lem
=" Centrum voor Wiskunde en Informatica

REPORTRAPORT

A lower bound on wait-free counting

S. Moran, G. Taubenfeld

Computer Science/Department of Algorithmics and Architecture

Report C5-R9307 February 1993

CWI is the National Research Institute for Mathematics and Computer Science. CWI is part
of the Stichting Mathematisch Centrum (SMC), the Dutch foundation for promotion of
mathematics and computer science and their applications. SMC is sponsored by the
Netherlands Organization for Scientific Research (NWO). CWI is a member of ERCIM, the
European Research Consortium for Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 4079, 1009 AB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

" A Lower Bound on Wait-Free Counting

Shlomo Moran
CwI
P.0O. Bozx 4079, 1009 AB
Amsterdam, The Netherlands
and
Computer Science Department
Technion, Haifa 32000, Israel.

Gadi Taubenfeld
ATET Bell Laboratories
600 Mountain Avenue, Murray Hill, NJ 07974, USA

Abstract

A counting protocol (mod m) consists of shared memory bits - referred to as the counter -
and of a procedure for incrementing the counter value by 1 (mod m). The procedure may
be executed by many processes concurrently. It is required to satisfy a very weak correctness
requirement, namely: the counter is required to show a correct value only in quiescent states
— states in which no process is incrementing the counter. Special cases of counting protocols
are “counting networks” [AHS91] and “concurrent counters” [MTY92].

We consider the problem of implementing a wait-free counting protocol, assuming that the
basic atomic operation of a process is a read-modify-write on a single bit. Let flip(Pr)
be the maximum number of times a single increment operation changes the counter bits in
a counting protocol Pr. Our main result is: In any wait-free counting protocol Pr which
counts modulo m, m divides 2/(P") Thus, flip(Pr) > log m and m is a power of 2.
This result provides interesting generalizations of lower bounds and impossibility results for
counting and smoothing networks.

1991 Mathematics Subject Classification: 68P99,68Q22,68Q25.

Keywords & Phrases: Wait Free Protocols, Counting Protocols, Counting and Smoothing
Networks, Lower Bounds.

Note:Part of this work was done while the first author was visiting at AT&T Bell Labora-
tories, 600 Mountain Avenue, Murray Hill, NJ 07974, USA.

1 INTRODUCTION

Recently there was much interest in the implementation of counters in a concurrent envi-
ronment where many processes may try to access the counter, possibly at the same time.
The goal is to come up with a solution that reduces memory contention and achieves high
level of concurrency. The interest in the subject arise from the fact that such counters can
be used to efficiently solve various coordination problems.

In this paper we prove a basic lower bound on implementing such counters, for systems
which consist of a fully asynchronous collection of identical processes that communicate

Report CSRP307

ISSN 0169-118X

CWiI

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

via shared registers. Access to a shared register is via an atomic “read-modify-write”
instruction, which, in a single indivisible step, reads the value of a single bit and then
writes a new value that can depend on the value just read.

Our result applies to any implementation that supports an operation which enables to
increment a counter by one in a wait-free manner. That is, an increment operation initiated
by a correct process must terminate, regardless of the speed of all the other processes.

We require a counter to satisfy a very weak correctness requirement, namely: the counter
is required to show a correct value only in quiescent states — states in which no process is
incrementing the counter. Notice that the increment operation is not required to return a
value. Both “counting networks” [AHS91] and “concurrent counters” [MTY92] satisfy this
correctness requirement.

In fact, counting networks and concurrent counters satisfy much stronger correctness
requirements. In counting networks the increment operation also returns the current value
of the counter, and such networks also support an operation which returns a correct value
when the system is in a quiescent state. Concurrent counters (which count modulo m)
support an independent look operation which returns a value such that: if r processes have
started an increment operation, and ¢ of them have completed their increment operations,
then the value return by the look operation is in the cyclic interval [, 7] mod m.

