(TOTFREQ,) - NOISE, , and
N FRE TOTFRE

NOISE, = § Qi log, %
4 TOTFREQ, FREQ,

5. Word selectionFor each document wselect as indicethose words whoseeight value
is one standard deviation above the mean; i.e., such that W+ o; , where w; represents

the mearand gj the standard deviation dhe distribution of W values within document i.
This is a classical threshokthat has already beerused forindex selection by another
automaticindexing system producing a different type of indices (Maarek, BerKa&er,
1991). Of courserestricting the index set bgome heuristic thresholdmay affect the



subsequentetrieval process; however, it should lbeted thatthis is probably not aeal
limitation, for it hasbeen often remarked thatrking with alarger set of indicesloes not
necessarily improve retrieval performance (e.g., Voorhes, 1994; Salton, 1989).

This indexing method combines simple and welbwn linguistic and statisticatoncepts,
nevertheless it is sufficient to accomplisir goal,i.e., assigning toeach document an
informative but restricted set of indices suitabide the subsequent processes of stir
formation and visualization. We must also emphattiaé the basic method could be easily
extended to incorporate more advanced features without harming its generality and efficiency:
for instance, wecould add vocabulary normalizaticols such as synonyrist and
thesaurus associations, or usdjacentwords to form term-phrases (Maarek, Berry &
Kaiser, 1991; Chen, $i, Orwig, Hoopes & Nunamaker, 1994). e otherhand we
shouldnote that there isomeevidencethat, in many practicakituations,the use of more
elaboratesystemshan single-wordterm extractiordid not result in significant performance
improvement (Salton, 1989).

After the system hasletermined a set of indices describeachtext, it builds a clster
network characterizing the whole database. This issue is discussed in the next section.

2.2 LATTICE CONCEPTUAL CLUSTERING OF INDEXED TEXTS

Our approach idased on a clustering structwalled concep{or Galois) latce. Given a
binary relation between a set of documents and a sé&trofs, whether aomatically or
manually built, the Galoitattice is aparticular set otlusters, in whickeachclass is gair,
composed of a subset of documetidy, called extent, and a subset tdrms(T), called

intent. Each pair (D,T) must be a complete pair, meaning that T must contahmogesterms
shared by all the documents in D, and, similarly, the documents in D must be precisely those
sharing all the terms in T. The setpdirscan then berdered by applyinghe standard set
inclusion relation to the set of terrf@r, dually, tothe set ofdocuments}hat describeeach

pair. The resultingorderedset, usually represented by aabsediagram(i.e., a dagram in

which there is an edge between two nodes if and only ifdneyomparable and there is no
other intermediate cluster in the lattice), turns out to be a lattice (Davey & Priestley, 1990). To
illustrate, considethe simple database of Table 1, containing mineuments described by
nine index terms. The corresponding Galois lattice is shown in Figure 1.

Given the definition of Galois lattices, we addressdéioe problem of theirautomatic
determination. We iplemented in asystemnamed GALOIS an algorithm that builds the
lattice incrementally, where each update takae proportional to the number of documents
to be clustered. We also studim® space complexity dbalois lattices, and founeimpirical
and theoretical evidence that, when the number of index terms per docutneabhded, the
size of thelattice grows Inearly with respect tothe number ofdocuments. Adetailed



explanation ofGalois lattices, oftheir complexity and of the construction algorithm is
contained in (Carpineto &Romano, 1996a); inhe same paper we descrilzdso a
generalization of Galois lattices that can take into account semantic informaticthetems
describing the documents.

A Galois lattice presentsnany useful propertieBr supportinginformation retrieval. In
particular, compared to the statistical clustering methods that have been predomsetaly
information retrievale.g., Willet, 1988; Crouch, Crouch & Andreas, 1989;ddrek, Berry
& Kaiser, 1991% this approach presentiwo mainfeatures.The first is that each cluster is
described by an intensionébr conceptual)description, rather than by justhe set of
documents covered by the cluster; the second is the possessiolearf semantics bwyhich
to characterize thevhole structure in terms ofhe documentdescription. The retrieval
interface that we describe in the next section is largely based on these properties.

TABLE 1

FIGURE 1

3. Lattice-based hybrid navigation

To enable the interaction between tleer andhe lattice wehave implemented a prototype
visual interface on top of GALOIS, named ULYSSHSconsists of foumain components,
namely one visualization module and three interaatimalules, for browsing, querying, and
bounding. In the next subsections we describe each facility in detaishamd howthey can
be combined to form hybrid search strategies.

