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We present two algorithms solving the minimum fill-in problem on circle graphs
Ž 3.and on circular-arc graphs in time O n . Q 1998 Academic Press

1. INTRODUCTION

The MINIMUM FILL-IN problem is a well-known and often-studied prob-
lem. It stems from the optimal performance of Gaussian elimination on
sparse matrices.

Gaussian elimination of sparse matrices is one of the major problems in
computational linear algebra. The problem is to find a pivoting such that
the number of nonzeros created during the elimination process is mini-
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mized. Due to the lack of efficient algorithms for finding an optimal
solution, in practice one usually has to work with certain heuristics for

Ž‘‘approximating’’ a minimum fill-in such as the minimum degree and
w x.nested dissection heuristics 1 .

The knowledge on the algorithmic complexity of the MINIMUM FILL-IN

problem when restricted to special graph classes is relatively small com-
pared to that of other problems, such as, for example, INDEPENDENT SET,
CLIQUE, DOMINATING SET, TREEWIDTH, and PATHWIDTH.

The MINIMUM FILL-IN problem ‘‘Given a graph G and a positive integer
k, decide whether there is a minimum fill-in of G with at most k edges’’

w xremains NP-complete on cobipartite graphs 24 and on bipartite graphs
w x22 . The only known graph classes for which the minimum fill-in can be
computed by a polynomial time algorithm were for almost 10 years the

w xrelatively small classes of cographs 7 and bipartite permutation graphs
w x w x20 . Now polynomial time algorithms for chordal bipartite graphs 6 ,

w x w xmultitolerance graphs 17 , and d-trapezoid graphs 3 are known.
In a sense, the MINIMUM FILL-IN problem has many similarities with the

TREEWIDTH problem. Both problems ask for a chordal embedding of the
graph. In the TREEWIDTH problem, one wishes to keep the maximum clique

Ž 3.size as small as possible. An O n algorithm computing the treewidth of
w x Ž 3.circle graphs is given in 12, 13 and an O n algorithm computing the

w xtreewidth of circular-arc graphs is given in 21 .
We are not aware of any graph class for which the two problems

TREEWIDTH and MINIMUM FILL-IN have different algorithmic complexity,
w x Žalthough the solution for the two problems can be far apart 2 see also

w x.12 .
Both graph classes that we consider, circle graphs as well as circular-arc

graphs, are defined as intersection graphs of geometrical objects of a
circle. Circle graphs are the intersection graphs of a collection of chords of
a circle and circular-arc graphs are the intersection graphs of a collection
of arcs of a circle. This leads to a number of similarities between the two
graph classes which allows somewhat similar algorithms for two different
classes. To emphasize the similarities, we shall present all the theoretical
background results for our algorithms ‘‘in parallel.’’

We present two simple algorithms to compute the minimum fill-in of
circle and circular arc-graphs. Both algorithms compute a minimum weight
triangulation of a certain convex polygon and have overall running time
Ž 3.O n .
This shows that circle graphs and circular-arc graphs are two more graph

classes with polynomial time algorithms solving the MINIMUM FILL-IN prob-
lem. Thus the algorithmic complexity of the problems TREEWIDTH and
MINIMUM FILL-IN is the same on both classes. In this way we erase two
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graph classes from the relatively small list of candidates for graph classes
with different algorithmic complexity of TREEWIDTH and MINIMUM FILL-IN.

Since the class of permutation graphs is properly contained in the class
w xof circle graphs, our circle graph algorithm extends a result of 3 , where an

Ž 2 .O n time algorithm is given that computes the minimum fill-in of
trapezoid graphs, and thus of permutation graphs.

2. PRELIMINARIES

Ž .Let G s V, E be a graph. We denote the number of vertices of G by
w xn. For a set W : V, we denote by G W the subgraph of G induced by W.

2.1. Preliminaries on Triangulations

We start by considering triangulations and minimal separators.

DEFINITION 1. A graph is chordal if it does not contain a chordless
cycle of length greater than 3.

DEFINITION 2. A triangulation of a graph G is a chordal graph H with
the same vertex set as G, such that G is a subgraph of H. A triangulation
H of a graph G is called a minimal triangulation of G, if no proper
subgraph of H is a triangulation of G.

w xThe following theorem has been shown in 18 .

