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Let @, be the random number of comparisons made by quicksort in sorting n
distinct keys, when we assume that all n! possible orderings are equally likely. Known
results concerning moments for @, do not show how rare it is for @, to make large
deviations from its mean. Here we give a good approximation to the probability of
such a large deviation, and find that this probability is quite small. As well as the basic
quicksort we consider the variant in which the partitioning key is chosen as the median
of (2t + 1) keys.
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1 Introduction

In the short history of computer science, Hoare’s quicksort has emerged
as one of the classic algorithms. There are several reasons for this.

First, the algorithm is efficient. It is a ©(n logn) expected time sorting
algorithm (where n is the number of keys to be sorted). Arguably one of
the best general purpose computer sorting algorithms from a point of view
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2 HAYWARD AND MCDIARMID

of space and time efficiency, it is the basis for example of the Unix “sort”
feature, which uses the variant of quicksort in which the partitioning key
is chosen as the median of three keys.

Second, the algorithm embodies two paradigms that are today con-
sidered key ideas in algorithm design, namely divide and conquer, and
randomization.

Third, since the introduction of quicksort [Hoa61], an extensive body
of literature has been published that is based on the design and analy-
sis of many variants of the original algorithm. (Many of the commonly
considered variants were in fact anticipated by Hoare in [Hoa62]. For a dis-
cussion of this, see [Sed80].) Indeed, the study of quicksort and its variants
has become a model for the analysis of algorithms in general. Examples
in point are the work by Knuth [Knu73] and by Sedgewick [Sed80]. (For
recent relevant results on the analysis of quicksort, see [Hen89], [Rég89],
[R6s91] and [Mah92].)

The aim of this paper is to establish a new and rather precise result
concerning quicksort’s typical performance. We establish much tighter
bounds than have been shown previously on

the probability that the number of comparisons of a random exe-
cution of quicksort will have a large deviation from the expected
number of comparisons.

Our proofs involve the recently popularised combinatorial approach known
as the “method of bounded differences”.

Before introducing the definitions we need in order to state our theo-
rems precisely, let us discuss the two variants of quicksort we shall refer
to in this paper. First, by “basic” quicksort (and unless otherwise stated,
that is the version we will be referring to) we mean the original, unadorned
version:

A partitioning key is selected at random from the list of unsorted
keys, and used to partition the keys into two sublists. The algorithm
1s called recursively on remaining unsorted sublists, until sublists
have size one or zero.

One common variant is to use a different sorting algorithm (usually inser-
tion sort) for lists whose size is not greater than a certain threshold value
M. We refer to this variant as “cutting at length M”. Another common
variant is to select the partitioning key as the median of 2¢ + 1 keys se-
lected from the list of unsorted keys. (Observe that basic quicksort can be
considered as the “median of 1”7 version of this variant.) A comprehensive
survey and comparative analysis of common variants is given in [Sed80].

We now introduce some notation. Let @, be the number of key com-
parisons made when (basic) quicksort sorts n keys. We make the usual
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assumption that the n keys are distinct and that all n! linear orders are
equally likely. (Alternatively, our results apply to a suitably randomised
version of quicksort acting on any list of n distinct keys.) We further as-
sume that the partitioning phase of the algorithm is performed so that
the resulting sublists are also “random”. Some care must be taken to en-
sure this, but it is not difficult to do. See [Sed80] for a description of such
a partitioning algorithm, and a proof that the randomness of the sublists
is preserved.

A straightforward and well known analysis (in fact, so well known it
is likely to appear in any undergraduate algorithms course!) shows that
the expected number ¢, = F [Q,] of key comparisons satisfies ¢go = 0 and
forn>1

1 n
Gn = n—1+ ﬁZ(%—l""Qn—j)' (1)
j=1
Define H,, so that Hy = 0 and H; = Y4 1/j for all integers t >
1. It follows easily from Equation 1 that ¢, = 2(n + 1)H,, — 4n. Since
H, =Inn+~+0O(1/n) as n — oo, (where v is Euler’s constant, namely
0.5772156649 . ..), it follows that as n — oo,

n = 2nlnn — (4—2y)n + 2Inn + O(1).

Of course one attaches more credibility to an average case result if
it is known that there is a strong concentration of probability around
the mean. In particular, given £ > 0, what bounds can be placed on the
quantity

% -1 ’ > 5] ?
dn
The point of this paper is to establish tight bounds for the above proba-
bility. There are some previous results of this form. For instance, from the
fact that the variance of Q,, is ©(n?) (see [Knu73] or [Sed80]), it follows
using Chebyshev’s inequality that for € > 0

@n _ 1 ‘ > E:| = O((elnn)™?%).

dn

Recently Hennequin [Hen89] used Chebyshev’s inequality with fourth mo-

ments to show that for € > 0 the above probability is O((¢Inn)~*). Even

more recently Rosler [R6s91] improved these upper bounds dramatically

, and showed that for fixed € this probability is O(n~F) for any fixed k.
We shall see that the probability of such deviations is even smaller

than this. For fixed € > 0 we shall show that

Pr[ %—1

an

Pr[

d

24 0(1)) eln@n 2)

>€} = n_(
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as n — o0o. Note that here we use Inn to denote log, n. Also, we use the
notation In® n, where In™ n = Inn and In**Y n = In(In™® n). Our main
result for basic quicksort is a more precise version of (2) above.

Theorem 1. Let ¢ = ¢(n) satisfy 1/Inn <e < 1. Then as n — oo,

Pr { Cjn 1 ‘ > 5] _ n—25(ln(2) n—In(1/e) + O(In® n)) ‘

This result is quite precise for ¢ > 0 fixed or tending to 0 very slowly,
but says little when ¢ = O(In® n/Inn).