We use the notion counting protocol for an implementation of a counter which satisfies the
weak correctness requirement mentioned earlier, and which enables to count modulo some
fixed number m. (In counting networks m is the number of output wires.) Let flip(Pr)
be the maximum number of times a single increment operation changes the counter bits in
a counting protocol Pr; and let space(Pr) is the number of shared registers used for the
counter. The main result reported here can now be stated as follows: !

Let Pr be a wait free counting protocol which counts modulo m, and assume
that both space(Pr) and flip(Pr) are finite. Then m divides 2P(PT) Thys,
flip(Pr) > log(m) and m is a power of 2.

Let depth(Pr) be the maximum number of times a single increment operation accesses the
counter bits in the counter Pr. Since it is possible to access a bit without changing its value,
flip(Pr) < depth(Pr). Hence a lower bound on flip(Pr) implies a similar lower bound on
depth(Pr), but not vice versa.

One application of our result is that if Pr is a counting protocol mod m where m is not
a power of 2 and Pr uses bounded shared space, then flip(Pr) is not finite. This result
generalizes a similar result for acyclic counting networks ([AA92]), since both acyclic and
cyclic counting networks are (special cases of) counting protocols.

Using the obsesvation that if a balancing network counts, then its isomorphic comparison
network sorts [AHS91, Theorem 2.4], and the fact that the depth of any sorting network
is at least logm, one can immediately derive that the depth of any counting network is
at least logm, where m is the number of output (and input) wires. We notice that the
logm lower bound on the depth of counting networks follows directly from our result. To
see why, we observe that any counting network, Pr, is also a counting protocol, where
flip(Pr) = depth(Pr). Hence we get that depth(Pr) = flip(Pr) > logm.

The above argument is not applicable to K-smoothing networks, which are a generalized
form of a counting network. (The definition is given in Section 5.) Every counting network is
a K-smoothing network for all K > 1, but the converse is not necessarily true. In particular,
it is not necessarily the case that K-smoothing networks are isomorphic to sorting networks.
We observe that a K-smoothing network can be transformed into a counting protocol (not
a counting network) by adding [log(2K + 1)] bits at each output wire. We define a class

' All logarithms are to base two.

3

of K-smoothing protocols, which generalizes the notion of K-smoothing networks, and we
use our result to show that K-smoothing protocols are possible only when m is a power of
2, and they require at least logm — [log(2K + 1)] bit changes per token distribution. We
will also provide a simple direct proof that the depth of K-smoothing networks is at least
log m.

The above results indicate that relatively tight lower bounds on counting and smoothing
networks can be obtained by using only a part of the correctness requirements they are
required to satisfy. It should be noted that counting networks are a severely restricted form
of counting protocols - this is vividly demonstrated by the fact that a counting protocol can
be implemented using only logm bits, while a counting network require (m logm) bits.

Our result implies that for every counting protocol Pr, flip(Pr) > log m. An immediate
question is whether this bound id tight. The answer is positive, since in the Positional
counter presented in [MTY92], depth(Pr) = flip(Pr) = log m, and it works for any number
of concurrent increment operations using log m bits.

Finally, we point out that the result stated in Lemma 4.1 is stronger than our result as
stated above, since it relates the number of processes which can increment the counter and
the total number of bits used, and hence is applicable also to protocols in which only a
bounded number of processes may increment the counter.

1.1 Related Work

Aspnes, Herlihy and Shavit [AHS91] introduced a new class of networks, called counting net-
works. Counting networks can be viewed as objects which support one atomic operation,
which consists of both incrementing and reading the value of a counter. The two con-
structions of counting networks in [AHS91] require O(m log? m) binary registers. Counting
networks achieve a high level of throughput by decomposing interactions among processes
into pieces that can be performed in parallel, effectively reducing memory contention. Ex-
perimental results of implementing shared counters, producer/consumer buffers and barrier
synchronization, show that counting network implementations provide higher throughput,
less memory contention, and better fault-tolerance, compared to conventional implemen-
tations based on spin locks [AHS91]. Smoothing networks were defined in the context of
counting networks, and may be used as building blocks for counting networks [AHS91].

