Int. J. Man—Machine Studies (1993) 38, 3-22

A co-operative computer based on the principles of
human co-operation

A. A. CLARKE AND M. G. G. SMYTH

LUTCHI Research Centre, Loughborough University of Technology, Loughborough
LE113TU, UK

Co-operation is presented as a technique for radically improving human—computer
interaction with complex knowledge bases during problem-identifying and problem-
solving tasks. A study of human-human co-operation literature indicated the
importance of creating an environment where the refinement of solutions can be
based on argument and the resolution of differing viewpoints, as it is through this
interaction that the nature of the problem is revealed. To bring about such an
environment, the work identified and created three mechanisms now considered to
be central to human—computer co-operation; goal-oriented working (GOW), an
agreed definition knowledge base (ADKB), and a model which, using problem-
domain rules, stimulates the interaction between the user and the machine: the
partner model (PM). To identify the requirements of the co-operative machine more
completely, a software exemplar was constructed, using the task metaphor of spatial
design. The result of the work is the implementation of a machine software
architecture which demonstrates the functioning of co-operation. This co-operative
computer, its evaluators believe, supports a user—machine interaction having a
totally new and different quality. The machine architecture and software tools and
techniques developed in the work can form the foundation for building future
co-operative systems.

Introduction

Co-operation is a group behaviour that can have distinct, even critical, advantages in
problem identification and problem solving. It was therefore considered important
to explore the potentiat of co-operation in human—computer operations. The modern
computer, with its present architectures and ways of interfacing with the user, is
intended to be a helpful tool, but a tool that is merely helpful cannot be called
co-operative. A new architecture and interfacing was required before human-
computer co-operation could be realized. In principle, co-operative techniques could
be applied to many functionalities of the computer; for example, to the human—
computer interface, resource management, knowledge acquisition or knowledge
representation. This paper starts with a discussion of co-operation and related
issues, then moves to a description of the (necessarily limited) use of the principles
of co-operation in the successful design and implementation of an exemplar
co-operative computer, and its application in the domain of spatial design.

Co-operation

Animal studies suggest that the behavior called ‘‘co-operation” is primarily
associated with problem solving and the external environment. Young (1979)
3
0020-7373/93/010003 + 20$08.00/0 © 1993 Academic Press Limited

4 A. A, CLARKE AND M, G. G. SMYTH

proposed that human co-operative behaviour extends this association to include the
internal, psychosocial environment. He also observed that co-operation is a product
of the process of evolution: “the [physical and mental] equipment Man receives
from his past history is especially designed to ensure communication and co-
operation.”

Arguably, the most important advantage of co-operation in general is the synergy
arising in the performance of certain tasks. This effect most noticeably occurs when
the combined action of two or more individuals realises net benefits that are more
than twice the benefits available to a single individual (Rothstein & Pierotti, 1988).
The authors of this present paper hypothesized that it would be of great benefit if
the potential of the synergy of human co-operation could be achieved in human-
computer working.

DEFINITION OF CO-OPERATION

The term “co-operation” is used by people operating different universes of
discourse, and because of this, has acquired a variety of meanings. The definition
“co-operation is the situation where the movement of one member towards the goal
will to some extent facilitate the movement of other members towards the goal”
(Deutsch, 1962) is widely referred to, and was used in shaping the philosophy of the
work in this paper.

THE ELEMENTS OF CO-OPERATION

Co-operation is a set of relations among behaviours and their consequences, i.e. it is
neither a simple behaviour nor a specific pattern of behaviours. Five elements
defining the content of co-operative relations have been identified by Marwell and
Schmitt (1975), namely: goal directed behaviour; a reward system, with rewards for
each party; distributed responses; co-ordination; and social co-ordination. From
Deutsch (1962) it can be seen that there must be one agreed, common goal towards
which the parties are working. Reward may be found in the fact of having
completed the task, or in the final nature of the physical subject of the task, or in
the satisfaction of the striving for achievement of the goal. Responses must be
distributed among the parties for co-operation to occur; the responses can be
conjunctive (where all parties must make correct responses) or disjunctive (where
the necessary response could come from any one party). Norms are legitimate,
socially shared standards or guidelines for the accepted and expected pattern of
conduct by the parties in co-operation (Birenbaum & Sagarin, 1976). They may be
formalized, and external to the task (e.g. as in written laws) or they may arise out of
the task itself. If the norms or standards of any particular situation or set of
conditions are breached, then co-operation may cease. Co-ordination, in general,
requires the presence of cues to synchronize activities, and they can be mechanical
or social cues. The latter are important enough to be counted as a separate element
because they hinge on the need for all parties to be present, and be able to see and
be seen by all, and on the existence of norms. Co-ordination can be task- or
time-related. Two other aspects of time must also be taken into account, although
they are not specifically itemized by Marwell and Schmitt (1975). These are (i) the
length of the period of time during which the omset of responses by parties must

A CO-OPERATIVE COMPUTER 5

occur for the responses to be effective (i.c. the latency of the co-operative
response): if any party does not respond in time, then co-operation will be
jeopardized, and (ii) the length of time required for each component response to be
completed; the parties must spend enough time on the responses.

Elements may be prominent in different ways in different types of co-operation.
For example, all five elements plus timing are clearly seen in the tightly-knit
co-operative working of a small group such as a surgical theatre team. “Intermedi-
ate” co-operation may be taking place when there is no social co-ordination, as may
be seen in some manufacturing activities. Finally, co-operation (albeit of a very
meagre sort) may be taking place where only the first two elements (goal seeking
and rewards) are prominent; for instance, where participating shareholders in some
enterprise share the common goal of wanting more money, and take the rewards of
more money as and when it occurs.

TWO FORMS OF NON-CO-OPERATIVE POWER

It has been stated above that the term “‘co-operation” is used in many ways. Two
well-studied forms of group behaviour which represent this are Tit-For-Tat (TFT)
and the Prisoners’ Dilemma Game (PDG). TFT is described as “a strategy that can
be employed in a game theory to elicit stable co-operation” (Axelrod & Hamilton,
1981). It is a strategy based on the other person’s action; if one person acts
co-operatively, then the other co-operates. If he or she acts competitively, then the
other also competes, TFT is different from the situation where two or more people
are co-operating so as to reach a mutual goal, and so cannot be called co-operation.
PDG is useful for studying group behaviour and decision theories in an abstract
sense, but it does not accord well with co-operation. The existence of a common
goal is an ill-defined motivator for the two prisoners; rewards can be lacking for one;
there is no opportunity for communication about any common goal (for the
prisoners, communication is the response: no strategic planning can take place). We
conclude that co-operation in the sense used in this paper does not embrace TFT
and PDG.