Theorem 1 is stated above for the most basic form of quicksort. How-
ever, the difference between the number of comparisons required by this
version of quicksort and the corresponding number for the more efficient
“cutting at length M” variant is only O(n). This small term does not
affect our results, and the theorem we have just stated (as well as the one
that is to follow) also holds for the “cutting at length M” variant.

More care must be taken, however, when considering the “median of
(2t+1)” variants of quicksorts. Recall that these are the variants in which
the partitioning key is chosen as the median of (2¢ + 1) keys. Here ¢ is
a fixed non-negative integer, ¢ = 0 corresponds to basic quicksort, and
t = 1 is perhaps most common in practice.

We need more notation before stating our second and final theorem.
Let ng ) be the random number of comparisons taken to sort a random
list of length n, and let ¢ = E [Qﬁf)] Thus QW is Q,,. For j = 1,2, . ..
let kj = (Hojp2 — HjH)_l. Thus for example kg = 2 and k1 = 12/7. It is
well known ([Van70] and [Sed80]) that

¢ = Kk, nlnn + O(n) as m — 00 .

We can now state the “median of (2¢+1)” extension of our first theorem:

Theorem 2. Let ¢ = ¢(n) satisfy 1/Inn < e < 1. Then as n — oo,

gf)
Ple

We close this introductory section by mentioning that our results for
basic quicksort apply to the analysis of binary search trees, via a well
known correspondence which we now describe. An execution of quicksort
is commonly associated with a so-called partition tree, namely the binary
tree whose root is the initial partitioning key, and whose two subtrees are

o o| = =t V(@ n—In(1/e) + O(ln® n))
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the trees of the recursive calls. Given a fixed number n of keys, there is
a natural one-to-one correspondence between partition trees and binary
search trees (binary trees in which each left/right child is lesser/greater
than its parent). Thus the distribution of the number of key comparisons
of a quicksort execution is the same as the distribution of the number
of key comparisons performed in constructing a binary search tree by
repeated insertion, when all n! initial orders are equally likely.

Thus, for example, Theorem 1 can be interpreted as a result on binary
search trees, by letting @Q,, be the number of key comparisons made when
a binary search tree on n keys is constructed.

2 Basic quicksort

The purpose of this section is to prove Theorem 1. In §3 we will prove
Theorem 2. In this section we present the proofs of the lemmas in detail.
As the proofs of the corresponding lemmas in §3 are often similar, the
arguments there will be brisker.

We shall work in the simple probability space (£2,F,Pr) defined as
follows (for a given positive integer n). The set {2 is the set of all n!
permutations m of {1,...,n}; the o-field F of events is the set P({2) of
all subsets of 2; and the probability measure Pr is the uniform measure,
so that Pr[A] = |A|/n! for A C 2. (When we prove the lemmas on list
lengths, lemmas 1, 10, and 11, we shall need briefly to consider a richer
probability space.)

2.1 List lengths in the partition tree

A standard technique in the analysis of randomised quicksort is to asso-
ciate with an execution of quicksort a binary tree whose nodes contain the
sublists obtained by the algorithm, the root corresponding to the original
unsorted list, and the children of any node being the sublists obtained
by the splitting of the parent node. We now describe this correspondence
more precisely.

Consider the infinite binary tree, with nodes numbered 1,2,3,... level
by level and left to right in the usual manner. (So for instance, the path
from the root down the left side consists of nodes 1,2,4,8,...). Each ex-
ecution of (basic) quicksort yields a labelling of a subtree of this tree,
corresponding to the recursive structure of quicksort. The root, node 1,
is labelled with the unsorted list of n keys, and its “list length” L, is n.
A partitioning key is chosen, and after partitioning an (unsorted) list of
those keys less than the partitioning key forms the label for the left child
(node 2) which then acts like the root of a new tree. Similarly, those keys
greater than the partitioning key are sent to the right child of the root.
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For each j = 1,2,... let L; be the length of the list to be sorted at
node j. Thus L; = n and exactly n of the L; are non-zero. Our aim in
this section is to show that as we move down the tree the list lengths
shorten suitably with high probability. Let M;' be the maximum value of
the list length L; over the 2% nodes j at depth k, that is

M} = max{Los;:i=0,1,...,2" —1}.

The following lemma is essentially contained in Lemma 3.1 of [Dev86].
We give a short proof here for completeness.

Lemma 1. For any 0 < a <1 and any integer k > In(1/a)

Pr(M] >an] < « (2@111}21/04))16 .

Proof. The key observation is that we can obtain the exact joint distri-
bution of (Lj, La,...) as follows. Let the random variables X1, Xs,... be
independent with each uniformly distributed on the interval (0,1). De-
fine random variables ﬂl,ig, ... as follows. Let L; = n and for i > 1
let Loy = LXzI:zJ and Egiﬂ = [(1 - Xl)INLZJ Then it is easily seen that
(L1, La,...) and (ﬂl,ﬂg, ...) have the same joint distribution. Also, let
M,? be the maximum value of ij over the nodes j at depth k. Then it
follows that M;' and M + have the same distribution.

Now define further random variables Zi, Zs,... from X, Xo,... as
follows. Let Zl =1 and for ¢ > 1 let ZQZ' = X1ZZ and Z2i+1 = (1 — Xz)Zz
Then we have Ei < nZ; for each i = 1,2,.... Let Z; be the maximum
value of Z; over the 2% nodes j at depth k. Then

M} < nZj.