THEOREM 3. Let H be a triangulation of a graph G. Then H is a minimal
Ž . Ž .triangulation of G if and only if each edge e g E H _ E G is the unique

chord of a cycle of length 4 in H.

Ž .DEFINITION 4. Let G s V, E be a graph and a, b two nonadjacent
vertices of G. The set S : V is an a, b-separator if the removal of S
separates a and b into distinct connected components. If no proper subset
of S is an a, b-separator then S is a minimal a, b-separator. A minimal
separator is a set of vertices S for which there exist nonadjacent vertices a
and b such that S is a minimal a, b-separator.

Ž . w xFor a proof of the following lemma which is well known , see, e.g., 10 .

Ž .LEMMA 5. Let S be a minimal a, b-separator of the graph G s V, E
w xand let C and C be the connected components of G V _S containing a anda b

b, respectï ely. Then e¨ery ¨ertex of S has at least one neighbor in C and ata
least one neighbor in C .b

Ž .We denote by D H the set of all minimal separators of a graph H. In
w x14 the following characterization of minimal triangulations is given.
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THEOREM 6. A triangulation H of a graph G is a minimal triangulation of
G if and only if the following three conditions are satisfied:

1. If a and b are nonadjacent ¨ertices of H, then e¨ery minimal
a, b-separator of H is also a minimal a, b-separator of G.

2. If S is a minimal separator of H and C a connected component of
w xH V _S , then the ¨ertex set of C also induces a connected component in
w xG V _S .

3. H s G , where G is the graph obtained from G by addingDŽH . DŽH .
edges between e¨ery pair of ¨ertices contained in the same set S, for any

Ž .S g D H .

Now it is convenient to define the MINIMUM FILL-IN problem as follows.

DEFINITION 7. The MINIMUM FILL-IN problem is the problem of finding
Ž .a triangulation H of the given graph G s V, E with the least possible

Ž .number of edges. The minimum fill-in of the graph G, denoted by mfi G ,
is the minimum number of edges which have to be added to make G
chordal.

In other words, solving the MINIMUM FILL-IN problem is equivalent to
Ž .finding a minimal triangulation H of the input graph G with smallest

possible number of edges. Then any perfect elimination ordering of H is a
Ž w x.minimum elimination ordering of G see 18 .

2.2. Preliminaries on Circle and Circular-Arc Graphs

We give the necessary background material concerning the two graph
classes studied in this paper. For more information on circle graphs,

w xcircular-arc graphs, and related classes of graphs, we refer to 10 .

Ž .DEFINITION 8. A circle graph G s V, E is a graph for which one can
associate with each vertex ¨ g V a chord of a circle CC such that two
vertices of G are adjacent if and only if the corresponding chords have a
nonempty intersection. The set of chords and the circle CC are said to be a

Ž .circle model DD G .

Without loss of generality we assume that no two chords of the circle
model share an end point. We also assume that a circle model of the input

Ž 2 .graph is given, since there is an O n time recognition algorithm for circle
graphs, that also computes a circle model of the input graph, if it is a circle

w x Ž w x .graph 19 . For other recognition algorithms, see 4, 5, 9, 16 .

Ž .DEFINITION 9. A circular-arc graph is a graph G s V, E for which
one can associate with each vertex ¨ g V an arc on a circle CC such that
two vertices of G are adjacent if and only if the corresponding arcs have a
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nonempty intersection. The set of arcs and the circle CC are said to be a
Ž .circular-arc model DD G .

Without loss of generality we assume that no two arcs of a circular-arc
model share an end point and that no arc covers the whole circle. Hence
all end points in a circular-arc model are pairwise different. If the circle CC

contains a point that is not contained in any arc, then the graph is an
interval graph and its minimum fill-in is 0. Thus, we assume that every
point of CC is contained in at least one arc.

We also assume that a circular-arc model of the given graph is available.
Note that, if no circular-arc model is part of the input, then we can

Ž 2 . w xcompute one by an O n time algorithm 8 . This is a recognition
algorithm for circular-arc graphs that also computes a circular-arc model

Žof the given graph, if it is a circular-arc graph. For other recognition
w x .algorithms, see 11, 23 .