3.1. VISUALIZATION

The first problem inthe interfacedesign isthe visualization of the retrievalpace. In
general, the lattice representation of a document collection is too large to ficoeea even
for small databases. Tweisualize largestructures,one simple approach is to allow for
multiple views, such agocal and globalviews (e.g., Crouch, Crouch & Andread],989;



Wille, 1989), but this hasthe disadvantage that theser mustmap different graphical
representations. Toake the transitioirom local to global information moremooth and
continuous, severfbcus+contextechniques have been recently developed (e.g., Mackinlay,
Robertson, & Card, 1991; Lamping, Rao, & PirollD95), the best known of which is
probablythe generalized $heye view(Furnas,1986; Sarkar &rown, 1994). ULYSSES
employs a variant of this latter approach. In the basic fisheye view approach there is a current
focus of interest in the graph to be displayed thedinformation isshown invarying levels

of detaildepending on the distandem the focus. In ULYSSEShese properties have a
simple and natural counterpart. The curfecus is represented ltlge lastnodeselected by

the user through one dhe three interactiomodes, awill be better explainedelow. The
distance between a given node and the current focus is the length of the phthtéstween
thetwo nodes. As fothe levels ofdetail, we have definefbur types of displaynvolving
different styles, sizes, fontand types of information: we start withe focus node(large
size, large font, boldull information) and progressively redutiee node sizethe font size

and the amount of informatiaisplayed,until we reach théessdetailednodes, painted as
small boxes containing only the number of associated documents.

The main difference betweewur approach and a basiitsh eye view approach is that
ULYSSES does not have to display the whole structure. As the lattice is ugefbrimation
retrieval, one can arguhat it is probably not so important to sélee entire lattice while
focusing on some particular node. Indeed, the information relative to global paraswathrs,
as the lattice size or its full topology, may be of little help in the retrgneadess. Rather, the
user will want to focus on sonselectechode andorowse throughhe nodes inthe adjacent
region, containing similarinformation. Therefore, in tradingpff focus and context
information ULYSSES emphasizése former;only a part ofthe regionaroundthe focus is
usually displayed, subject to two parameters controlling its size and topology.

The detailed working of the visualization module of ULYSSES iddhHewing. There are
two proceduresthe first computeghe graph todraw, the second draws it. Toompute the
graph, one level at a time generated; thérst level isjust the focus nodethe n-th level is
obtained by the (n-1)th level considering for each nodbdreveln-1 all the adjacenhodes
that havenot already beegenerated. Before adding anotherel to thegraph todraw, the
algorithm checkshat the size of theesulting graph does nekceed aonstant.The size is
computed by a weighted sum of all the nodes ingtlagph, wherdghe weight of eaciode is
proportional to itssize. Also,while computing eackevel the algorithnchecks whether the
number of nodeadjacent to eackingle node to expand exceeds anotwgrstant, in which
case they are not included in the sehofles to draw (insteathe node to expand will be
simply labelledwith the number of itsuccessors when drawittige graph).Once we have
decided which nodes to draw using which format (in practice leaehis assigned a format,
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as explained above), the actual layout is produced by a standard graphicalaaitaide on

the Symbolics Lisp Machine. Althoughe routinedoes not producparticularly informative
layouts (for instance it allows the user to control sizing but not positionititge aflements of

the graph), it is verysimple and efficient taise. Inorder to produce a mor@esthetic and
fisheye-oriented layout we should resort to more sophisticated algofitinrpainting graphs
(Eades & Tamassia, 1989), or for manipulating the attributes controlling the graphical layouts
(Sarkar & Brown, 1994).

In Figure 2 we show an example screen of the lattice in Figuf@éel currenfocus is the
node: DIAGNOSIS, EXPERT-SYSTEMS KNOWLEDGE-BASED-SYSTEMS MEDICINE. The two
constants have been set respectively to 30 and 5; with this choicettggvemalllattice at
hand, ULYSSES displays the whole retrieval space.

FIGURE 2

3.2. BROWSING

ULYSSES’ browsing mode takes advantagehef latticeproperties. Firstthe fact that each
node can be seen as a query (the intent) with its associated set of documents (the extent) may
improve the retrieval of specific information. In particular, thmay facilitate theecognition
of useful nodes duringrowsing, as well agmproving the efficiency of the query-cluster
matching process for automatic search. Another useful propehgtithe latticestructure, in
which there are manyaths to aparticular node, facilitates recoveryfrom bad decision
making while traversinghe hierarchy in search afocuments, as opposed tize strict
hierarchicalstructures used in most cluster-based Isera, inwhich eachclass hagxactly
one parentThird, the latticeallows gradualenlargement or refinement of query. More
precisely, following edges departing upward (downward) from a query prodlicamimal
conjunctive refinements (enlargements) of doery with respect téhat particular database
(Godin, Gecsei & Pichet, 1989).

In practice, to navigate through the lattice ULYSSES allows the user to selenbdenypn
the current screen by direct graphical manipulation (Shneiderman, 1987), i.e. by pointing and
clicking with the mouse on the desired node. The selection of a certain node makes it the new
focus; as a consequendtke retrieval space i®drawn aroundhe node selectedThe user
may also see the documents associatedamgimode on the current screen, without changing
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the current focus.

3.3. QUERYING

The background menu dJLYSSES allowsselection of the othetwo basic interaction
modes: querying and bounding. A new query can be formulatidoinvays:either theuser
specifies the new terms from scratch, or the user modifies the current query (i.e., the intent of
the currentfocus). Inthe latter case theser can remove aerm, add a new term, or
specialise/generalise a temsingthe information contained in thbdsaurusThe result of a
query is the node of the lattice (whose intene)al to thequery, ifthere isany, orone or
more nodes that partially match the query. The padtally matchingqueriesare determined
in the following way. The algorithmfirst computesthe most generahodesthat are more
specific than thejuery. If none isfound, it findsthe most specific more generabdes. If
neither case occurs, which means that all the nodes in the lattice are incomparalidgéoythe
(according to thdattice ordering relation)the algorithmseekssimilar nodes. It findsall the
nodesthat have the maximum nio@r of terms in common witthe query and then returns
the most general othem. Thanks tdhe intensional description of theodes and tdheir
ordering, the algorithm isvery efficient: it requiresmatching thequery against dimited
number of nodes ithe lattice, andeach matchingisually involves short conjunctions of
terms.