Now the conclusion of the lemma follows from a series of routine proba-
bility inequalities and arguments involving Z;. We have

Pr[M; >an] =Pr []\Zf,? > om}
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since each random variable Z; at depth k is the product of k independent
random variables uniformly distributed on (0, 1). Thus

k
Pr[M,?Zan]§2kPr[HXiZa
i=1

k
<2ka™°E [H Xf] for any s > 0, by the Markov inequality
i=1
= 2o~ (2 X))
=250 (s +1)7"
2eln(1
_ a( e n](c /)

k
In(1/c)

to minimise the bound.

k
> upon taking s+ 1=

2.2 The bounded differences approach

In this section we shall use the idea of the method of “bounded differ-
ences” [McD89] to establish some necessary lemmas.

We shall be interested in the comparisons performed by quicksort on
each of the levels of the partition tree. (Recall that the root is at level
0.) For £k = 0,1,2,... let H, = Hi(m) be the random “history” of the
comparisons performed at level k, namely, a record of each comparison,
and its outcome, made at level k. Thus the vector (Hy, Hy,..., Hx_1)
records the entire history of the process for the first k levels: we call this
the k-history H®.

It is convenient to introduce some more notation. Let k be a positive
integer and let h be a (fixed) possible k-history.

Let (2, denote the event that we observe this particular history, that
is, 2, = {m € 2 : H®(r) = h}. Note that the list lengths at depth k
are determined by h, that is, they are the same for all 7 € (2),. We shall
be interested in the case when their maximum size M’ is not too large.

Given that the event {2, occurs, we are now concerned with the prob-
ability space (£2,, P(£2p), Pry), where Pry, is the uniform probability mea-
sure on {2;,. Let us use Ej, for expectation in this space.

Also, given that (2, occurs, our “base point” is Ej[Qy]. Suppose that
we run the process on down to some level &' —1, where k' > k. The random
variable Ej[Qn|H*)] depends on the random extension H*") of h ob-
served. [Recall that by definition Ej[Q,|H*)](7) = EL[Qn|H*) = b'] for
T € (2, where b/ = H®)(x): another notation for this is Ey[Qn|F] where
F is the o-field generated by H*") restricted to £2),.] Thus Ej[Q,|H*")]
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will deviate from Ej[Q,] depending on whether there were good or bad
splits after h. We want to show that these deviations are very unlikely to
be large.

If h is any level 0 history, so that A tells us the rank r of the initial
splitting element, then

Eh[Qn] —qn =n—1+q¢_ 1+ —aqn-

The key property of (basic) quicksort that makes our proofs work is given
in the following lemma.

Lemma 2. Let n be a positive integer and let
Ay ={n—-14+¢_1+quor—qu : r=12,...,n}.

Then
(a) | x| <n foralzeA,, and
(b) max(Ay) — min(4,,) < (2In2)n.

Proof. This follows from straightforward manipulations of the closed form
solution to Equation 1 that we have described earlier. The details of this
proof are given in an Appendix.

Lemma 3. Let n and k be positive integers and let h be any possible
k-history for Q.. Then

|Eﬁ[Qn] —4n ’ < kn.

Proof. If k =1 the result is just lemma 2(a). Now let £ > 2, and under a
given k-history h let the list lengths at level k be l1,la,...,lox. Then

| En[Qu|Hy = h] — Ey[Qn] |

2k . . . .
_ o for suitable level-0 histories h(j)
N ]z::l (E [Qlj [Ho = h(])} B %) obtained from h,
ok
< l; by the case k =1
j=1

The lemma now follows by induction on k.
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We shall use Lemma 3 when considering levels near the top of the
partition tree. For further down the tree we use another inequality, again
based on Lemma 2. First we need two preliminary lemmas taken (essen-
tially) from [McD89].

Lemma 4. (see lemma 5.8 in [McD89]) Let X be a random variable such
that E[X] =0, and a < X < b for some constants a and b. Then for any
87

Elexp{sX }] < exp{s*(b—a)?/8} . n

The second preliminary lemma is a variant of Theorem 6.7 of [McD89).
It is our ‘bounded differences’ inequality, though ‘constrained differences’
might be a more appropriate phrase here.

Recall that a filter in a probability space (§2,F,Pr) is an increas-
ing sequence Fo C F1 C ... of o-fields contained in F. Given a filter,
a sequence Xg, X1,... of integrable random variables is a martingale if
E [Xiy1 | Fi) = X; for each t. For an introduction to the theory of mar-
tingales, see for example [Nev75] or [Wil91].

Lemma 5. Let (9,02) = Fo C F1 C ... C F, be a filter, let X be
an integrable random variable, and let Xg, X1, ..., X, be the martingale
obtained by setting Xy, = FE [ X | Fi|. Suppose that for each k =1,...,n
there is a constant ¢ such that for any s we have

Elexp{ s(Xp — X 1) } | Fra] < exp{ s}
Then for any t > 0

n
Pri| X, —Xo| > t] < 2exp{—t2/420i}.
k=1

Proof. We follow the lines of the proof of Theorem 6.7 of [McD89]. Let
Vi = Xi — Xj—1 and S, = 2V, Y; = X}, — X,. For any s > 0,
Pr(X —FE[X]>t]=Pr[S, >t]

<e *"Elexp{sS, }]

=e *'Flexp{sS,_1 }Elexp{ sY, } | Fr_i]]

<e *'Elexp{ sS,_1 }] exp{ 2 s? }

< e *lexp { s Z c } by iterating.



10 HAYWARD AND MCDIARMID
Now set s = ¢/23" ¢2 to obtain
PriX - E[X]>t] <exp{ /43¢ }.

To obtain the same bound for Pr[ X — E'[X] < —t], just replace X by
—-X.