ADVANTAGES OF CO-OPERATION IN PROBLEM SOLVING

To establish a performance base-line, the authors examined some of the advantages
of co-operation in human-human problem solving. Some of the more notable
findings include the following features. Joint effort during complex problem-solving
tasks is reflected in both the process of achievement and the quality of solution
(Deutsch, 1949, 1968; Laughlin er al., 1968). In studies of group performance, of
which co-operative behaviour is an example, Davis (1969) found that if each person
possesses unique but relevant information, and the task requires several pieces of
information, then the pooling of this information will allow groups potentially to
solve problems that an individual cannot attack successfully. He also observed that if
the emphasis is put on achieving a correct or good or early answer, then a group has
a higher probability of achieving this aim (other things being equal) than does an
individual. Furthermore, group problem solving can often yield more alternative
solutions than can individual problem sclving; this finding is very important to the
application of co-operative principles in human—computer co-operation,

6 A. A. CLARKE AND M. G. G. SMYTH

Co-operation can also create new motives, attitudes, values and capabilities in the
co-operating parties. Dynamic social interaction during complex problem solving has
the potential to reinforce or negate existing beliefs and to support the formation of
new attitudes between and within the parties. It is this potential for mutual growth
that makes co-operative behaviour so satisfying to the partners in human problem
solving.

FACTORS WHICH INDUCE AND MAINTAIN HUMAN CO-OPERATION

Human co-operation can arise because there are problems to be solved (i.e. goals to
be reached), or because there is satisfaction in working together, or both. People
can co-operate either in reaching goals which any individual in the group could
achieve independently, or in reaching goals which are beyond any one individual. In
the first case, group synergy is not necessarily noted in faster task achievement, less
expenditure of effort by individuals or in an increased rate of goal completions, but
more likely in an increase in group cohesion, stronger common bonds and greater
group identity. The non-social reward in such a situation is likely to be external to
the task, and could take the form of material reward, e.g. money or the promise of
reciprocal help later.

The maintenance of co-operation is also at risk in the first case because, for
example, one party may become satisfied with the accumulated reward at some
stage, and leave the group. In the second case, a considerably more stable form of
co-operation can occur. This is the situation where superordinate goals are present
and where the reward is inherent in the task. Superordinate goals are compelling for
the individuals involved, but cannot be achieved by one individual through his or
her own efforts (Sherif & Sherif, 1953; Blake & Mouton, 1962; Blake, Shepard &
Mouton, 1964). The existence of superordinate goals in a variety of task situations is
one of the strongest factors in the development and maintenance of co-operation,
both between individuals and groups.

COMMUNICATION

Co-operation is not a fixed pattern of behaviour, but is a changing, adaptive process
directed to future results. The representation (and understanding) of intent by every
party is therefore essential to co-operation, and so the role of communication in
co-operation is important (Oberquelle, 1984, Oberquelle, Kupka & Maass, 1983). A
high level of communication, with its connotation of “clarity of action”, is implicit
within co-operative behaviour, and is defined as “a complex of social actions for the
purposes of mutual understanding and for allowing co-ordinated actions to occur”
(Axelrod & Hamilton, 1981).

Thus, co-operative behaviour between humans is maintained by a combination of
factors such as open communication, exchange of information and the existence of
superordinate goals.

Grice’s “co-operative principle” served as a guideline, and his “rules” (Grice,
1975) were followed in designing the computer—-human communication in the
following way. Quality: the computer’s suggestions and solutions were always based
on the highest priority of rule in the system (e.g. safety), or the best practice from
the knowledge base (described below). Relevance: the computer always addressed
itself to the user’s stated goals, except where safety (or other highest priority) was

A CO-OPERATIVE COMPUTER 7

being breached. Manner: this rule proved to be more difficult to interpret. Shure et
al. (1965) showed that the style, as well as the content of communication between
parties facilitiates co-operation, but does not necessarily create co-operation. On the
other hand, any type of communication which can be identified by the other party as
reducing potential threat is best suited towards increasing co-operative behaviour
(Deutsch & Krauss, 1960). To comply with these findings, the computer was not
allowed to “interrupt” the user; instead it was given its own window in which to
draw its own suggestions and solutions. Updating of this window was initiated
whenever the user defined and entered a goal which the computer could recognize
and act on (Thus, also controlling the quality of the output from the computer.) The
user could also request an explanation of the computer’s actions: the computer
responded using textual statements derived from its own knowledge (like the “why”
facility in an expert systemy). In this way, the criteria of the “manner” rule were met.

TASK FACTORS WHICH SUPPORT CO-OPERATION

Not all tasks will enable the potential of co-operative behaviour to be realized. For
instance, tasks which require a single correct answer (i.e. mathematical problems)
tend to provide little scope for co-operation. However, situations where more than
one alternative is sought provide a problem-solving environment which favours
co-operative behaviour. Empirical evidence to support this position has been
provided by two experiments. Firstly, Thorndike (1938) confirmed that the
superiority of the group over the individual will be highest for tasks which afford a
wide range of possible solutions. Husband (1940) found that pairs were superior to
individuals when working on problems requiring some originality or insight, but not
on more routine arithmetic problems.

PERFORMANCE REQUIREMENTS FOR A CO-OPERATIVE COMPUTER

The outline performance requirements drawn up for the computer and the problem
were:

The co-operative computer:

~ must feature the elements of co-operation, and operate within an acceptable
framework of co-ordination and timing.

- must be able to recognize and accept the user’s goals, when declared.

—must be able, with the user, to work towards superordinate goals in solving
complex tasks, in an interactive manner.

— must offer alternative solutions to the problem being addressed.

— must not exhibit behaviour which appears to be threatening to the user, and
should operate to support the formation of new attitudes in the user towards the
computer and the task.

The problem to be solved:

— must require some originality or insight from the user.