The query mode allows the user to make large jumps to regidnterdst;also, itcan be
seen as a way texplore the relationships between thmperties ofthe dataset. An
alternative approach to query-driven exploratiogsit does notequire the construction of the
entire set of relationships iadvance, as in ULYSSES, described by Williamson and
Shneiderman (1992) arhlberg and Shneidermai994). Oneinteresting thing about this
approach is that it is particularly suitable for ordinal attributes, while ordinal attricanest
be easily dealt with by ULYSSES (see Wille (1992)). Therefore it could be emplo¥idrto
the documents in thdnitial database -using suchinformation as year and length of
documents - prior to the application of ULYSSES.

3.4. BOUNDING

Bounding allows users to change the space from which they are retrieving information during
the search. The user may apply constraints with which the sought dociraent® comply

and the retrieval space ®unded accordinglyThe constraintsare expressed asequality
relations between the description of admissible clusters and a particular conjuntcgomsof

For the sake of illustration we will assuntat suchconjunction of terms coincides with the
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intent of some node in the lattice, but we have to emphtsrét can beany conjunction of
terms. Lett be an admissible cluster aodbe a particular cluster of the seasgace. In our
framework there are four possible kinds of constramts:ci, ¢ < C1, € =>C3, C =< C3.
These constraints have anmediate graphical interpretation farms of the partitions they
induce over the search space, as shown in Table 2; theythaushiteregions to be pruned
away from the space, thus restricting the search to the gray regions. When the search space is
a Galois lattice, the four constraints seem to express also interesting propedtteesiusdters
of documents fronthe point of view of their informationretrieval performance. Two
constraints, namely < c;andc -< c1, seem to be particularlyseful, while the other two
have less obviuos interpretations (see Carpineto and Rofh884). The constraint < c;
can be used to restrict the search to the documents hayitigg constraint - < ¢; can be
used to prune away from the search space all the documents tyavirgiould be noted that
the application of @onstraint, inaddition to pruning someodes fromthe lattice, may also
change the extent of the remaining admissiieles. Inparticular, the application of a
constraint of type >c; or ¢ =< c; causes not onlthe elimination of thaodesthatare,

respectively, not above or belaw, but it alsoeliminates thedlocuments containing; from
the extent of the remaining nodes.

TABLE 2

Of course this is only an abstract definitiontiod bound frameworkThe nextstep is to
find an algorithmwhich, given a set oftonstraints, isable to incrementallyepresent and
update the constrainespace. In fact, walevelopedsuch analgorithm and described it
elsewhere (Carpineto & Romano, 1994). For the scope of this paper, suffice itthatsine
algorithm employs a particular representation tieé constrained spacesalized by two
boundary setspne containing thenost specificelements of the spacg.e., the lower
boundary set) and the other containing the most general elements of thé.spaite upper
boundary set). This representation is compact and supports efficient update (i.e., proportional
to the square of the cardinality of the boundary sets). As more and more conateaadsled
the admissible spacghrinks, and thetwo boundary setsnay eventually converge to the
targetclass. Itmay also bethe case that thasserted constraints turn out to be too strong
given a particular lattice, thus causing the admissible space to contd@wta@mcuments, or
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even making iempty. Torecover from this situatio)LYSSES allowsthe user to rafct
previously specified constraints.

Bounding the search space has of course a diffectt onbrowsingandquerying, in that
it only allows the user to jump to nodes that are within the admiggigien, but it may also
change the space visualization. This happens whettev@urrenfocus, as ameffect of the
new constraint(s), is no longer admissible; in this case, ULY38&&s thenode(s) of the
nearest boundary set the new focus.

Before closing this section, it is useful ¢tarify the relation betweemuerying and
bounding, and their relative scopes, in the search process. Iimtasttttionmodesthe user
provides some information abothe goal, and thesystem focuseshe search on some
relevant space region; but there am® main differences.The first is that the description
languages aresually different, and therefore some informatmay beexpressed in one
mode but not in the other. For instance, by applying the constraink c; we can specify
the target nodes using negatednms, which is forbidden ithe strictly conjunctive language
of ULYSSES’ query mode. The second difference is that the two strategeadvantage in
different ways ofthe same piece dhformation. Suppos¢hat usersare interested in the
documents containingy. Users may query the system by questiomingor they may apply
the constraint < c;. In both casethe likely result is a jump teome nodesontainingcy,
but in the boundingmode the change wilhlso affect laterretrieval. The advantage of
bounding is that the whole search becomes more foctimedjsadvantage is that theer is
no longerable to retrieve relevardocuments in the regiothat has been prunedcaway.
Therefore bounding is more usefuhenthe goal isvery precise owhenthe userbecomes
more aware of the terminology/structure of th&tabaselater on during the search. An
additional advantage of bounding in ULYSSES is that documents violating the constraints are
removed from all the nodes in which thase contained, thuseducing thdime necessary to
scan the documents associated with each admissible node.