Lemma 6. Let k1 < ko be positive integers, let « > 0, and let h be a
possible ki-history for which M < an. Then for any t > 0

2
Pry [| EalQulH*?) — EplQu] | 2 1] < zexp{ _2(1n2)2(l:2 — k)an? } |

Proof. We shall set up things to use Lemma 5. We work in the probability
space (£2p, P(£2), Pry). The filter is defined by letting F}, be the o-field
generated by the histories Hy,, ..., Hg,+x—1. Thus the filter corresponds
to the increasingly refined partitions of {2, obtained from all the different
possible extensions of the kj-history h.

Naturally we take X to be @, (restricted to §25). Thus in the notation
of Lemma 5 we have X = Ej,[Q,], and Xy, &, = Eu[Qn|H*?)]. We claim
that for any kK = 1,2,... and any s we have

Eplexp{ s(Xx — Xk—1) } | Fr—1] < exp{ 0%32 } (%)

1
where each ¢ = = (In2)?an?. Once this claim is established, the lemma

will follow immediately from Lemma 5.

Let us then prove the claim (k). Let k be a non-negative integer, let
j = k1 + k, and let A’ be a possible j-history extending h. We condition
on the event H ) = h' and use notation as before. Define the random
variable T" on {2/ by setting

T = Ey(Qn| Hj] — Ep[Qn].
The claim (x) is equivalent to showing that for any s
Eplexp{sT }] < exp{ s%(In2)%an?/2 } . (xx)

It remains then to prove (#x). As we observed earlier, given that
HY = K, all the list lengths at depth j are determined, say as I, ..., ly;.

Also we have
S < an?
i
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since each [; < an and ) ,;l; <n .

Now T has the distribution of the sum of 2/ independent random
variables Tj, for i = 1,... , 27 where Tj, is uniformly distributed on the
set A, (defined in Lemma 2). Hence, by Lemmas 2(b) and 4, for any s

Ey lexp{ sT }] = H E[exp{ sTi, }]

gexp{ 82(21n2)22l?/8}
Sexp{ s*(In2)%an?/2 },

as required.

2.3 Upper bound

We now need only assemble the pieces from §2.1 and §2.2 to give a non-
asymptotic upper bound for the probability of a large deviation — this is
Lemma 7 below — and then choose appropriate values for the parameters
to yield the upper bound in Theorem 1.

Lemma 7. Letn, k1 and s be positive integers. Then for any real o with
0 < a < 1 and positive integer ky such that In(1/a) < ki, ko > ki,
ko > In(n/2) we have

PrHQn_Qn|2 k1n+5] <

2 (261n(n/2))k2 a (2e ln(l/a))kl

n ko 1

2 —_— .
+ exp{ 2(]€2 — ]{31)0471,2 }

Proof. Let R, be the random variable F [Qn | H (’”)]. Recall that a kq-

history ﬁ(kl) determines M,’J1 Let H be the set of ki-histories Q(kl) for
which M,?l < an. Then

PrHQn_Qn| > k’ln‘FS]

<Pr[Qn# Ra] + Pr[H®) ¢ H]|
+Pr[|Rn—qn]2k1n+s and ﬂ(kl)EH}

=Pr[Qn # Ry] + Pr[H® g #]

+ 3 (Prall Bu—gn| > kints] xPr[H® =h])
heH
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<Pr[Mp, >2] + Pr[M >an]
+ 3 Puy [(| B — En[Ra] | 2 5)] x Pr[H®) = h]
he'H

since | Ey[Ry] — gn | < kin by Lemma 3. The result now follows from
Lemmas 1 and 6.

Lemma 8. Let ¢ = e(n) satisfy 0 < e < 1. Then as n — oo,

Pr { Cjn -1 ‘ > 5] < exp{ —2¢Inn(In® n —In(1/¢) + O(In® n)) } .

Proof. It suffices to assume that e(n) > eo(n) = 2In® n/Inn, for if
€ < g then the upper bound can take the value 1.

We need to choose our parameters appropriately. Let s = s(n) and
k1 = k1(n) be integers with

_ [enlnn
° T n@n |’

and .
ki = |2¢elnn—2s/n] = 2¢elnn(1+0(—%) | -
In®

Observe that

kin+s=|2enlnn — s

<egqy for n sufficiently large ;

and then
Qn
Pri|——-1|>¢| <Pr[|Qn—qn|>kin+s].
dn
Next let
a = a(n) = 2@ n)=?
and let

ko = ka(n) = [(nn)(In® n)|.
Note that k1 > In(1/«) for n sufficiently large, since

In(1/)  2In(1/e) +10m@n _ (1/e)In(1/e) o(d)

kq 2¢Inn Inn

A
+
=)

=
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It remains only to check that each of the three terms in the right hand
side of the inequality in Lemma 7 is suitably small. The first term is

2 /2eln(n/2)\ " 3)
n<k:2> Sexp{—kgln n},

which is very small. The second term is

a <261r1]§11/a)>k1 < exp{ —ki(Ink; —In® (1/a) + O(1)) }
= exp { —2elnn (ln@) n— ln(l) - ln(2)(z) —In@Wn + O(l)) } ,

9 9

= exp { —2elnn (ln@) n— ln(l) +O(In® n) } ,

3

which is as required. The third and final term is

9 —2s?
P (ko — k1)(2In2)2an?

_ {1+o w2t/ )’ }
i} )

In 2)2 lnn)( ) n ( ) 5n2

lnn(ln(Q) )2} ,

< Qexp{ 1 2
n

which is very small.

2.4 The lower bound

In this section we shall prove the lower bound part of Theorem 1. We
shall see that a few “bad splits” near the top of the partition tree can
account for the probability of large deviations.

Lemma 9. Let € = e(n) satisfy 1/Inn <e <1. Then as n — oo,

{Qn -1> €:| > exp{ —2e¢lnn (ln(z) n —In(1/e) + O(In® n)) } .
qn
Proof. The proof for the median of (2t41) quicksort will be very similar to
the proof below, so it is convenient to introduce kg = 2 into our discussion.
As in the proof of Lemma 8, we need to choose the appropriate parameters
carefully.