Counting networks have been the subject of intensive investigation recently [AA92, AHS91,
HBS92, HSW91, KP92]. A tight bound of Q(mlogm), on the number of 2-balancers needed
to construct counting networks is proved in in [KP92]. In [AA92] it is proven, among other
results, that using 2-balancers it is impossible to construct acyclic counting networks with
fan-out which is not a power of 2. The authors overcome this limitation for acyclic networks
by presenting a construction of cyclic counting networks with fan out n, for arbitrary n.
Unfortunately, their construction is not wait free — increment operations are not guaran-
teed to ever terminate. Our result implies that even in the implementation of an object
which is considerably weaker than counting network - namely, a counting protocol - an
increment operation cannot be terminated within a fixed number of bit changes, unless it
counts modulus m where m is a power of 2.

In [HSW91] two interesting lower bounds are introduced for linearizable counting. Lin-
earizable counting impose an additional restriction: the order in which values are assigned
by the protocol reflects the real time order in which they were requested.? These re-
sults indicates that there exists a substantial complexity gap between linearizable and non-
linearizable counting.

Independently of the work on counting networks, the notion of concurrent counters was
introduced in [MTY92]. Concurrent counter (mod m) holds an integer from 0, ..,m — 1, and

2As in counting networks, the paper assumes an increment operation that also returns the value of the
counter, and the “value assigned” refers to the value returned by the increment operation.

4

enables two operations: increment — which increments the value by one (mod m), and look
— which gets the current value. Two types of counters are considered: (1) static counters
which only guarantee that a look operation returns the correct value only at quiescent
states, and (2) dynamic counters which also guarantee that processes can read a correct
value of the counter even if the read is concurrent with some increments.

Our result here implies that when the number of incrementors is unbounded, static (and
hence also dynamic) counters (mod m) are possible only when m is a power of two, and that
an increment operation in such counters requires at least logm bit flips. This should be
contrasted with the fact that when the number of incrementors is bounded, it is possible to
construct dynamic counting protocols, in which each increment operation requires essentially
one bit change (variants of “1-flip protocols” [MTY92]).

2 DEFINITIONS AND NOTATIONS

In a first reading of the paper, the reader may wish to skip this section and proceed imme-
diately to the results in later sections.

A counting protocol consists of a collection of shared binary registers 71, ..., %, which we
refer to as a counter, a function val that associates some integer value — the value of the
counter — in the range {0, ..., m—1} to any possible contents of the counter, and a procedure,
called increment , for incrementing the counter. It is also assumed that a specific vector is
an initial contents of the counter.

Formally, a counting protocol (mod m) over k bits is a triple (increment, val, #;;;), where:

1. increment is a procedure for incrementing the counter;

2. val : {0,1}* — {0,---,m — 1} is a function, which assigns to each binary k-vector a
value in {0,---,m — 1};
3. Tingt = (v1,---,vk) is the initial contents of the counter, and val(#in;) = 0.

A process performs the increment operation on the counter by executing an increment
procedure. (Many increments can take place concurrently.) Each increment operation
consists of a sequence of atomic read-modify-write (in short rmw) steps applied to the
counter registers. In a single rmw step a process may reads the value of a single bit and
then writes a new value that can depend on the value just read.

A run starts from some initial values of the counter registers and consists of a finite or
infinite sequence of atomic rmw steps. A run is legal if it starts when the contents of the
counter is ¥;n;;. A process p is involved in an increment operation in a given run if it has
started an increment operation but have not completed it yet. A process is involved in an
increment operation during a run, if it is involved in that operation in some prefix of that
run. A run is complete if no process is involve in an increment operation in it.

A wait-free counting protocol (increment, val, 7,) satisfies the following two requirements:

correctness Let final(z) be the contents of the counter registers at the end of a run z.
Then, for every complete legal run z, val(final(z)) equals to the number of increment
operations terminated in the run z (modulo m).

wait-freedom In every legal run in which a process takes infinitely many steps, all its
increment operations are completed. That is, a process that starts an increment
operation eventually completes it, regardless of the activity of the other processes.