In the nextsection, weillustrate by a simple interactiosession howthe different
strategies of ULYSSES can complement each other.

3.5 FORMING HYBRID RETRIEVAL STRATEGIES

At this point, it should beclear that atany giventime ULYSSES is in acertain state,
characterized by a current retrieval space and by a focus vtithineachstate,the user may
select an operatdbrowsing, query, or boundinggnd applyit. As a result, ULYSSES
makes a transition to r@ew state, possiblgharacterized by aew retrieval space and/or a
new focus. At this pointhe userevaluates th@ew statefor document retrieval, aniterates
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this basic cycle. Irfact, such arapproachhas many similarities withthe GOMSuser's
cognitive model described byard, Moran & Newell (1983), and withthe theory ofuser
activity presented by Norman (1986). Therefeaeh interactiosequence may bsomposed

of several operators, connected in various orders. For instancemageisitially bound the
search space exploiting théinowledge abouthe goal, then querythe system tolocate a
region of interest within the bounded space, then browse through the region; alsajrat any
during this process,they may further boundthe retrieval spacéased onthe feedback
obtained during the interaction.

As an example of theser forming hybridretrieval strategies, considehe following
scenario. Suppose that the user wants totfieddocuments contained in tladtice database
in Figure 1that concerrnapplications ofexpert systems to new domainsThis kind of
request cannot be easily translated into a query matching the given indexing langtege; in
it seems to require some form difect inspection of theatabaseThe usermight begin the
sessionsubmitting thequery EXPERT-SYSTEMS in responsethe system would return the
screenshown in Figure 2, whose focus tise most general node containirgXxPERT-
SYSTEMS This display reveals much informatioglevant to the specifiaser question that
would have been otherwise difficult to acquire. On one hand, it shows thaatberdy two
documents of the database indexed HXPERT-SYSTEMS while there are many more
documents (eight) indexed by a simitarm (i.e., KNOWLEDGE-BASED SYSTEMS); also, it
suggestghat a large percentage of tdecuments in the databadeal with an application
domain that is not relevant to the user, i.e., medicine. At this fhantsermight exploit this
information by inputting two constraints, nametykNOWLEDGE-BASEDSYSTEMSand - <
MEDICINE. Figure 3shows howthe usercan actually deso. Consequentlythe retrieval
space is bounded as shown in Figur@add thenew focus,consisting of twanodes, is the
lower boundary set of the bounded representalibe.new screen displays one naithat is
presumably of interest tine user(i.e., the onewith the document abownowledge-based
systems for cooking), and that had not been fully visualized before.

FIGURE 3

FIGURE 4
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4. Experimental evaluation

4.1 GOAL

The objective of the experimemas toevaluate theffectiveness oULYSSES on dypical
retrieval task: subject searching. Although our system has both browsing potentidiseeind
retrieval capabilities we concentrated on the latter, partly becausbrpowsing isdifficult to
evaluate, partly because the retrieval effectivenesmast structure-based approaches to
information retrieval is generallgeen as unsatisfactory compared to more conventional
guery-based systems. ilne experiment we comparédl YSSES with aBoolean retrieval
system; we chose a Boolean system because it is easy to implement, akidoitvis to
perform reasonably well on this task.

4.2 SUBJECTS

We testedour subjects irthe experiment.The subjects were graduastudents inrcomputer
science withlittle knowledge ofthe documentiomains and no prior knowledge about the
systems. The subjects were provided with a tutorial session of about an heacHsystem

on a training database, and were offered more training if they ddsif&ekat attention was
paid to ensur¢hat at theend of the training they could easityanipulate the interface for
specifying Boolean queries atight they could make fulise ofthe latticesystem facilities,
includind the bound mode. Fifty dollars was paid to each subject for his participation.

4.3 DATABASE AND QUERIES

We used two databases in our experiment, INSPEC-AI and CISI.

INSPEC-AI is acollection 0of1555 documents edctedfrom INSPEC, acommonlyused
large computer-engineering collection. We queridSPEC by questioning "artificial
intelligence”, and selected ti®55 mostrecent(as of January 1994)eshents out of some
10,000 documents retrieved. We chose $iis because it is largaough forthe test to be
considered significant, and aihenough forthe relative lattice to beomputed, stored, and
accesseeasily. The documentsvere described by a title, an abstract and a stdrpfs. In
order todealwith a controlled and copact vocabulary weised onlythe terms labelled as
preferred In addition, we expandedach termusing its broadeterms according to the
broader/narrower relation among preferred terms given in the 1991 INSPEC thé&litus.
this enlarged set of keywords each document was describ&d. byterms on average. The
corresponding document by term matrix was used to generate both the Boolean and the lattice
searchspacesThe latticecontained8769 nodesyith an average 08.11 parents per node
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and path lengths ranging from 2 to 15 edges fiioenlattice’s top to the bottom nodsgch

node was described by an average of 3.74 terms (7.42 if we consid#éreddsoader terms)

and 6.07 documents. In order to perfaubject searching on thHISPEC-AI database, we

manually produced a set of 20 queries (see Carpineto and Romano (19%6eaiy fist). We

alsomanually computedor eachquery its rebvancgudgementsj.e., the associated set of

relevant documents. The average number of relevant documents for the 20 queries was 30.5.
The databas€ISI is awidely used, electronically-available bibliographical collection of