To begin with, let us assume that

e(n) > 9@ n/Inn . (%)
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Let
= p(n) = 3G n/In®
and let
kK =ko+tpu AN=p/3and 6 = p/d.
Note that
k(1 —kA/2) > Ko+ 0 for n sufficiently large.
Now let

k = k(n)=|kelnn],

I =1l(n)=[(An)/(elnn)],
J=Jn)={2+1:j=0,1,...,k—1}U{2"},

and let £ = L(n) be the set of vectors (/; : j € J) of non-negative integers
l; such that I; <1 for each j € J\{2*}.

For each [ in £ let A(l) be the event that L; = [; for each j in J.
Finally let A be the union of the events A(l) for [ in £. Note that

PrA]> (l*‘1>k

n

(5li\1n>k
:exp{ —(ko+ p)elnn <1n( n —ln(l)—i—ln(i)) }
= exp{ —koelnn (ln@)n—ln(l/e) +O(In® )n)) } .

A\

Let @/, be the number of comparisons corresponding to partitioning
the leftmost nodes at depth at most k — 1 (these are the parents of the
nodes in the set J) and let Q! = @, — @Q),. If the event A occurs then

Zin—jl—i—l )—1)

:kM—l—%%—UU+U)
=ke(l —kA/2)nlnn + O(n)
> (ko +0)enlnn + O(n).

Now let [ € £ be such that Pr[A(l) ] > 0. Observe that }~;c ;l; = n—k
at least once k(I + 1) < n. Conditional on A(l), Q7 is dlstrlbuted like
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>_jes Qi;, where these k+1 random variables @, are independent. Hence
BlQy | AD] =) ElQu]
Jj€J

> Z(Iﬁ:o lj lnlj — 4lj)
jedJ

> Ko lor Inlyr + Kok IInl — 4n
where [ = L Y,c j\ rory j. But Iy = n— k(I +1) and so

,_ki+1)

low Inloe > (n — k(I 4 1))(Inn + In( "

)
=nlnn— kllnn+ O((Inn)?).
Hence for n sufficiently large
E[Q" | A()] > konlnn — koklIn(n/l) — 5n
> konlnn — koklIn(n/l) — 5n

1
> konlnn — kgrAnln <5 i\ln) —6n
> konlnn — (4 + o(1))nIn® n |

Also
var QU] AW) = Yvar @, = O(S12) = O(n?).

jeJ jeJ
Here we are using the fact that var(Q,) = O(n?), as noted in §1. Hence,
by Chebyshev’s inequality
Pr [QZ > konlnn —5nln® n | A(D} —1las n— oo,

and this convergence is uniform over [ in L.
Now, for n sufficiently large,

(ko +d0)enlnn + konlnn — 6nln®n > (1+¢)gn -
Hence we have

Pr{@Qn>(1+¢e)gn] =Pr[Qn>(1+¢)g, | A] Pr[A]
= Pr[Qu> (1+€)an | AD] Pr[A()]
el
> ZPr {Q;fb > konlnn — 5nn® n | A(D} Pr{A(l)]
el
=(14+o0(1)) Pr[A]
> exp { —kpelnn (ln(Q) n —In(1/¢) + O(In® n)) }
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as required. This completes the proof of Lemma 9 for the case (x).
Now suppose that

1 9In@ n
— < ¢g(n) <

()

Inn

Thus we can write £(n) = f(n)/In(n), where 1 < f(n) < 9In® n, and so
In® n—In(1/e)+0In® n) = n® n—1n® n+n(f(n))+0(® n)) = OIn® n).

Hence to prove the lemma for (xx), it suffices to prove that
3
Pr [Q” 1> 5} > n—celn( In
dn
for some constant c. We shall in fact show that for n sufficiently large,
R
dn

where ¢ = 12. We choose parameters as before, except that now k =
k(n) = |celnn|. Arguing much as before, we find that for n sufficiently
large,

n—(2c+1)e n® n :

c—1l)enlnn ; and

E[Qn | A(D)] > konlnn — wocAnln (51;171) — 6n .

> konlnn —Tn .

But var(Q” | A(l)) < n? (for n sufficiently large), since var(Q,) ~
(7—272/3)n% asn — oo, and 7 —27%/3 ~ 0.42 < 1 (see [Knu73]). Hence
by Chebyshev’s inequality, with probability > 1/2, Q! > konlnn —9n.
Further (for n sufficiently large)

konlnn + (¢c—1)enlnn — 9n > (1+¢€)g, -

Now we complete the proof much as in the case of (x).

3 Median-of-(2t + 1) quicksort

In this section we shall prove Theorem 2. Many of the ideas and techniques
of this section are similar to those explained in the previous section. Let
t be a fixed non-negative integer throughout.
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3.1 List lengths in the partition tree

We argue much as in §2.1 though the details are more complicated here.

Lemma 10. Let n and k be positive integers, let 0 < a < 1 and suppose
that (2t + 1)2tk < an.

Let X1, Xo,..., X be independent random vartables each distributed
as the median of 2t+1 independent random variables uniformly distributed
on [0,1]. Then

2% + 1)2tk\ K
PriMp 2 an] <2t (1- EEE2E) Pr[]‘[XiZa] .
an i=1

Proof. Let U ]@ for positive integers ¢ and j be independent random vari-

ables each uniformly distributed on [0,1]. For each ¢ = 1,...,k we may
take X; to be the median of Ul(l), ces 2(211
Next we define a decreasing sequence Ny, N1, ..., N; of random vari-

ables corresponding to the list lengths Lo, Lo, ..., Lox. Let Ng = n. For
each ¢ = 1,...,k do the following. If ;1 < an then set N; = ... =
N = 0 and stop. If N;_1 > an then consider Ul(i)7 2(1')’ ... in turn until
we obtain 2¢ 4+ 1 distinct numbers LU]@Ni,lj. Then let N; be one less
than the median of these 2t 4+ 1 numbers. The key observation is that

Pr{Lox > an] = Pr[Ny > an] .

