Elsevier

Information and Computation

Volume 140, Issue 2, 1 February 1998, Pages 254-283
Information and Computation

Regular Article
Error-Free and Best-Fit Extensions of Partially Defined Boolean Functions

https://doi.org/10.1006/inco.1997.2687Get rights and content
Under an Elsevier user license
open archive

Abstract

In this paper, we address a fundamental problem related to the induction of Boolean logic: Given a set of data, represented as a set of binary “truen-vectors” (or “positive examples”) and a set of “falsen-vectors” (or “negative examples”), we establish a Boolean function (or an extension)f, so thatfis true (resp., false) in every given true (resp., false) vector. We shall further require that such an extension belongs to a certain specified class of functions, e.g., class of positive functions, class of Horn functions, and so on. The class of functions represents our a priori knowledge or hypothesis about the extensionf, which may be obtained from experience or from the analysis of mechanisms that may or may not cause the phenomena under consideration. The real-world data may contain errors, e.g., measurement and classification errors might come in when obtaining data, or there may be some other influential factors not represented as variables in the vectors. In such situations, we have to give up the goal of establishing an extension that is perfectly consistent with the given data, and we are satisfied with an extensionfhaving the minimum number of misclassifications. Both problems, i.e., the problem of finding an extension within a specified class of Boolean functions and the problem of finding a minimum error extension in that class, will be extensively studied in this paper. For certain classes we shall provide polynomial algorithms, and for other cases we prove their NP-hardness.

Cited by (0)