1460 information sciencdocuments, described by a title and an abstract, but withdex

terms. The CISI databasevas first automatically indexed as specified in sect@d. It

initially contained184,584 words, 9706 ofhich were distinctAfter stemmingand stop

wording the database contained 90,154 words, with 7598 distinct words. By word weighting

and word selection we finally assigned to each document an averéde teirms.The lattice

built from this document byerm matrix containe®740 nodeswith an average oR.75

parents per node and a depth ranging from 2 to 7 edgelsnode wasdescribed by3.14

terms and4.47 documents on averagelofhg with the CISI database comes a set of 35

gueries with their relevance judgements. For the experiment we randomly selected 20 queries

among them; the average number of relevant documents for the 20 queries was 39.

4.4 SOFTWARE
In the choice of software we considered bo#ixperimentakonstraints andhierfaceissues.
We implemented a Boolean retriesgistemthat employsthe same indexing strategy as the
lattice system(i.e., the one described in Secti@nl), andthatallows the user toformulate
Boolean queries anselect documents in aterative fashion. Weminimized as much as
possiblethe effect thahaving different interfacebas onperformance: the Booleasystem
runs onthe same machine as the lattegstem,and both systems useany identical
interaction devices, such athe vocabularywindow, the document display-and-selection
facility, the thesaurus windowand thehistory of user queries. In Figure 5 we show an
examplescreen of the Boolean retrieval interfaering the search of th€ISI documents
relevant to thefollowing query: ‘How much doinformation retreval anddissemination
systems, asvell asautomated libraries, costAre they worth it tothe researcher and to
industry?”. Figure 5 shows in the left upper corner the Boolean query inptiteyser(i.e.,
“cost AND (retrieval OR library)”), whoseterms wereselectedfrom a vocabularywindow
similar to that shown in Figure 3; Figure 5 aldwws a windowcontaining the titles of the
documents retrieved by ttsystem in response the query, and a windowdisplaying the
content of one of such documents.

We implemented the Boolean retriew@tstem ourselvestather thanchoosing some
commercially available Boolean system, because this would have made it much more difficult
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to meet our experimental constraints and control the interface effect. For theesames did
we not choose a more advanced prototygteieval system, such aSMART (Salton &
McGill, 1983) or INQUERY (Turtle & Croft, 1991).

FIGURE 5

4.5 TEST DESIGN

The four subjects were asked tetrieve the documents relevant to theq@@ries using the
Boolean method and thiattice method. For assigninthe queries tothe two retrieval
methods we used @peated-measuretesign, in whicheach subjectearchedeachquery
using each method. To minimize sequence eff@tsece, Rogers, Sharp, Benyétalland
& Carey, 1994), walivided thefour subjectsanto two pairs of two subjectne pair then
did Boolean retrievafollowed by lattice retrievaland the other pair didattice retrieval
followed by Boolean retrieval. We decided which pair did which task first randomly.

During eachsearch thaiser, who wasot asked to finish within aertain timeperiod,
could see the abstracts of the documents assoeigtedhe visitednodes.The documents
judged to be relevant by theser, asvell as those scanned duritige search, wer@oted as
retrieved. Thischoicedeserves some explanation, becausevaluating the effectiveness of
browsing retrieval systemsthe definition of the retrieved set of documentsusally not
obvious. One approach (@din, Missaoui & April, 1993) is to consider asetrieved
documents only the documents that have been seen and judged to be relevamséry thiee
disadvantage of this approachthst we might be easuring theisersjudgement more than
the effect of the retrieval method. A more typical chdieg., Tague-Sutcliffe, 1992; Turtle,
1994) is torate a document as a retrieved documensam asits full description (the
abstract, in our case) is recovered, without consideh@gser’s judgement. Wlave taken
the latter approach.

Since no single evaluation tool provides reswltsch, especiallyfor interactivemethods,
are truly unbiased, we used different evaluation scenarios and measuezchsaarch, we
measured botkthe performance in theourse ofthe interactior(i.e., dynamic performance)
and the performance at the end of the search (i.e., raw performance).

For the dynamic performance, we measured preéiatogach retrieved document point; in
this case, recafl,the othermost widely used easure in laboratory experimentsan be
simply derived from precision by multiplying the latter by a constant. To averag¢hevset
of queries we used the following procedure. For each database aatiioretrievaimethod,
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we discarded 16 of the 8@vailable queries,namely the eighueries withthe smallest

number of retrieved documents and the emrries withthe largest number of retrieved

documents. At this point, foeachdatabase, we chose as cutetilue the number of

documents retrieved by the query with the least number of retrieved documents in one of the

two methods. In this way, we obtained a cutoff value of 25 for INSPEC-AI and 30 for CISI.
The measure of the dynamic performance is a direct indicatibowthe retrieval ability

of the two methods varies with the number of retrieved documents, daytsiittle about the

final raw performance and does notgive any indication of théime taken to retrieve the

documents themselves, which isiarportant measure of thaser’'s effort. Toaccount for

these aspects, at the end of each search, we measuredrfables:precision, recallsearch

time (i.e., the time taken by the user to perform his task) and number of documents retrieved.