In the following sections, we show that any minimal triangulation of a
circle graph and a circular-arc graph can be represented in terms of a
Ž .planar triangulation of a well-defined convex polygon. This is the prop-
erty exploited by our algorithms. This property enables the design of
simple algorithms computing the minimum fill-in.

3. SCANLINES

We show how to represent the minimal separators of circle graphs and
circular-arc graphs by means of scanlines.

3.1. Circle Graphs

Ž . Ž .Let G s V, E be a circle graph with circle model DD G .

DEFINITION 10. Place a new point on the circle CC between every two
consecutive end points of chords. These new points are called scanpoints

Ž .and the set of the 2n scanpoints of DD G is denoted by Z.

Ž .DEFINITION 11. A scanline of DD G is a chord of the circle CC,
connecting two scanpoints.

2nŽ . Ž .Consequently, there are different scanlines in DD G .2

DEFINITION 12. Two scanlines cross if they have a nonempty intersec-
tion but no scanpoint in common.

DEFINITION 13. Let c and c be two chords of CC with empty intersec-1 2
tion. A scanline s is between c and c if every path from an end point of1 2
c to an end point of c along CC passes through a scanpoint of s.1 2
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Ž . Ž .For any scanline s of DD G , we denote by S s the set of all vertices ¨
of G, for which the corresponding chord intersects s.

w xFor the following theorem and corollary, see 12, 13, 15 .

THEOREM 14. Let a and b be nonadjacent ¨ertices of the circle graph
Ž .G s V, E . For e¨ery minimal a, b-separator S of G, there exists a scanline s
Ž . Ž .of DD G between the chords of a and b such that S s S s .

Ž 2 .COROLLARY 15. A circle graph on n ¨ertices has O n minimal separa-
tors.

3.2. Circular-Arc Graphs

Ž . Ž .Let G s V, E be a circular-arc graph with circular-arc model DD G .
Ž . Ž .For any point p of the circle CC of DD G , we denote by S p the set of all

vertices ¨ , for which the corresponding arc contains the point p.

DEFINITION 16. Place new points on the circle CC as follows. Consider
two consecutive end points x and y of arcs and let p be a point on the

< Ž . < Ž < Ž . < < Ž . <.circle between x and y. If S p - min S x , S y then we call p a
Ž . Uscanpoint. The set of scanpoints of DD G is denoted by Z .

Also in this case we call a chord of the circle connecting two scanpoints
a scanline.

DEFINITION 17. Let a and b be two nonadjacent vertices of G. A
scanline s is between the arcs of a and b if every path from an end point of
the arc of a to an end point of the arc of b along the circle CC passes
through a scanpoint of s.

A vertex is called simplicial if its neighborhood is a clique.

Ž .LEMMA 18. If an arc in a circular-arc model DD G does not contain any
scanpoint then its corresponding ¨ertex is simplicial.

Proof. The definition of ZU implies that between any two nonintersect-
Ž .ing arcs a and b in DD G there is a scanpoint u and a scanpoint z such

that the scanline connecting u and z is between a and b. Consequently, if
a vertex has nonadjacent neighbors than there is a scanpoint contained in
the arc corresponding to that vertex.

Ž . Ž .For any scanline s of DD G , we denote by S s the set of all vertices ¨
of G, for which the corresponding arc contains at least one scanpoint of s.

w xProofs of the following theorem and corollary were given in 12, 13, 15 .

THEOREM 19. Let a and b be nonadjacent ¨ertices of a circular-arc graph
Ž .G s V, E . For e¨ery minimal a, b-separator S of G, there exists a scanline s

Ž .between the arcs of a and b such that S s S s .
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w xProof. Let C and C be the components of G V _S containing a anda b
b, respectively. Then there is a ‘‘generalized arc’’ corresponding to C anda
C that arises as the union of the arcs of all vertices in C and C ,b a b
respectively.

Clearly, these generalized arcs have an empty intersection. Moreover,
when going from one generalized arc to the other in clockwise direction
along CC, there is at least one scanpoint in the part of the circle not
contained in a generalized arc.

We construct the scanline s as follows. Starting from the generalized arc
of C in clockwise direction, let x be the first scanpoint not contained ina
the generalized arc. Similarly, let y be the first scanpoint outside the
generalized arc of C , when going from C in clockwise direction. Then sb b
is the scanline connecting the scanpoints x and y. By construction, s is
between the arcs of a and b.