Let A be the event that for each i = 1,...,k with V;_1 > an the first
2t + 1 numbers LUI(Z)Ni_lj, . 2(?+1Ni_1j are distinct. Then

k
Pr[Ny > an and A] < Pr [HXZ > o
=1

since clearly N < ”Hf:l X; on A. Also

k
Pr[A| Ny >an]> <1— <2t+1>2>
2 an

Now the desired conclusion follows from routine probability inequalities.
In particular,

Pr[ M > an] < 2% Pr[Ly > an]
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=928 Pr[N, > an and A]/Pr[A\NkZOM]

§2kPr[ﬁXi2a1 /(1—(%2711)2%) .
i=1

Lemma 11. Let 0 < a < 1 and let n and k be positive integers such that

2t+1 1
In —.
t+1 «o

Let X be distributed like the median of 2t + 1 random wariables each
uniform on [0,1], and let Xy,..., Xy be independent random wvariables,
each distributed like X. Then

k (t+1)k
2t + 1)eln(1l/a)
P X; > < ottt <( ) :
rlU == (t+ 1)k
i=1
Proof. 1t is well known and routine to check that X has the § distribution
with parameters ¢ + 1, ¢t + 1; which has probability density function
2t +2)
r) = ————=
0 = ey
Thus, for s > —(t 4+ 1)

k >

(1—z) for 0<a<l.

E[Xs]:/olxsf(x)dx
(2t +2) Lot ot
= Tur)e /Oer(l x)" dt
rt+2) I(s+t+1)

S I(t+1) I(s+2t+2)

L ( 20+1—i )
M sy 4+1-4)
=0

Now we argue as in the proof of Lemma 1. For any s > 0

k k
Pr [HXZ Za} =Pr [HXf Zasl
i=1

i=1
<a S (E[X)"

t . k
20+1—1
. —S
-« [H<s+2t+1—z‘>]

=0
(t+1)k
- ( 2t + 1 ) |

s+2t+1
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Now we choose s > 0 to minimise this bound b say. Note that

d d 1
L) =+ ( In—- 6+ 1)k ln(s+2t+1)>
b (rDE
a s+2t+1
and so we take (4 1)k
_|_
= — —2t—1 0.
In(1/) ~
Then
a5 = 2t Dk
and
2t+1 (2t +1)In(1/a)
s+2t+1 (t+ 1)k

and so we obtain the required bound.

3.2 The bounded differences approach

Our first result here is the key property for median-of-(2¢ + 1) quicksort
and corresponds to lemma 2 for basic quicksort. That result was non-

asymptotic and proved from first principles: here we are not so lucky and

must use asymptotic results for qr(f).

If h is any level 0 history, so that h tells us the rank r of the splitting
element, then

EylQP) — ¢ = n—1+¢2% +¢), — .
Lemma 12. For each positive integer n let
Ap = {n—-1+ q7(»121 + qszr - q'gzt) rr=1,2,...,n}.

Then there is an n > 0 and a function g(n) > 0 with g(n) = O(n'~")
such that for each positive integer n

—(ktln2 —1)n — g(n) < = < n + g(n) foral xze€A,.

Proof . It is known (see [Hen89]) that for some constants 3 = ((t) and
n =n(t) with 0 <n < 1 we have

¢V = kmInn + Bn + v(n),
where y(n) = O(n'~"). Suppose that | v(n) | < en!=7. Let

f(n) = kenlnn + Bn.
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It is easy to check that

IN

o(1)
fir=1)+ f(n—r) = f(n)
> —ri(nIn2 + Inn) + O(1).

It follows that

<3max |v(k) | + O(1)

ol +a)), — g (= —mlnIn2 4+ lon)

—3 max | y(k) [ + O(1).

Thus there is a suitable function g(n) with

g(n) = 3en'™ + 21nn + O(1). O

Consider the variant of median of (2t+1) quicksort which cuts lists
at length In(n) say. Let @,, be the corresponding number of comparisons
and let ¢, = F [Qn} Note that

‘ QY —Q, ‘ = O(nIn@n).

Lemma 13. There exist ¢,n > 0 such that the following holds. Let n and
k be positive integers and let h be a possible k-history for Q. Then

‘EQ[QH] — Gn ‘ < (1+ ¢(Inn)™) kn.

Proof. This follows from Lemma 12 much as Lemma 3 followed from
Lemma 2(a).

Choose ¢, 1 > 0 such that g(n) < en'~" in Lemma 12. Note that since
keln2 < 2In2 < 2, Lemma 12 shows that |z| < n + g(n) for all z € A,,.
We now see that the case k = 1 follows immediately from Lemma 12.

Now let k£ > 1, let h be a possible k-history with corresponding list
lengths [y, ...,lox at level k, and let h be a possible level k history ex-
tending h. Then

| En[@u | Hie=h] - Ex[Qu] |
2k

_ ~ v ~ for suitable depth-0 histories
- ; (E [in | Ho = h(z)} q”) h(i) obtained from h
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SZ{ling(li) ci=1,...,2" with [; > lnn}
i
§n+cz{l}*" ci=1,...,2" with [, 2lnn}
i

<n+cn(lnn)™" .

In the last step we used the fact thatifa > 0, z1,22,... > aand >, 2; <n
then Y,z " < na™".
The lemma now follows by induction on k.