4.6 RESULTS

The results are displayed in Figure 6, Table 3, and Table 4.

Figure 6 showshat the dynamic performance lattice retrievalwas, ingeneral better than
Boolean retrievalFor the INSPEC-AI databaselattice retrievalobtained better average
precision at all but four retrieved documents points. The superiorlgttiok over Boolean is
much more apparefor the CISI database, whetattice markedly outperformed Boolean at
each of 31 retrieved documenalues. Apaired t-test performed ovére whole set ofdata
(i.e., values ofrecision forall queries atll retrieved documentgoints) confirmedhat the
difference can be considered statistically signifidantCISI (p = 0.0002), and, to lasser
extent, for INSPEC-AI (p = 041). These resultare notsurprising, because although
Boolean queries have a greatpressive powethan lattice queries,the lattice nethod
provides othermetrieval strategies that may compensite this limitation. In particular,
browsing allows smooth query refinemewtile it is well known that in Boolean retrieval
the user cannot control the amount of output obtainedsponse to a quefg.g., Salton &
McGill, 1983; Lesk, 1989). Another advantage of lattietieval is that theisermay exploit
the feedback obtaineffom the structure tdacilitate selection of relevarterms in the
database, as opposedBoolean retrievalvhere this kind of information is not available.
Finally, there are two other reasons two explain why the greater expressive power of Boolean
qguerying resulted in wrse retrieval performance. On ondiand, we observed that,
consistently withthe evidenceshown byBorgman and Meadow1985) that in Boolean
retrievalusersprefer conjunctivegueries, most (82%) dhe Booleanqueries submitted by
the users duringhe experimentsvere conjuntions of fevatomic argumentgi.e., simple
terms); on the other hand, it shouldrimged that thgossibility of expressingegated terms
in the bound mode déttice retrieval mayxompensatéor the Boolean operatddOT, while
performing more lattice searches is equivalent to using the Boolean operator OR.



19

Table 3 shows that, for the CISI database, lattice retrieval obtained better evacateEs
for each of theaw retrieval performancegariables. Apaired t-test revealed that the method
had no effect onime (p =0.17) orretrieved documents (p 6.37), but it did reveal the
superiority of lattice retrieval with respect to recall (p = 0.038) and precision (p = 0.008). The
results shown iTable 4, relative to theaw performance on thtNSPEC-AI database, are
slightly different.Lattice retrievalobtained better recadind precisiorvalues,but performed
worsethan Boolean retrievalith respect to retrieved documents and search time. In this
case,the differencesvere notstatistically significant: p =0.30 forrecall, p =0.11 for
precision, p = 0.15 for retrieved documents, p = 0.14 for searcH flineraw precision of
lattice was greater than Boolean, although by a smaller margin than the CISI database, as was
also apparent ithe dynamic performancscenario.The values ofraw recall were very
similar, because Booleamas lessprecise but it retrieved momocumentsThe values of
retrieved documents and seatithe were similaracross both databases. Roughhg two
methods took a similar time to retrieve a similar numbetagfumentsThese resultsan be
better explained by looking at the operations performethéwusers duringhe experiments.
In usingthe Boolean retrievadystem,they performed, foreachsearch on one of the two
databases, aaverage ofL0.22 queries § = 4.41); onthe otherhand, in usinghe lattice
retrieval system, they on average performed 6.12 queries3.01), visited 16.13 nodesd
= 7.58),and boundedhe search spac14 times ¢ = 1.90). Therefore, inlattice retrieval
the users, on the whole, saw the result of a larger number of queries than in Betieaa
while performing a smaller number alirect queries,because most athe queries were
explored as a result of the feedback obtained from the structutbe@therhand,the users
retrieved a larger number of documents per quweingn usingthe Booleansystem. The
observed behavior seemsitalicate that in lattice retrieval thesersconcentrated on finding
good queries, whereas in Booleatrieval they devoted a larger effort to @alysis of the
guery results. To surap, in Boolean retrieval theisers weregprimarily engaged irdirect
guery formulation (which entailed a time consuming scanning of the vocabulary window) and
scanning of the query results, while in lattice retrieval they also seemed to spend much time in
browse-driven query searches and, to a smaller extent, in constraint specification/retraction.
It is useful tocompare theseesults with those obtained lyodin, Missaoui and Aril
(1993) using a Galoidattice approach with mordimited retrieval capabilities. Godin,
Missaoui and Aril (1993)reported the result of an experiment conducted on a small-scale
(113 documentsimanually-indexed database thstowedthat lattice retrievawas slightly
worsethan Boolean retrievallherefore there is a clear improvement in performamdeen
using our system; sudmprovement is especially important considerthgt our databases
were one order oMmagnitude larger thaGodin et al.’s. In facttheir approach idess
powerfulthan ours for a nurber of reasons. Godin et al.’s system allows browsing and
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qguery formulation, but it has a vesymple graphical interface anddbes not provide any
bound facility. Even its query mode is severely limited, comparexuits, because the terms
contained in a query must besabset of(the intentof) some node inhe lattice; thequery
EXPERT-SYSTEMS(ANALOGY for instance, would return no answer for the lattice in Figure 1.