THE USER

A type of user was identified who would most likely be able to benefit from
engaging in co-operative behaviour in problem solving with a computer. In studies

8 A. A. CLARKE AND M. G. G. SMYTH

of ability, Laughlin (1978) showed that homogeneously high-ability groups perform
better than mixed ability groups in problem solving, and that high-ability persons
perform better in co-operative groups with high ability partners than alone. Tt was
therefore decided to orient the machine design towards the requirements of a
generic high-ability user category, the highly skilled, but not necessarily computer
literate, professional user. This user is characterized as having (a) detailed,
task-specific knowledge and (b) the requirement or desire to undertake a wide
variety of complex tasks.

A number of models prominently featuring the user, developed for the study of
human-computer interaction, were examined as a basis for representing the user in
the software. Layered models seemed best in general, representing as they do
aspects of the user in layered form, from the general to the specific, or from the
abstract to the concrete. In these models, a given layer is usually serviced by the
layer beneath it, which other model types sometimes omit. Examples of layered
models include those developed by Moran (1981}, Nielsen (1984) and Clarke (1986).

The model by Clarke (1986) was applied in the present work because it gives a
description of the user’s goal orientation, and mental, and sensori-motor charac-
teristics, together with the interfacing of these to the features and mechanisms of the
computer, and the tasks.

THE USER AND THE INTERFACE

Our approach to the design of the user—computer interface attempted to parallel
human interaction within the artificial constraints imposed during interaction with
machines, following Scrinivasan and Dascher (1977) who identified the need to
“develop a language structure that will embrace a broad diversity of the kinds of
communication that users normally use”. Thus, we drew on the social psychology of
interpersonal behaviour in providing a clearer picture of how humans communicate
during complex tasks. The work within social psychology was not seen as a solution
in itself, but as another perspective from which we were able to view the problem of
designing the interface.

The study of interpersonal behaviour includes the identification of factors based
on individual and mutual needs which motivate the behaviour and modify the
communication of parties in a task. Human communication is a highly complex
interaction motivated by both task-related and social goals (Murray & Bevan, 1984).
Tasks requiring either joint or dependent actions from parties can lead to the
occurrence of either co-operative or competitive behaviour. Several factors have
been identified which affect this choice of behaviour; these include the nature of the
task, the expectations of the parties and the personal goals of either party. Kelley
and Stahelski (1970) claim that there are two basic personality types: those
expecting co-operation from others and those expecting competition. Co-operation
was to be the model of machine interaction, and not competition, so it was essential
to identify the task-related and social factors which induce such behaviour, since
these factors would be providing a basis for the design of the co-operative computer
system.

CO-OPERATION AND THE COMPUTER
Co-operation is an active process. A computer which incorporates this technique

must overtly participate with the user during a task. A co-operative machine, while

A CO-OPERATIVE COMPUTER 9

remaining focused on an expressible goal state, should, to be productive, prompt the
human partner to adopt a more divergent style of thinking during problem solving.
Such interaction could foster a greater interdependency between the human and the
machine, with the consequence of increasing the quality of solutions and encourag-
ing greater user satisfaction.

A principal feature in co-operative behaviour during problem solving is the
mutual creation of a common or shared environment, where the refinement of
solutions can be based on logical argument, and where the resolution between
differing perspectives takes place. It is through these discussions that the nature of
the problem is revealed. Examples of techniques developed to foster divergent
thinking in groups, and which were considered for use, include Brainstorming
(Osborn, 1953) and Synetics (Gordon, 1961).

The ability to generate and communicate alternative solutions is essential to
human-computer co-operation, as it is these which spark the iterative solution
process implicit within co-operation. It follows from this that different knowledge
sets (but sympathetic views) are vital to a successful and productive co-operative
relationship. The importance of such a dynamic interaction during complex
problem-solving behaviour is reflected in Feyerabend’s statement that “‘progress can
only be brought about by the active iteration of different theories” (Feyerabend,
1965). Although only a part of the complex relationships involved in human—human
co-operation, the generation of aliernative solutions was chosen to provide a starting
point toward representing the co-operative relationship between a human and a
machine.

It became clear that our purpose would be best served by the development of a
single-user co-operative system, where the generation of a satisfactory solution
could be enhanced by a computer having the capability to generate alternatives and
supplementary information, based on (i) the task, (ii) the user’s defined goals and
(iii) the current state of the user’s solution. Further, in attempting to harness the
potential of human-human co-operation, it also became clear that it was necessary
to view the machine, not purely as a provider of information on request (as in an
expert system) or simply as an agent carrying out specific work on demand, but as
an active partner working in real-time, in synchronization with the user.

Our contention was that machine-generated alternatives could act as catalysts,
and so play a more active rdle in the formation of ideas through changing the
context in which the wser would perceive the problem. This would provide a
“greater perceptual span” (Jones, 1970). Thus, the refined aim of the work was to
provide a problem-solving environment based on a co-operative paradigm, aimed at
professional users.

THE UNDERLYING MECHANISMS OF A CO-OPERATIVE MACHINE
The first stage of the work identified those key factors which characterize, induce
and maintain productive co-operative behaviour between human partners during
problem-solving tasks. The next stage addressed the problem of how best to
translate these factors (which are essentially behavioural characteristics) into
mechanisms which could be successfully represented within a machine,

The first factor is the existence of a specific common goal and the working towards
it. (Adopting superordinate goals subsumed the rewards requirement.} The process

10 A. A. CLARKE AND M, G. G. SMYTH

GOW e M

Bmes

ADKB

FIGURE 1. Relationships between the user and the mechanisms of the co-operative computer.
GOW = goal-oriented working, PM = partner model, ADKB = agreed definition knowledge base.

or mechanism which represented this in the machine was called the goal-oriented
working mechanisms, or GOW.

The second factor incorporates distributed responses, social co-ordination, and
knowledge of the task domain. The mechanisms for this was called the partner
model (PM), and took the basic form of a representation of the computer partner’s
specific task domain knowledge.

The third factor is communication. The core of communication is “meaning™ but
the representation of meaning was obviously outside of the scope of this work.
Communication was therefore represented by (a) a language common to both
partners, containing commonly held definitions, and (b} access to and use of the
language by both partners. This mechanism was called the agreed definition
knowledge base (ADKB). Figure 1 shows the relationships between the user and
these mechanisms. Thus, although acknowledging that only a subset of the
complexity of behaviour displayed during human-human co-operation might be
seen in the interactive functioning of the mechanisms, it was decided that machine
representations of GOW, PM and ADKB would provide an initial architecture with
which to study, and subsequently implement, human—computer co-operation.