We study two complexity measures related to counting protocol Pr: space(Pr) is the
number of shared registers, k, used for the counter, and flip(Pr) is the supremum on the

5

number of times a bit can be flipped by a single increment operation, taken over all the
legal runs of Pr. Note that flip(Pr) may be infinite. The notion flip(Pr) is related to
the notion depth(Pr), which is the supremum on the number of times a single increment
operation accesses the counter bits. Since it is possible to access a register without changing
its value, flip(Pr) < depth(Pr), where strict inequality is possible. Thus, any lower bound
on flip(Pr) implies a similar lower bound on depth(Pr), but not vice-versa.

3 THE HIDING LEMMA

In this section we show how up to 2/%P(Pr) increment operations, each of which executed by
a different process, can be hidden in some run of a counter protocol Pr. The operations are
hidden in the sense that once they all terminate they have no effect on the counter registers,
and all the processes not involved in these increment operations have no way to know that
these 2/%P(P") increment operations actually took place.

DEFINITION 1 A group of processes G is hidden in run if the subsequence =’ of all events
in z involving processes not in G is a run, and the value of the counter in z and in ' is
the same.

In the definition of counting protocol no bound is assumed on the number of processes
that may increment the counter, that is, the number of processes that may increment the
counter is assumed to be infinite. In order to state our results in the strongest possible
way, we use the notion of an n-counting protocol, which is a protocol that behaves as a
correct counting protocol as long as the number of processes that increment the counter is
no more then n (each process may increment the counter many times). More formally, an
n-counting protocol must satisfy the wait freedom requirement, and for any complete legal
run z in which at most n processes participate, the value of the counter at z equals to the
number of processes that increment the counter in z (mod m). Recall that for a counting
protocol Pr, we denote by space(Pr) the size of the counter (number of bits) used by Pr.

LEMMA 3.1 (The Hiding Lemma) Let Pr be a wait-free n-counting protocol, let k = space(Pr)
and f = flip(Pr). If k < ’2‘7‘3}1:, then there exists a complete run, p, in which a group of 27
processes is hidden, and each process in this group has completed one increment operation,
and is idle in p.

Proof: Assume that k£ < g‘f‘f‘i We construct a complete run p which satisfies the lemma.
For 0 <i< f,let n; = k- (27" — 1) + 2/~% Notice that no <n,ng=1and niyy = "i;k.

Thus, for 0 <7 < f it holds that n; > k.

We build a sequence of runs pg,---,p 7> where p = ps. The construction is carried by
induction, in rounds. In each round 0 < ¢ < f we extend the run p;_; built in the previous
round to a run p; so that: there is a group G; of processes that is hidden in p;, the size of G;
is 2'n;, each process in G; has already flipped the counter registers i times or has completed
its increment operation in p;, and all processes not in G; are idle. The run p ¢ is p. Notice
that since f = flip(Pr), we get that all processes are idle in ps, and a group of |G| = 2f
processes is hidden in py¢, as required.

Round 0: In Round 0, the run py is the empty run, and Gy includes Ng Processes.
(ng < n.) Next we show how p; is built.

Round 1: Consider a run o where k + 1 different processes are activated in a sequential
manner, one at a time starting from some arbitrary initial state. Each of these k + 1
processes when activated starts an increment operation and is delayed once it changes one
of the counter registers for the first time. (That is, it might be delayed before it has a chance
to complete its increment operation.) Since there are only k registers, and each increment

6

operation must change the value of at least one register, the value of at least one register,
say r, is changed at least two times. Let p; be the process that was the first to change r
and let py be the process that was the second to change r.

Since k + 1 processes participated in «, there are ng — (k + 1) = 2n; — 1 processes
that have not yet participated in o. Let Gi be the set of processes that have not yet
participated in a together with the process po. We divide G; into two groups Hi and Hj
where |Hi| = |H}| = n; and Hj includes p,.

Next we construct the run p; as follows. First we activate the processes exactly as in o
until the point where p; is about to change r for the first time. Then we suspend p;, and
activate each of the processes in H} until it is also about to change r. This will happen
since process p; is identical to each of the processes in H{. We then suspend the processes
in H}, let p; change the value of 7, and let the run continue as in a, until the point where
po is about to change r for the second time. Next we activate each of the other processes
in H2 until it is also about to change r. This will happen since process ps is identical to
each of the processes in Hs. Notice that so far no process in G has written in the shared
memory.