3.3 An upper bound

In this section we shall prove the upper bound part of Theorem 2, fol-
lowing the pattern of the proofs for the case of basic quicksort.

Lemma 14. Let € = e(n) satisfy 0 < e < 1. Then

glt)
Pr[ e

Proof. Consider Q,, as in Lemma 13 above. Define s, k1, o, ko, Rn, H as
in the proof of Lemma 8, except with the term 2¢Inn in the definition of
k1 replaced by k; € Inn, and referring to Q,,. (Note that g = 2.) Now the
proof of this lemma is similar to the proofs of Lemmas 7 and 8. As there,
it suffices to assume that €(n) > eo(n). In particular, for n sufficiently
large,

Pr[| QY — ¢ | > eqf]
<Pr[|Qu - qn‘ > kin + 5]
gPr[Qn ] Rn} + Pr[ﬂ(kl) gH}
+PrHQn - cjn‘>k'1n+sand ﬂ(’“)eH}
<Pr[Mj, > Inn] + Pr[M] > an]

+ 3 (Prull Ru—dou | > kin+s] x Pr[H®) = 1] ) .
heH

Now consider the three terms in this bound. First we shall show that
Pr [M,?z > lnn} is very small. Let k3 = |[k2/2]|. Then by Lemmas 10
and 11

Pr[ M, > Inn] <Pr[Mp > 1]
SPI“[M]?S > kjg}
§exp{ —(t+1) ks (ln(?’)n + 0(1)) } ,

)

= - 1‘ > 51 Sexp{ —(t+1)ntelnn<ln(2)n—ln(1/5)+O(ln(3) n)) }
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which is very small.
Next consider Pr {Ml?l > « n} By Lemmas 10 and 11 this is at most

exp{ ~(t+ 1)k (Inkr — W@ (1/a) + O(1)) }
= exp { —(t+ 1)reelnn (ln(2) n—1In(1/e) + O(In® n)) } )
which is as required.
Finally, for the third term, consider a ki-history A in H. Note that by

Lemma 13
| Ep[Rn] — gn| < 1+ (Inn)™) kin.

Hence

PI'EHRn—Cjn’ > km—i—s]
<Pry[| Ry — En[Rn] | >s—Fkin(lnn)™"] .

But s — kin(lnn)™" = (1 + o(1))s. Now we use Lemma 5 as in the proof
of Lemma 6. We find

. 2+ 0(1))s?
Prpll B = @n| > kints] < 2exp{ _(k:Q —(kl)(ﬁ(t 111)2)2an2 }

which is very small.

3.4 Lower bound — general case

In this section we shall prove the lower bound part of the proof of Theo-
rem 2. We have set up the proof of Lemma 9 above so that we can follow
it closely.

Lemma 15. Let ¢ = £(n) satisfy 1/Inn < e < 1. Then, as n — oo,
Pr [ (Qg) > (1+ s)q,(f)> } > exp{ —(t+ 1)keelnn (ln(Z) n—In(1/e) + O(ln(?’))) } .

Proof. In the proof of Lemma 9 replace all references to Q, ¢, o by Q,
¢, k; respectively. Note that k; < ko = 2. Also, Var(Qg))/n2 — o? < o
as n — oo (see [Hen89]). The only parts that need to be changed concern
Pr[A].

Note that L3 < if and only if at least ¢t + 1 of the chosen 2t 4 1 keys
are amongst the last [+ 1 of the n possible keys. So certainly Lg < [ if the
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first t + 1 keys chosen are amongst the last [ + 1 of the n possible keys.

Thus
l_t tJrl
Pr[Ls <] > () .
n

Considering the other members j of J — {2F } similarly, we see that

_ (t+1)k
Pr[A] > (lt)

- n

= exp{ —(t+ 1)relnn (ln@) n —In(1/e) + O(In® n)) } :

4 Appendix 1: A lemma

In this section we prove in detail the following lemma, which describes
how the expected number of comparisons in basic quicksort can change,
given the knowledge of the first partition. Recall that ¢, = E[Q,]. For
positive integers n and for 1 < k <n define

Yok = Gn — (=1 + Gn—k) ;
and for positive integers n define

Ay = {n—1— v 1 <k<n}.

Lemma 16. (a) For any integers n,k with 1 < k <n/2,
k-1 + G-k = Gk + Gn—k—1 -
(b) For any integers n,k with 1 < k <mn,
In-1 2 qk—1+ Gn—k -
(¢) For any integer n > 1,
-1 — (Qn-1)/2] T An-1)21) < 2In2)n.
(d) For any integer n > 1,
max(A,) —min(4,) < (2In2)n.
(e) For any integer n > 1,

—(n—1) < min(4,) < max(4,) < n—1.
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Proof. The proof follows from routine arithmetic manipulations of Equa-
tion 1. A closed form solution to this equation (see [Knu73] or [Sed80]) is
given by go = 0, and for n > 1,

i1
Gn = 2(n+1)z;j(‘7j+1).

n

By rewriting the summand in the above equation as

follows that for all n > 0,

1
J+1l g

@ = 2(n+1)H, —4n.

It is convenient to note here that if n is odd (n > 1) then

n—1
Hp 1= Hpo1yp < / o _ In2
(n-1)/2 T

and if n is even (n > 2) then

n

d
Hn_Hn/Q S/ @ _ In2 .
T

n/2

To prove part (a) of the lemma, we wish to show that ¢, x—q,—(r—1) >
qr — qr—1- It suffices to show that ¢ — ¢;—1 is a non-decreasing function of
t. But it follows from (*) that ¢, — ¢:—1 = 2(H; — 1), so the result follows.