A METAPHOR FOR A CO-OPERATIVE TASK

It was initially intended 1o produce “general-purpose” co-operative mechanisms,
because it appeared that general co-operative techniques and their associated
advantages could be applied o any task. Two task domains were selected for
consideration because of their richness of detail and logical sequencing: highway
design and electronic circuit board design. However, analysis of these task domains
made it clear that the knowledge-representation overhead associated with them
would be beyond the scope of the work, if they were to support rudimentary
co-operation. For example, the study of highway engineers in the field (Clarke,
Woodcock & McDaid, 1986) showed that the highway design function was not
carried out by a single person but by a number of individuals, each contributing
specialist knowledge, and as such was not a suitable subject for the single-user
human—computer co-operation task being considered. Nevertheless, our analyses
showed that the design task is a valid application for co-operative techniques.
Consequently, a number of smaller studies were made, (Shuttleworth, 1988; Smyth,

A CO-OPERATIVE COMPUTER 11

1987, 1988) which investigated how designers define problems and generate
solutions. It was found that designers are interactively solution-focused, that is, they
pose tentative solutions to a specific problem and by so doing learn about the
problem.

Fischer, McCall and Morch (1989) reached a similar conclusion, although they
came to it from consideration of the support that designers need. Their approach
was that design environments need knowledge-based ‘“‘critics”, a critic being an
intelligent support system which detects and criticizes partial solutions constructed
by the designer, based on knowledge of design principles.

Gaines (1981), observed that “‘to make the system understandable is to maximize
the possibility of the user forming, with the minimum of effort, a model of the
system which aids his effective use of it”. Such models are difficult to achieve if the
interaction style of the system bears no resemblance to that of the human user. (To
some extent this problem has been alleviated by the use of metaphors during
interaction, where the metaphor acts as a link to the user’s previons experience and
thereby assists in the prediction of machine behaviour: this fact was used by us, and
is described later.) It became clear that the early aims of producing general
co-operative techniques were impractical, and that there was a need for an easily
understood, familiar, specific task which could act as a vehicle for the detailed
analysis of co-operative behaviour. As a preliminary to the identification of such a
task domain a number of requirements were identified.

These were that:

(a) the task should be achievable,

{b) there should be a number of possible solutions within a finite set of solutions,
so as to permit the production of alternatives by the co-operating parties,

(c) task goals should be identifiable and expressible at the outset of co-operation,

{d) explicit rules should be involved in the production of solutions,

{e) the task should support the gencration of partial solutions and

(f) the task should support graphic-based interaction.

The problem domain selected was room layout designt which, as an instance of
spatial design, met the requirements. The decision to employ a task metaphor
proved to be a key decision because it focused analysis, enabled the research
dialogue, and provided a vehicle for the eventual implementation of the mechanisms
and the user—computer interface of the co-operative computer.

THE DESIGN PROCESS AND CO-OPERATIVE PROBLEM SOLVING

Design can be described as the successive application of constraints until only a
unique product is left. Laurel (1986), states that constraints, rather than restricting
the process of design, “provide the security net that enables people to make
imaginative leaps”. Co-operation, with its agreed common goals and behavioural
norms, provides a secure environment for making such leaps. The potential

T It is stressed here that the co-operative software computer produced was never intended to be viewed
as a room layout application, since sophisticated software solutions already existed for this particular
problem. It was strictly for use as a medium for exemplifying the function of the three underlying

mechanisms of co-operative behaviour. Room design, as such, acted as a metaphor for the co-operation
between humans and computers.

12 A. A. CLARKE AND M. G. G. SMYTH

advantages of co-operative behaviour within the design process have been indicated
by several researchers. Broadbent (1973), concluded that, “in creative thinking,
face-to-face group members may ‘spark off’ ideas against each other by an assembly
effect so that finally the quality of ideas is higher than the individual could have
achieved”. While Middleton (1967), in observing that hypothesis testing is an area
which benefits from group activity, highlighted the “distinction between original
thought, which is a lonely activity, and the testing of hypotheses, a logical process
where the group can participate with advantage™. From this, it was clear that design
would be ideally suited to co-operative work, because it is a task requiring joint or
dependent action from all the participants.

Rules of design were then identified, particularly those of spatial layout, which
could be incorporated in the partner model. These rules would be at the core of the
mechanism with which the co-operative machine would generate meaningful
alternative solutions, a factor vital to achieving synergy within the co-operative dyad
of human and computer. This point is also made in Fischer, McCall and Morch
(1989).

Designers are often confronted with the task of choosing, from among an
extremely large number of possible arrangements, an aesthetically satisfying
composition of objects within a given space. Some choose to rely on the intuitive
application of their skills. Tufte (1983) suggests, in reference to graphic design, that
“there are no compositional principles on how to create that one graphic in a
million”. Nonetheless, some designers reduce the number of possibilities in
compositional tasks by applying rules which govern the placement of objects in a
few initial sketches. They then choose to observe the rules, apply further rules or
develop compound effects in response to the resulting compositions. A fundamental
compositional design approach is to arrange objects along lines of symmetry. The
“Golden Section” rule (Holt, 1971) was implemented in the present machine,
because established design rules would need to be made available to the partner
model if it were to co-operate successfully with the designer, and the Golden
Section was readily available and understandable in its application. However, since
the role of the computer was paradigmatic, and thus called for only a few
archetypical rules to illustrate the principles of co-operation, it was not necessary to
research the area exhaustively.

In adopting the room layout metaphor, it followed that the requirements of the
agreed definition knowledge base {ADKB) could be met by the inclusion of a subset
of generic furniture objects, a subset of generic room objects and definitions of the
relationships (permitted and forbidden) between the objects. These could then be
acted on by the goal definitions and design rules represented in the computer.

Representation of co-operative mechanisms

GOAL-ORIENTED WORKING

It is essential in co-operation that the co-operating parties know what the desired
goal is, and work towards attaining it. Two parties working towards different or
conflicting goals will not achieve co-operation. Thus, if a human-human or
human—computer co-operative dyad is to achieve success, there must be agreement,

A CO-OPERATIVE COMPUTER 13

reached via a process of communication, about the goal to be accomplished. In so
doing, the parties declare their intent to each other, a necessary precondition for
co-operation.