We now activate the processes in Hi and H{ in alternation, until each process flips r one
time. That is, first we pick a process from Ha and let it flip 7 and then pick a process from
H{ and let it flip 7 back, and so on until each process in these two groups flips r one time.

Notice that between the point where a process in H{ is suspended and the point when it
is activated the value of r is changed an even number of times and hence the process will not
notice that r has been changed and will change r when it is activated again, and similarly
for processes in H21 Next we let the k processes not in G1, that might be in the middle of
an increment operation, complete their increment operation. Finally, if each process in H{
can complete its increment operation without flipping any more of the counter bits then we
let all these processes do it, otherwise (i.e., no process in Hi can complete its increment
operation without flipping another bit), they take no more steps; this procedure is repeated
for the processes in H2. The resulting run is p;.

Let p} be the the subsequence of all events in p; involving processes not in G1. In py,
each change of 7 by a process in H} is immediately followed by a change of r by a process
in H{, and hence all operations by processes in G; are invisible by processes not in G.
That is, the runs p; and pj are indistinguishable for processes not in G; and hence p} is a
complete legal run, and the value of the counter in p; and p) is the same. All this implies
that the group of processes (G; is hidden in run p;.

Round 7 + 1: Assume that we can construct run p; which has the following properties:
there is a group G; of processes that is hidden in p;, each process in G; has already flipped
the counter registers ¢ times or have completed one increment operation in p;, all processes
not in G; are idle, and G; = Ujeq1,.. o1} H} where for each j € {1, ..., 2'} all the processes in
H? have exactly the same history in p; and |H}| = n;. (When i is 0 or 1, we have already
shown how to construct pg and p; with these properties.)

We next show how to build a run p;4; with such properties.

Let o} be a run similar to o, in which all the processes in H? is activated in a row, each of
them is activated until it either changes the value of a counter register, or it terminates its
increment operation. (Note that once a process p € H { terminates its increment operation
without changing a bit, all the remaining processes in Hf, being identical to p, will do the
same). We consider two cases:

(a) In of at most k processes change the value of a register before terminating their incre-
ment operation (this includes the case where all the processes in H? already terminated their
increment operations in previous stages of the construction). In this case, we let activate
the first k processes in H? until each of them either terminates or changes the value of one
bit, and then let all the remaining processes terminate their increment operations (without

7

changing the value of any register). Then we let the first k& processes from H} complete their
increment operation, and split the rest of the processes into two disjoint groups. These two
groups are Hjt! and Hi™ where |HS = |HiY| = nik = nir

(b) At least k + 1 processes change the value of a register in o}. In this case, starting from
pi, we first activate only the processes in H? as described in Round 1, where the groups G,
H{ and H} in Round 1 corresponds to H}, Hit* | Hi'!, respectively, and p, in Round 1
corresponds to p;. That is, we extend p; to a run p;, by activating only processes from H {
In doing so, |H%| — k processes in H} are divided into two groups H:*! and Hé“ of the
same size, such that all the processes in each of these groups has exactly the same history
in p;,. Again, the the size of each of this two groups is |H{+1| = |H§+1| = ”i;k = Niy1.
The other k processes from H? complete their increment operation and are idle at Pi; -

We repeat doing so sequentially with Hé, H§ and so on. After repeating this proce-
dure for 2' times we get the run p;4; as required. That is: We have the group G+1 =
Ujeqr,... 241 H;H where for each j € {1, ...,2*71} all the processes in H;H have exactly the
same history in p;4; and |H;+1| = n;+1. In addition, the group G4, is hidden in p;41, each
processes in G;4+1 has already flipped the counter registers 7 + 1 times, and all processes not
in Gi+1 are idle in Pi+1-

Round f: In Round f we get the run py. Here Gy = Ujeqs,... 26} ij where for each
je{1,..,2}, |HJf] = ny = 1. Since f = flip(Pr), all the processes in G have completed
their increment operation and hence pf is a complete run. Thus, we have constructed a

complete run in which a group of 2/ processes is hidden, where each process in this group
is idle, and it has completed one increment operation.]