In addition, Godin et al.’s system cannot use a thesaurus, and it has no indexing mechanism.

FIGURE 6

TABLE 3

TABLE 4

5. Scaling considerations

Although in the experiments wesed reasonably-sized databagesiy scale is still nolarge
relative to operational environments. In this section we address thisiissueshat happens

as scale is increased? First of all, it shoulchtked that there atgvo sources ofimitations
that might affecthow well our approach could scale up: computational limitations and
effectiveness limitations. We will examine each of them in turn.

With the kind of databaseshat we used in ourexperiment the construction of the
supportinglattice isfast (a fewminutes) and theesponse time ofhe interface iggood (at
most a few seconds the bound mode)but theissueremains as to whethéne two main
components of the system would scale up to ldagabasesThe interface idesscritical. In
fact, the complexity of the bound facility, which is the most costly operatitimeiimteraction
with the user, depends on the cardinality of the two boundary sets defined in Section 3.4, and
this parameter may become exceedingly langéy in certaincases(e.g., when adatabase
produces a very large and shallow lattice), while in general it is not diretzted to the size
of the database. The key limiting factor seems to bdattiee construction. Ifthe number of
terms per document is bounded, as usually hapflen$attice can beonstructed even from
databases containing a significantly larger number of documents ubead in the
experiments. In contrast, dse number of terms per documentreasesthere may arise
computational problems even for databases of a size similar toukeddanthe experiments,
because the size of thedtice maygrow quadratically with respect tine number of objects
(Carpineto & Romano, 1996a). However, fthhe casewhen the system would runinto
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computational barriers, we could take aternative approacthat may alleviate thproblem.

Rather than build an entire concept lattice in advance, we taitlie userformulate a query

first, and then compute, dynamically, a very limited portion of the lattice, cerasyadd the

node in the lattice that would match the qu@g., its parents and children). In fact, such a
dynamic approach, that has been recently explored by Carpineto and Romano (1996b), seems
to adequatelyaddressthe scalingissue while retaining the main advantages of #tatic
approach, with the significant exception of the bound facility.

The second source of concefor scalability is effectiveness limitations, because there is
someevidence thapassing fromsmall-scale to large-scale databases rslagrply affect
performanceresults, both in automaticand interactive information retrievadystems(e.g.,

Blair and Maron, 1985, Turtle, 1994). As the effectiveness of our approach crucially depends
on theoperations performed biye user, it isuseful to see ithere are anyspects in the
human-systennteraction that might be affected Isgaling. In particular, what happens to
ULYSSES’ visual browsindool in a large environmenfortunately the complexity of the
displayed graph is not a function thie latticesize, as seen isection3.1; furthermore, the
complexity of the informatioshown ineachnode would probablyemainlow, because it

can beseenthat everwhenthe set of indiceglescribingeach document itarge, the mean
number of terms per node is usually small (Carpinet®dnano, 1996b). Therefore, the
willingness andhe ability of theuser toread andnanipulate the informatioshown in the
browsing interface should not change as a consequeribe sifift to a larger environment.

This is encouraging, of course, but it is not enough to guarantee that the retrieval performance
of the system would be equally good. Working with a large lattice would probably reduce the
utility of the bound operations, and it wouldake it more difficult tofind nodes of irgrest
through link-based navigation. As a consequence, the overall retrieval performancstithight

be badly affected.

6. Conclusion

This paperwas roughlysplit into two parts. Inthe first part we presented a system for
information exploration and retrieval that is based on the organizing/navigating paradigm. The
system allows the user t@vigatethrough aparticularlattice representation built from text
database. During the navigation, the usaly usemultiple interactiontechniques, which can

be combined into a search&bound approach to information retrieval. We disthessedrits

of the system both from a computational and a usability poiatesi. The system works in
unrestricted environments and is fulyutomatic; inother words, it can be applied to
collections of texts thatary in subjectmatterand extent, and it does nmquire domain-
specific preconstructed knowledgtructures.One of its most distinguishing features is
flexibility. Users canusethe system to browse aetrieve information; but this is ndke a
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switch, because they can combine the two types of search and they haweay®@ using
their knowledge of the goal or domain to influence the information finding.

In the second part of our paper eealuated the retrieval effectiveness of sggstem. We
compared its performance withat of a Boolean retrievalystem on dypical task: subject
searching. Our results confirthe intuition ofGodin, Missaoui and Aril (1993)that lattice
retrieval can beseen as aalternative to more conventionalethods eveffior pure retrieval,
and, in additionthey extendprevious results inmany significantways. Inparticular, we
showedthat the performance déttice retrieval may be bettéihan Boolean retrieval with
respect to precision and recall, ahdtthis resultcan be obtained evdor databases of non
trivial size.