In English vernacular, expression or declaration of goals most commonly takes
the form of an operational statement; e.g. “We want to design a co-operative
computer”. What would be generally inferred from this statement is that the
speakers want to have a design, complete and finished, for a co-uperative computer.
However, the speakers may wish to be continuously engaged in the process of
designing. Thus, there is ambiguity in the usual way of expressing goals.

To avoid that problem a definition was developed for this work which enabled
goals to be declared to the machine in a form suitable for expression in a high-level
language. It is given here, (the “OR™"s are exclusive):

“A goal is (a) the intended state of an object, or (b) the intended relation between
two objects or more, or (c} the intended maintenance of a process”.

The action of achieving a goal is thus directed toward goal objects or processes
which may either be physical or virtual, and can result in their being created,
eliminated, modified or sustained. Each goal object has a number of attributes, such
as colour or dimension, which may be altered in the act of achieving a goal. For
example, the goal “I want to sharpen a pencil” may be restated in the form:

Goal is: to_have_pencil_in_sharpened_state.
(where “to_have” represents the futurity or intent in the goal declaration).

In this example, the goal object is the pencil and the achievement of the goal will
result in the attributes of sharpness and length being changed, (the one being
intended, and the other [perhaps] not being intended). Provided that the object
“pencil” and the attribute “‘sharp” is definable, then the goal can be represented in
the machine.

A similar approach is taken for declaring goals of relationship. For example:

Goal is: to_have_telephone_on_table.

THE AGREED DEFINITION KNOWLEDGE BASE

Another of the important features of co-operative behaviour is the ability of either
party to communicate the current state of the interaction. Here it is critical that both
the co-operating parties share the same object definitions. This factor is emphasized
during human-human co-operation, where a large amount of time is taken up with
the mutual identication of, and agreement of, terms of reference to be adopted
during the process. The definitions do not have to remain static as long as changes
are agreed by both parties. If a co-operative machine is to be fully developed it must
support the interactive updating of the shared knowledge base.

THE PARTNER MODEL

The ability of parties to generate alternative solutions within a problem-solving task
is an important part of co-operative behaviour. To represent this ability in the
machine, a mechanism was constructed (the partner model [PM]), which could

14 A. A. CLARKE AND M. G. G. SMYTH

access a knowledge base common to both the machine and the user (the ADKB).
The model consisted of domain-specific rules. The model’s rules were applied to the
goal-related definitions in the ADKB, and the results were then communicated to
the user. This process generated viable alternative solutions, and thus presented a
similar behaviour observed in human co-operation. (Note that the partner model is
not an embedded user model, in that while it possesses similar domain information
to the user, it does not necessarily reflect the working style of any particular end
user.)

The mechanism not only generated alternatives; it also facilitated interaction with
the user, who was able to query the rule base. This was essential, for if the user
could comprehend the processes involved in generating alternative solutions, then it
would be possible to incorporate the PM’s techniques into the user’s own design
strategy. Communication of alternative configurations of a design solution within an
interactive environment might facilitate the development of a user’s task expertise.
More specifically, during interaction with the machine, the human partner could
begin to adopt the task skills represented within the PM.

The requirement thus emerged for a PM which would be autonomous, and which
would demonstrate the importance of the differences between parties. (This is in
apposition to the embedded user mode!, which attempts to extract characteristics
exhibited by the user during the interaction and uitimately to mimic or predict the
user’s solutions; a situation which, the authors hold, runs contrary to the philosophy
of human—computer co-operation.)

The co-operative computer

SYSTEM DESIGN DECISIONS
Three system design decisions were made at the outset of the implementation of the
co-operative computer:

The first, pragmatic, decision acknowledged the reality of the difference in the
spheres of competence between the human and the untested machine, and potential
user rejection of initiatives taken by the machine. It was decided to place control in
the hands of the user at those points during the interaction where aesthetic and
functional judgements would need to be made (e.g. decisions about what constitutes
a “satisfactory” layout solution).

The second was to minimize explicit, broad-band communication between the
user and the machine, and instead, wherever possible, to use an implicit,
graphically-based, communication technique; namely, the visual representation of
task information.

The third was to build the user interface around the concept of an “interaction
event”, i.e. a piece of information generated by a range of internal or external
citcumstances, such as a key-stroke, mouse event, network activity or an output
from the system clock. The system was implemented on a Hewlett Packard 3500
workstation, using C-Prolog.

VISUAL REPRESENTATION OF TASK INFORMATION AND THE INTERFACE
The authors’ observation and analysis of the design and communication activities of
human designers co-operating during a complex problem-solving task enabled them

A CO-OPERATIVE COMPUTER 15

to construct a user—computer interface having two dedicated graphical windows. In
terms of the room layout metaphor, these windows represented the floorplan as
perceived by the user and the partner model respectively. This was a simple
solution, which overcame the problem of simultaneously presenting alternative
layouts to the user, while not causing a distraction from the current task in hand.

Objects in the user’s window were positioned by dragging with a mouse, while
other actions, such as the construction and declaration of a goal, the prioritization of
the partner model rule base, and the creation of objects, were achieved through
software buttons.

THE CO-QPERATIVE COMPUTER'S MODES OF OPERATION

The co-operative computer had two modes of operation, “Interactive”” and “Solve”.
The Interactive mode was the primary mode, and in operation, the activation of the
partner model was controlled by the user’s selection of object locations. The Solve
mode was used during software development and so was not central to the
development of the co-operative relationship. When the Solve mode was activated
the PM immediately generated an alternative solution based on the current active
goals and the location of objects in the user’s solution space; this was used to test
the validity, for example, of the software under development.

MANIPULATING THE AGREED DEFINITION KNOWLEDGE BASE (ADKRB)

The room design metaphor contained a deliberately constrained object set,
presented visually to the user throughout the interaction. Selection of an object type
causes the creation of an instance of that object to be placed in the inventory. The
user is then at liberty to incorporate that object instance within a goal construct, or
simply to place a graphic of the object in the user window at the desired location.
Both the user and partner windows represent a notional floorplan. As objects are
located in the user window the PM generates alternative positions based on its rules,
and displays its option in the partner window. Figure 2 shows the PM’s range of
possible responses to a user-declared goal, “Desk_near_walll, Chair_near_desk”.