4 MAIN RESULT

In this section we use the Hiding Lemma to show that in a model where the basic atomic
operations are performed on binary registers (bits), for any wait-free counting protocol Pr
(modulo m), if flip(Pr) is finite? then m must divide 2f#P(P"), This implies that in such a
model it is possible to count only modulo powers of 2.

LEMMA 4.1 Let Pr be a wait-free n-counting protocol, let k = space(Pr) and let f =
flip(Pr). If k < 72‘—]7:2% then m divides 2f. Thus, if k < ’2‘;_2; then f > log(m) and m is a

power of 2 (which implies that if m does not divides 2f then k > gf”fi)

Proof: If k < '2‘;_2{ then by the Hiding Lemma there exists a complete run p and a group

of 2/ processes G, such that G is hidden in p, and each process in G5 has completed one
increment operation.

Let p' be the subsequence of all events in p involving processes not in Gy. The fact that

G s is hidden in p, implies that p' is a complete run and that the values of the counter in p
and p' is the same (modulo m).

Since the counter is incremented in p exactly 2/ times more than in p’, the fact that the
value of the counter in p and p' is the same (modulo m) implies that m must divide 2f. [

In the case where the number of processes is not bounded the following theorem, which
is the main result of this section, follows from Lemma 4.1.

THEOREM 4.1 Let Pr be a wait free counting protocol which counts modulo m, and assume
that both space(Pr) and flip(Pr) are finite. Then m divides 2f%P(PT) . Thus, flip(Pr) >
log(m) and m is a power of 2.

3Note that even if flip(Pr) is finite, Pr is not necessarily wait free, and vice versa.

Proof: Let k = space(Pr) and f = flip(Pr). Since both f and k are finite, there is an
integer n' such that £ < ’;—'f‘IQTf Since Pr is an n-counting protocol for every n, it is in
particular an n'-counting protocol. Thus, Pr satisfies the assumptions of Lemma 4.1 (for

n=mn'). The theorem follows. O

In the theorem, we get that flip(Pr) > log(m). An immediate question is whether there
exists a counting protocol where flip(Pr) = log(m). The answer is positive, since in the
Positional counter presented in [MTY92] flip(Pr) = log(m) and it works for any number
of concurrent increment operations.

Next we show how interesting results about counting networks which are a special type
of counting protocols, can be easily derived from Theorem 4.1.

5 CONSEQUENCES FOR COUNTING AND SMOOTHING NETWORKS

Counting networks, introduced in [AHS91], are a new class of networks that can be used to
count. They are constructed from simple two-input two-output computing elements called
2-balancers (abbv. balancers), connected to one another by wires. A balancer repeatedly
sends the inputs it receives, one to the top and one to the bottom, and can be implemented
by a read-modify-write bit. An increment operation is performed by placing a token on an
input wire. The token traverses a sequence of balancers, and leaves on an output wire. The
output (input) wires are numbered from 0 to m — 1. Counting networks are required to
satisfy the following step property: denote by o; the number of tokens that traversed the
i-th output wire. Then at quiescent states, foreach 0<i<j<m—-1,0<o0; — 0; < 1.

A counting network can be used to implement a counting protocol as follows: use one
input wire to insert tokens, and let the value of the counter be the index of the output
wire through which a token that is inserted to the counting network will leave it. Thus, the
result proved in Theorem 4.1 applies to'counting networks, which means that a counting
network over m output wires is possible only when m is a power of 2, and its depth is at
least logm.4

A smoothing network is a balancing network which is a generalized form of a counting
network. It may be used as a building block in constructing a counting network. It satisfies
the following weaker property: at quiescent states, for each 0 < ¢,j7 <m —1, |o; — o;] < 1.
Clearly, every counting network is a smoothing network, but not vice versa. More generally,
for any integer K > 1, a K-smoothing network is a balancing network which satisfies the
following property: at quiescent states, for each 0 < i,j < m — 1, |o; — oj| < K. Unlike
counting network, a K-smoothing network is not necessarily isomorphic to a sorting network
even for K =1 [AHS91].