This researclcan be extended in severdirections. In section 5 weliscussed the
influence of database scale on thgstem’s efficiency and effectiveness, which is a
fundamental aspect to evaluate the scope of this approach. In operational sithati@wer,
there may be other important parameters that needrteolled, such amdexing strategies,
qguery characteristics, subjedbmain, thesaurusvailability, interfacedetails, and user
profile. While the experiments that wgerformed mayalso provide some insigthsto the
sensitivity of theresults to theséactors, it isclear thatthis canonly be taken as dicative;
one directionfor future work is to perform furtherexperiments to evaluatbow the
performance results changéhen controlling a wider range of factors includirtptabase
scale, and characteristics of system, domain, and users.

Another planned researciivenue, which also hathe advantage ofddressing the
scalabilityissue, is tacombineour system witlthe resourcesvailable on thénternet. The
idea is tousethe powerful toolsavailable inWorld Wide Webfor searchinglarge and
distributed databases, such\&&bCrawler orLycos, as a pre-processing stegmd then
apply our system to the set of elements retrieved in this way, which are usually returned in an
unindexed and unstructurefashion. In this view, our systemwill act as an
organizer/navigator of the information retrieved after a Vgelrch, withthe aim of
improving its presentation and facilitating its access.
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Footnotes

1 The basic Galois lattice is a purely syntactic structure, in which the order over the clustdepéndent of
possible semantic relationshigmetweenthe terms; however, in th@resence ofauxiliary information
expressed as a broader/narrower relationship between the terms, the latticadapidaesdhat broaderterms
index more general clusters. The essencthisfgeneralization ighat when we compute the terrsisared by
sets of documents we have to take into account also the ternasaimaplicitly possessed by eadocument
according to the thesaurus.

2 The potentials of clustering for information retrievavelong beenknown, the main justificatiofor this
being what van Rijsbergen (1975) termedcdhester hypothesjsiamely thefact that documents associated in
the same clusters tend to be relevant to the same questions.

3 The main features of ULYSSES were first introduced by CarpiaetioRornano 1995. ULYSSES, like the
indexing moduleand GALOIS, hasbeen implemented in Camon Lisp, andruns on a Symbolics Lisp
Machine. More recently, we have-implementedhe whole system, that consists of about 300 K-bytes of
code, on Apple Macintosh.

4 We showed elsewhef€arpineto & Romano1996a) that the utilization dhis kind of information may
improve effectiveness of lattice retrieval.

SPrecisionis defined as the ratio of number itéms retrieved andelevant tothe number of itemsetrieved;
precision measures the ability to retrievdy relevant documents.

6 Recallis defined as the ratio of number of items retrieved and relevant to the number of items relevant; recall
measures the ability to retrieadl relevant documents.

7 These results are different than, but consistent with, the results of an earlier experiment on theakmse
(Carpineto & Romano, 1995), where we used a smaller set of queries with a sofaeyenaveragaumber
of relevant documents per query.
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Method recall precision retrieved search time (sec)
documents

Boolean 0.326 ¢ =0.076)[ 0.371 ¢ =0.058)| 37.7 ¢ =8.5) 2022 ¢ = 523)

Lattice 0.403 ¢ =0.082)| 0.493 ¢ =0.066)[ 38.0 ¢ =9.2) 1734 ¢ = 417)
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Method recall precision retrieved search time
documents (sec)

Boolean 0.523 ¢ =0.107)[ 0.598 ¢ =0.161)|] 321 ¢ =7.1) 1607 ¢ = 531)

Lattice 0.538 ¢ =0.076)| 0.671 ¢ =0.094)[ 30.2 ¢=7.5) 1670 ¢ = 470)
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Legends

Table 1. A simple database containing nine documents described by nine index terms.
Figure 1. The Galois lattice of the database in table 1.

Figure 2.Display screen oULYSSES, relative to the lattice irFigure 1, focusing on the
nodeDIAGNOSIS, EXPERT-SYSTEMENOWLEDGE-BASED-SYSTEMEEDICINE.

Table 2. Pictorial representation of the user constraints.

Figure 3. After the user hasspecified the constraink KNOWLEDGE-BASED-SYSTEMS
(window in the background), he or she specifies a hew constraint of tgfevindow in the
middle), and hisargument:MEDICINE (windows in the foreground). The wndows are
automaticallyarranged into a cascade (Preecalefl994), sothat manyconstraintscan be
asserted at the sime time, without hiding the lattice.

Figure 4. Display screen ofJLYSSES in response tihe actions taken ifigure 3. The
nodes rarked withvertical bars belong tahe boundary sets ofhe new searchspace, that
contains only fivenodes. It should beoted that the constraint < MEDICINE has also
drastically reduced the set of documents associated with the remaining admissible nodes.

Figure 5.Examplescreen of the Boolean retrieval interfasharing the search of the CISI
documents relevant to the queryddw much doinformation retreval anddissemination
systems, asvell asautomated libraries, costAre they worth it tothe researcher and to
industry?”.

Figure 6. Precision ofattice and Boolean retrievébr the two databases asfanction of
retrieved documents.

Table 3. Average values of raw retrieval performance measures for the CISI database.

Table 4. Averagevalues of rawretrieval performancemeasures forthe INSPEC-AI
database.