Wall 1 Wall |

[]

or or

or Qar

= User's intention

= Parter’s responses

FiGURE 2. The partner model’'s (PM's) range of possible responses to the goal Desk_near wail 1,
Chair_near_desk. All solutions are valid within the definition.

16 A. A. CLARKE AND M. G. G. SMYTH

The user may have had one solution in mind (shown in bold in Figure 2), but has
expressed it ambiguously, and the PM has responded accordingly. Unlike a
conventional computer, the co-operative computer is able to respond to ambiguities
in a productive way; the PM interprets the declared goal according to its own rules
and is able to generate a number of solutions (valid in context), showing them cone
at a time.

This behaviour of the co-operative computer, as we implemented it, underlines
the conclusion reached by Fischer, McCall and Morch (1989) who, in developing
and evaluating intelligent support systems for subjective problem domains such as
design, observed that there is no “‘optimal solution” but instead, a set of alternative
solutions which satisfy, (i.e. solutions which are dependent upon a particular metric
and a particular viewpoint).

Throughout this process, parallel ADKBs are being continually updated as the
user and partner generate alternative layout solutions using the available objects.
This adds to the knowledge base, and enables the PM to respond in an
ever-increasingly sophisticated way.

The standard object data structure is as follows:

object({user/partner),
object_type(object_instance),
location,
(permanent/moveable)).

Transfer of data from the databases is at the discretion of the user, who can either
freeze objects in the user’s window {thereby barring input from the partner model),
or transfer object configurations generated by the partner model into the user’s
solution, where they are incorporated. Both of these techniques have similarities to
those observed in human—human co-operative behaviour.

INTERFACING WITH THE GOAL-ORIENTED WORKING (GOW) MECHANISM

A software technique (developed in LUTCHI), which makes it possible to construct
goals visually, provided the enabling technology for the representation of goal-
oriented working (GOW) within the computer. By using the technique, the user is
able to construct spatial relationships between objects, which are then translated
into a Prolog rule base. This enables the PM to manipulate them as goals. In this
way, the user can declare his or her goals to the GOW mechanism in the
co-operative computer, which in turn can then work towards the, by now, common
goals. The availability of this method was significant to the development of the
system software and its use.

A representational number of spatial relationships were created in the system,
and users were able to construct and delete goals as required during the interaction.
The relationships were object-sensitive; e.g. the concept of nearness is quantita-
tively different when applied to a desk—wall combination than to a desk-chair
combination.

The GOW mechanism also included simple error checking which alerts the user to
possible sources of goal conflict. Once the goal list has been created, the software
works out the order in which to place the objects based on the logical properties of
the objects and their declared relationships.

A CO-GPERATIVE COMPUTER 17

So, for example, if the following goals were created in the following order:

1..... phone_on_desk
2..... desk_near_wall

the desk would have to be positioned first before the initial goal could be achieved.
If geal fulfiilment was to be object-independent, then the order of creation of the
goals was taken to be the deciding factor. Examples of user constructed goals,
shown in the format actually used on screen, are given in Figure 3.

INTERACTING WITH THE PM

The PM basically consisted of rule sets, i.e. subsets of design knowledge concerned
with the proportionality of the relationships between objects in a finite space: in this
case the location of furniture within a room. Examples of the rule sets mounted in
the PM included; Symmetry, Golden Section and Safety (the latter reflecting a
different style of rule). Application of the safety rule, for example, would always
keep an access route clear from the window to the door as a priority. (The user
could change the priority of rules but the computer could not.) The user can select
the particular set to be applied by the PM. This enables the user to view a number
of alternative object configurations, each generated by the PM, exhibiting a different
emphasis or style. Division of response is thus placed in the hands of the user, and
he or she can require the PM to place a high priority on safety, for example, so
being free to pay more attention to the stylistic aspects of the design task. Figure 4
shows how representative design solutions appeared when the PM observed safety
priorities and the user did not. (Here, one would expect the user to adopt the PM’s
solution.)

At each stage in the user’s development of a solution, the PM interrogates the
resulting object configuration. It then applies its own rules (i.e. the rule set) and
generates a composition of the objects derived from the user’s current solution. This
takes place within the limitations of the framework of the user’s declared goals.
Incorporated within the PM’s solution strategy is a mechanism for the identification
and consequent rejection of any alternative solution which might break fundamental
constraints implicit in the task domain. The mechanism, for example, operates using
the statements “‘objects must remain within the bounds of the room”, and “objects
must not occupy the same space”. An exception to the latter is the object

cabinetl near wall2
bookcasel near wall3
bookcase | near walld
desk 1 near window |
chairl in_front_ofl desk1
chair? in_front_of desk2

FiGure 3. Examples of goals constructed by the user, in the interface format.

18 A. A CLARKE AND M. G. G. SMYTH

b "
Chi Chl
Q
4]
Desk k Desk
5
Ch2 Ch2

‘[>roc=-|

YA

{a) Uscr (h)PM

FIGURE 4. User and partner medel (PM) worked to the same goal, but the PM also implemented the
safety rule “keep a clear emergency route from door to window™.

“telephone”, which is permitted to occupy the same space (i.e. in plan) as any
furniture object. The “‘telephone_on_...” goal is not commutable, i.e. the
telephone can be put on any object within the walls, including the floor, but nothing
may be put “..._on_telephone”.

PERFORMANCE EVALUATION

Although the perceived way in which the machine achieved declared goals
conformed with the behavioural features associated with co-operation, it was clear
that the reaction of some representative users would be informative if a balanced
view of the machine were to be obtained. Accordingly, a small number of designers
were invited to use the co-operative computer in an informal evaluation.

Because of the difficulty during the time of the research in obtaining rule-sets, the
set employed in developing the machine was used, with all its shortcomings, in the
evaluation. Consequently, the usefulness of the machine was limited in the
evaluation. This was explained to the designers, and after a brief introduction to the
method of declaring goals and operating the computer, they attempted a range of
design problems. Their overall judgement was that the co-operative computer
provided rather poor design solutions (due to the limitations of the rule-set used),
but that the solutions offered by the machine at various stages in the joint design
process provided a very powerful prompt to their own imaginations, and helped
them to define and express their own goals in a clear and structured way, to an
extent that they had not experienced before. (This, of course, is one of the
advantages of co-operation.)