Using the combinatorial properties of smoothing networks, we provide below a simple and
direct proof that for every K, a K-smoothing network (and hence also a counting network)
requires logm depth: Let § be a K-smoothing network (mod m). Consider a scenario in
which K'm tokens are inserted via the same input wire. By the definition of a K- smoothing
network, these tokens must leave on m distinct output wires. Thus, the tokens travel m
distinct paths. Since the output degree of each balancer is 2, at least one of these paths
must have at least log, m edges.

Next, we show that our result implies that a similar lower bound applies to a considerably
larger class of protocols, in which there is no restriction on the way the tokens traverse the
network, neither on the size of the local memory of the processes, nor on the number of
read operations that processes may perform for processing a token. As before, we assume
a shared memory model which supports rmw operations on shared bits.

A K-smoothing protocol is a protocol in which tokens are inserted, by many processes, in a

“The original proof of the log m lower bound for counting networks is based on the observation that every
counting network is isomorphic to a sorting network [AHS91].

9

given “input” location, and are then distributed among m “output” locations. The protocol
is required to satisfy the following property: Let o; denote the number of tokens distributed
to the ¢ —th output location; then in quiescent states (ie, states in which all the tokens that
were inserted are already distributed), |o; — 0;| < K.

COROLLARY 5.1 Let S be a wait-free, K-smoothing protocol with m output locations. If
both space(S) and flip(S) and finite, then m is a power of 2 and flip(S) > log m —
[log (2K + 1)].

Proof: A K-smoothing protocol can be transformed into a counting protocol by adding
[log(2K + 1)] bits at each output location. These bits enable the simulation of a counter
(mod M) on each output location, where M is the least power of 2 which is larger than
2K.° By using a counter (mod M) it is possible to distinguish at quiescent states those
output locations that carried the smallest number of tokens (not the number itself), and
for each location, how many tokens it has carried in addition to this smallest number. We
can then sum up the number of additional tokens (over all locations), and the value of the
counter is the number of these additional tokens modulo m, where m is the total number
of output locations. The result follows by Theorem 4.1. 0

In [AA92] it is proven that the number of output wires of any acyclic K-smoothing
network is a power of 2. It is shown how to implement counting networks where the
number of output wires is not a power of two, by using cyclic counting networks. These
implementations has the unpleasant property that a token my traverse a cycle in the network
forever, never finding its way out. It follows from Corollary 5.1 that in the implementation
of any K-smoothing protocol, the processing of a token cannot terminate within a fixed
number of bit changes, unless the number of output locations is a power of 2.

REFERENCES

[AA92] E. Aharonson and H. Attiya. Counting networks with arbitrary fan-out. In
Proceedings of the 3rd Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 104-113, January 1992.

[AHS91] J. Aspnes, M. Herlihy, and N. Shavit. Counting networks and multi-processor
coordination. In Proc. 23rd ACM Symp. on Theory of Computing, pages 348—
358, May 1991.

[HBS92] M. Herlihy, Lim. B., and N. Shavit. Low contention load balancing on large-scale
multiprocessors. In Proceedings of the 3rd Annual ACM Symposium on Parallel
Algorithms and Architectures, July 1992.

[HSW91] M. Herlihy, N. Shavit, and O. Waarts. Low contention linearizable counting. In

Proc. 32nd IEEE Symp. on Foundations of Computer Science, pages 526-535,
October 1991.

[KP92] M. Klugerman and C. Plaxton. Small-depth counting networks. In Proc. 24rd
ACM Symp. on Theory of Computing, pages 417-428, October 1992.

[MTY92] S. Moran, G. Taubenfeld, and I. Yadin. The distributed counter problem. In Proc.

11th ACM Symp. on Principles of Distributed Computing, pages 59-70, August
1992.

5This counter can be implemented by using the Positional counter of [MTY92], which allow to read-
modify-write one bit at a time and guarantees that the counter shows the correct value at quiescent states.