Now prove part (b). For 1 <k <mn,

Q-1+ Gn—k < @0 + -1 < gn—1 by lemma 16(a) .
Now prove part (c) of the lemma. For integers n > 1 let

On = @n—1 = (q(n—1)/2) t [(n—1)/2]) -

We wish to show that §,,/2 < nln2. There are two cases to consider,
depending on the parity of n. First suppose that n is odd. Then |(n —

1)/(2)] = [(n = 1)/(2)] = (n—1)/(2) and so

1

571/2 = 5(%1—1 - 2Q(n71)/2)
=nH, 1 —(n+1)Hq 1)
<n(Hp-1 = Hp—1y/2)

<nln2.
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Now suppose that n is even and at least 2. Then [ (n—1)/2] = (n—2)/2
and [(n —1)/2] = n/2. Hence

1
6n/2 = §(Qn—1 = 4nj2 — Q(n—2)/2)
=nHy1—(n+1)Hy,;+1
<n(Hy,-1— Hy)
<nln2.

Now prove (d). Observe that
max(A,) — min(Ay,) = max(y,r) — min(y,) -

Define
4n = (@ (n-1)2) + 4[(n-1)/21) = Hn -
Using lemma 16(a),
m’?X(’Yn,k) = HUn

and
mkin(’yn,k) =d(4n — (Qn—l + QO) =dq4n —Qqn—1 -

Thus

max(A,) — min(A,) = gn — (¢ (n—1)/2] T Un-1)/21) — (@0 — qn-1)
—5,

and now the conclusion follows by lemma 16(c).
Finally, we prove (e). Note that the upper bound follows by observing
that v, x is non-negative. To establish the lower bound, observe that

min(A4,) =n—1 — max(y,x)
=n—1— .

To complete the proof, we wish to show that
—(n=1) < n—=1 -y,
namely, that
Un < 2n—2 for n>1. ()
Observe that for all n > 1,

Mn:6n+Qn_Qn—1:5n+2(Hn_1)
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Thus using our previous expressions for d,,, we have, for n odd,

% =nH,-1 —(n+ 1)H(n_1)/2 + H, —1

1
=+ 1)(Hp-1 — Hpo1yy2) + o L,

and for n even and at least two,

%:an_l—(n+1)Hn/Q+1+Hn—1

1
=(n+1)(Hn-1 — Hpo1)2) + o

Thus to show that p, < 2n — 2, we need to show that

_1
Hyy— Hipy2 < ZT? for n odd, and

n—(1+ %)
n+1
This can be checked directly for small n; for larger values of n, it
follows from observing that In2 can be squeezed between the left and
right hand sides of the above inequalities. This completes the proof of
lemma 16.

Hy1— Hyjp < for n even and at least two.

5 Appendix 2: Computations, Simulations and Figures

In this section we present some figures relevant to the theoretical results
we have obtained. Specifically, for both the basic and median-of-3 variants
of quicksort, we present three figures: the exact key comparison frequency
distribution for n = 100, a (pseudo-random number generated) simulation
of the distribution for n = 120,000, and a comparison of the theoretical
(as from our theorems) and simulated (as from the simulations) behaviour

ofPr[ %—1 >£].

dn
Let f(n,k) be the probability that a basic quicksort of n keys takes

k key comparisons, assuming all possible input permutations are equally
likely. The exact key comparison frequency distribution figures were cre-
ated by picking a suitably small n (small enough to allow the computa-
tions to finish in a reasonable time), and computing f(n, k) for all possible
values of k. This complete distribution for n keys can be computed in time
O(n%) and space O(n?) as follows:

Set f(0,k) = 0o, for all k& (where §;; = 1if i = j and 0 otherwise),
and for n > 1

f(n, k) :iiZ{f(r—l,:c)f(n—r,y) crxt+y=k—m+1}.
r=1 T,y
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Figures la and 1b show the exact quicksort key comparison frequency
distribution for n = 100. In order to show better the behaviour in the
tail, the logarithm of the distribution is also shown.

A similar computation works for the median-of-3 case, although we
must be careful to specify the number of key comparisons in the basis
cases. Also, we assume that for n > 3 keys, 3 comparisons are performed
to find the median, and so partitioning takes a total of 34+n —3 =n
comparisons.

Let g(n, k) be the probability that a median-of-3 quicksort of n keys
takes k key comparisons, assuming all input permutations to be equally
likely. For k& > 0, set

9(07 k) = g(Lk) = 50,k7 and 9(27 k) = 61,]6 .

Then for n > 3 and k > 0,

n

Z ( Z{g Jg(n—r,y) : x+y=k—n}.
0]

r=1

The simulation figures 2a and 2b were produced by simulating 10,000
trials of quicksort. The minimum and maximum values on the horizontal
scale are the respective minimum and maximum observed during the tri-
als; once these values were determined, the range of observed values was
partitioned into a number of buckets, and the density of each bucket (as
shown by the height of the corresponding bar) was determined. Note that
the maximum observed number of key comparisons is far less than the
maximum possible number of key comparisons.

The final two figures show how the bounds established in our two
theorems compare with simulations of quicksort, for a fixed value of ¢,
namely € = 0.05. For each of 60 values of n from 2,000 through 120,000
(incrementing by 2,000), 1,000 trials of quicksort were performed. For

each set of 1000 trials, the empirical value Pr H 9u _ ‘ > E} (that is,

the proportion of the trials in which | @, /g, — 1 | > ¢) and the quantity

p=2e(Inlnn —c) shown, for a certain value of c. (The value of ¢ was

chosen to least-squares fit the larger half of the sample points for n.)

All simulations were performed on a cluster of Suns and Sparcs. Mike
Hallett, Fahir Ergincan and Doug Goodman helped with the running of
the quicksort simulations.
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