They felt, initially, that the interface placed restrictions on them, but they soon
became used to it, and then started to develop some facility with the system. They
also noted a distinct and different type of interaction between themselves and the
co-operative computer, in comparison with their experience of other “ordinary”
computers, in that not only were they manipulating data in a different way, but also

A CO-OPERATIVE COMPUTER 19

the machine was separate to, but ““with them” in trying to solve the same problem.
This is an important result, albeit from a limited sample of users, because it is an
indicator of the behavioural gestalt observed in the best type of co-operation. The
designers found this difference intriguing but in no way threatening.

The designers enjoyed using the machine, and were able to accept its way and
speed of operating, and its alternative solutions. They were quite prepared to carry
out field trials of such a machine, provided that rule-sets more representative of
their own task domain and experience were made available in the PM. (Fischer,
McCall & Morch [1989] also let computer science students, design students and a
kitchen designer evaluate their CRACK system [a knowledge-based critic]. Their
performance also suggested that students could produce better designs and learn
about design principles through the use of this type of system.)

Discussion and conclusions

OVERALL CONCLUSION

The primary objectives of the work described in this paper were to identify the
mechanisms central to the development of a co-operative computer and to exemplify
these mechanisms in software. It is concluded that these objectives have been
achieved, and that a prototype computer that could properly be called “co-
operative” was successfully constructed.

CONCLUSIONS ABOUT THE PERFORMANCE EVALUATION

The goal-oriented design solutions offered to the user by the partner model are
viable, alternative configurations of the user’s objects, developed using a different
rule set to that employed by the user; the solutions are, however, neither “right”
nor ‘‘wrong”, but increase the user’s understanding of the design problem.

It is concluded that the most potent effects of the partner model’s solutions or
“suggestions”, are (a) to increase greatly the user’s opportunity to interact with the
design problem, thus leading to an increased understanding of the problem, and (b)
to spur the user’s creativity; an important feature of the co-operative machine, and
one which differentiates it from an expert system. For example, Fischer, McCall and
Morch (1989) found that designers often got “lost” during extensive browsing in
VIEWPOINTS (a hypertext system containing useful information about the
principles of kitchen design, in the form of a “default” knowledge base of design
principles) since there were a large number of “issues”, i.e. specific problems, in the
information base, but no facility available for guiding designers in the right
direction.

Thus, in interacting with the PM, the user can try out alternative solutions, make
comparisons with the PM’s proposed solutions, or incorporate all or some of the
PM’s solution into an acceptable ocutcome. In this way, it is concluded, the
co-operative computer can either provide a direct input to the problem-solving
process, or can act as a Rogerian sounding-board against which ideas can be
explored and evaluated.

20 A. A. CLARKE AND M. G. G. SMYTH

CONCLUSIONS CONCERNING SOFTWARE DEVELOPMENT

The degree of co-operation achieved by the machine is a result of interaction
between the underlying mechanisms, and not just a result of their individual actions.
In principle, the computer—-human interface makes this co-operative behaviour
manifest to the user. However, the authors note that the interface software
requirements only became fully definable when the room design metaphor had been
adopted. It is concluded that although an overview of the functionality of the
mechanisms of the intended software is important, a complete definition of a task
metaphor is a prerequisite for the development of software for a co-operative
machine. By using ‘“‘visualization of knowledge” techniques based on the metaphor,
the resulting interface enabled the user to more readily (a) define the task objects,
and (b) declare the required goals.

Thus, the user interface of the co-operative machine enabled the user to enhance
the agreed definition knowledge base, improve the process of generating alternative
solutions, and increase the degree of co-operation.

CONCLUSIONS CONCERNING THE PM

Co-operation between humans is primarily a dynamic relationship, because both
parties are learning or reinforcing the concepts being expressed during the
interaction. However, it is possible that the co-operative relationship could, over
time, become static. Without the introduction of new sources of information, a
co-terminous commonality of knowledge could arise between the partners, so
reducing the effectiveness and, utlimately the creative potential, of the relationship.
In human-human co-operation, information relevant to the task domain can come
from a multitude of external sources. However, in the co-operative computer being
described, the PM is static, and does not develop during the interaction. So, as the
user becomes cognizant of the PM rule set, the machine-generated alternatives will
become predictable, and then will no longer serve as an aid to the user’s
imagination. It is concluded that the ability of the human partner to learn during
co-operative interaction implies (at best) or guarantees (at worst) a limited period of
usefulness for a static partner model in a single-user system.

The main conclusion drawn from modelling a co-operative partner within the
machine is as follows. If the PM simply mimics the user, then there is a risk that if
the user is unable to solve a problem, then neither will be able to solve the problem.
On the other hand, if the knowledge or expertise of the parties is too disparate,
there will be little or no communication between them. The most fruitful
relationship will occur when both parties have similar, but not identical, capabilities,
and are capable of learning from the co-operative interaction.

FUTURE DEVELOPMENT OF THE CO-OPERATIVE COMPUTER

Successful future development of the co-operative computer must address a number
of issues, chief of which are:

(a) Because the extent of co-operation varies between tasks, the existing
problem-defining and problem-solving processes adopted by human partners
in a particular task must be clearly identified before attempting to build a
co-operative machine with which to address the same or related tasks,

A CO-OPERATIVE COMPUTER 21

(b) The mechanisms of GOW, the PM and the ADKB, as described in this paper,
provide a viable outline architecture for future research into, or development
of, co-operative machines.

{c} The quantity and quality of machine co-operation perceived by the user
depends upon the interaction of the software mechanisms and the way in
which the machine’s resulting behaviour manifests itself to the user, and, as a
corollary to (c).

(d) The knowledge bases of the PM and the ADKB should be capable of being
updated, either from each interactive session with the user, or from other
external sources, or (preferably) from both.

The work described was carried out as part of the Alvey Human-Computer Co-operation
Project MMI/062, and was completed in 1989. Thanks are due to our colleagues at the
LUTCHI Research Centre: in particular, the grant holders, Ernest Edmonds and Steven
Scrivener, plus Steve Bell, Mark Buckley, Tom Bayley and Andrée Woodcock. Also to Mark
Shuttleworth of ICL, and to Dr John Pinkerton, our Technical Monitor, for his
encouragement.

References

AxeLrop, R. & HamiLton, W. D. (1981}). The evolution of co-operation. Science, 211,
139G-1396.

BirenBauM, A. & Sacarin, E. (1976). Norms and Human Behavior. New York: Praege
Publishing.

Brakg, R. R. & Mouron, J. 8. (1962). The inter group dynamics of win—lose conflict and
problem solving collaboration in union management relations. In M. Suerir, Ed.
Intergroup Relations and Leadership. pp. 94-140, New York: John Wiley & Sons.

Braxke, R. R., SHEPHARD, H. A. & Mouron, 1. 8. (1964). Managing Inter Group Conflict in
Industry. Houston, TX: Gulf.

Broapsent, G. (1973). Design in Architecture. London: John Wiley & Sons.

CLarkE, A. A. (1986). A three-level human—computer interface model, International
Journal of Man—Machine Studies, 24, 503-517.

CLARKE, A. A., Woobcock, A. & McDawp, E. (1986). The highway engineer, a typical
user? HCC Internal Report HCC/L/9, Loughborough, Loughborough University of
Technology, UK.

Dawis, J. H. (1969). Group Performance. Wokingham: Addison-Wesley.

Deutsch, M. (1949). A theory of co-operation and competition. Human Relations, 2,
129-152.

DeurscH, M. (1962). Co-operation and trust: some theoretical notes. Nebraska Symposium
on Motivation, pp. 275-230.

DeutscH, M. {1968). The effects of co-operation and competition upon group processes. In
D. CarrrigHT & A. ZANDER, Eds. Group Dynamics, pp. 461-482. New York: Harper
and Row.

DeutscH, M. & Krauss, R. M. (1960). The effect of threat on interpersonal bargaining.
Journal of Abnormal and Social Psychology, 61, 181-189.

FiscHer, G., McCaLL, R. & MorcH, A. (1989). Design environments for constructive and
argumentative design. Proceedings of CHI'89, pp. 269-275. Austin, Texas, April 30—4
May.

FeveraBenD, P. (1965). Consolations for the specialist. In I. LakaTos & A. MUSGRAVE,
Eds. Criticism and the Growth of Knowledge. Cambridge: Cambridge University Press.

Games, B. R. (1981). The technology of interaction—-dialogue programming rules.
International Journal of Man—Machine Studies, 14, 133-139.

Goroon, W. 1. (1961). Synetics, the Development of Creative Capacity. London: Harper &
Row.

22 A. A. CLARKE AND M. G. G. SMYTH

Gricg, H. P. (1975). Logic and conversation. In P. CoLe & J. L. MoraGan, Eds, Syntax and
Semantics, Vol. 3, pp. 41-58, “Speech Acts”. London: Academic Press.

Hovr, M. (1971). Mathematics in Art. London: Studio Vista.

Hussanp, R. W. (1940). Co-operation versus solitary problem solution, Journal of Social
Psychology, 11, 405-409.

Jongs, I. C. (1970). Design Methods: Seeds of Human Features. New York: John Wiley.

KerLey, H. H. & Staneuski, A. J. (1970). Social interaction basis of co-operators’ and
competitors’ beliefs about others. Journal of Personality and Social Psychology, 16,
66-91.

LauvcHLIN, P. R. (1978). Ability and group problem solving. Journal of Research and
Development in Education, 12, 114-120.

LavcHLn, P. R., McGLyNN, R. P., ANDERsON, J. A. & Jacosson, E. S. (1968). Concept
attainment by individuals versus co-operative pairs as a function of memory, sex and
concept rule. Journal of Personality and Social Psychology, 8, 410-417.

LaureL, B. K. (1986). Interface as mimesis. In D. A. NormaN & S. W. Drarer, Eds.
User-Centred System Design: A New Perspective on Human—-Computer Interaction. pp.
67-85, Hillsdale, NJ: Lawrence Erlbaum Associates.

MarweLL, G. & Scumrrr, D. (1975). Co-operation—an Experimental Analysis. London:
Academic Press.

MippLETON, M. (1967). Group Practice in Design. London: Architectural Press.

Moran, T. P. (1981). The command language grammar: a representation for the user
interface of interactive computer systems. International Journal of Man-Machine Studies,
15, 3-50.

Murray, D. & Bevan, N. (1984). The social psychology of computer conversations.
Proceedings of Interact'84, pp. 268-273.

Niecson, J. (1984). A virtual protocol model for computer—human interaction. DAIMI
PB-178, Aarhus, Aarhus University: Computer Science Department,

OBerQUELLE, H. (1984). On models and modelling in human—computer co-operation. In G.
VAN DER VEER et al., Eds. Reading in Cognitive Ergonomics. pp. 26-43, Berlin:
Springer Verlag.

OBEROUELLE, H., Kupka, 1. & Maass, S. (1983). A view of human—computer communica-
tion and co-operation. International Journal of Man—Machine Studies, 19, 309-333,

Oseorn, A. F. (1953). Applied Imagination. New York: Charles Scribner’s Sons.

RoTtHsTEIN, 5. & PieroTTI, R. (1988). Distinctions among reciprocal altruism, kin selection
and co-operation, and a model for the initial evolution of beneficient behavior. Ethology
and Sociobiclogy, 9, 189-209.

SuHERIF, M. & Suerir, C. W. (1953). Groups in Harmony and Tension. New York: Harper.

Snurg, G. H., Meexer, L. J. & Hanskorp, E. A. (1965). The effectiveness of pacifist
strategies in bargaining games. Journal of Conflict Resolution, 9, 106-117.

SuutTLEWORTH, M. (1988). Office layout: a userftask analysis. HCC Internal Report
HCC/1/25, Loughborough, Loughborough University of Technology, UK.

SmyTH, M. (1987). Toward a co-operative design system. HCC Internal Report HCC/L/20,
Loughborough, Loughborough University of Technology, UK.

SMyTH, M. (1988). Articulating the designers mental codes. HCC Internal Report HCC/L/24,
Loughborough, Loughborough University of Technology, UK.

Srinivasan, C, A, & DascHer, P. E. (1977). Information systems design: user psychology
considerations. MSU Business Topics, 285, 51.

THorNDIKE, R. L. (1938). The effcts of discussion upon the correctness of group decisions
when the factor of majority influence is allowed for. Journal of Social Psychology, 9,
343-362.

Turre, E. R. (1983). The Visual Display of Quantitative Information. Connecticut: Graphic
Press.

Young, 1. Z. (1979). An Introduction to the Study of Man. Oxford: Oxford University Press.