Note that x and y cannot be contained in any arc corresponding to a
Ž .vertex of V _S. Hence S s : S. On the other hand, every arc correspond-

ing to a vertex of S intersects the generalized arc corresponding to C anda
Ž .also that corresponding to C by Lemma 5. Thus S s s S.b

Ž 2 .COROLLARY 20. A circular-arc graph on n ¨ertices has O n minimal
separators.

Characterizations of the minimal separators in terms of scanlines as in
Theorems 14 and 19 and their consequences for the number of minimal
separators as in Corollaries 15 and 20 have been presented for various

Ž w x.classes of intersection graphs see, e.g., 3, 12, 15 .

4. REALIZERS AND TRIANGULATIONS

We introduce two similar types of convex polygons and show how certain
planar triangulations of these polygons and the triangulations of the
corresponding graph relate to each other.

4.1. Circle Graphs

Ž . Ž .Let G s V, E be a circle graph. Consider a circle model DD G with
the set Z of scanpoints.

< < Ž .DEFINITION 21. Let Y : Z and Y G 3. We denote by PP Y the
Ž .convex polygon with vertex set Y. The candidate component G Y is the

subgraph of G induced by the set of vertices corresponding to chords of
Ž . Ž .DD G that have a nonempty intersection with the interior region of PP Y .

Ž .Hence the edges of the polygon PP Y are scanlines. Notice that
Ž .G Z s G.
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< <DEFINITION 22. Let Y : Z and Y G 3. For each scanline s that is an
Ž .edge of the polygon PP Y , add an edge between any pair of nonadjacent

Ž .vertices of the candidate component G Y of which the two corresponding
chords intersect the scanline s. The graph obtained in this way is called the

Ž . Ž .realizer R Y of the candidate component G Y .

Ž . < < Ž .Notice that R Z s G. Furthermore, if Y s 3 then PP Y is a triangle
Ž .and each chord corresponding to a vertex of G Y intersects exactly two

Ž . Ž .edges of PP Y . Thus R Y is a clique.

< < Ž .LEMMA 23. Let Y : Z and Y G 3. Then the realizer R Y is a circle
graph.

Ž .DEFINITION 24. Let G Y be a candidate component with realizer
Ž . Ž Ž ..R Y . A scanline s of DD R Y is Y-nice if the scanpoints of s are

elements of Y.

< <LEMMA 25. Let Y : Z and Y G 3 and let S be a minimal a, b-separator
Ž . Ž .in the realizer R Y . Then there is a Y-nice scanline s such that S s S s in

Ž Ž ..DD R Y .

wFor the proofs of Lemmas 23 and Lemma 25, we refer the reader to 12,
x13 .

Ž .DEFINITION 26. Let PP be a convex polygon with m vertices. A planar
triangulation of PP is a set of m y 3 noncrossing diagonals in PP that divide
the interior of PP into m y 2 triangles.

< <DEFINITION 27. Let Y : Z and Y G 3. Let T be a triangulation of
Ž . Ž .PP Y . Then H T is defined as the graph with the same vertex set as
Ž . Ž .G Y and vertices u and ¨ of H T are adjacent if there exists a triangle

Q in T such that the two chords corresponding to u and ¨ both intersect
Q.

Ž . Ž .Note that R Y is a spanning subgraph of H T .

Ž .LEMMA 28. The graph H T is chordal and therefore a triangulation of
Ž .R Y .

Ž .Proof. Let y g Y be a vertex of PP Y that is not incident with a
diagonal of the triangulation T. Hence y is incident with exactly one
triangle Q of T. If there is a chord intersecting Q but no other triangle of
T , then the vertex x corresponding to this chord is a simplicial vertex of
Ž . Ž .H T . Remove x from H T and the chord from the circle model.
If there is no chord left that intersects Q but no other triangle of T ,

Ž .then remove y from Y. Notice that this removal does not change H T
because in this case any chord intersecting Q also intersects the neighbor-
ing triangle of Q in T. In this way, we obtain a perfect elimination

Ž . Ž .ordering of the graph H T . Thus H T is chordal.
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We give a representation theorem for all minimal triangulizations of a
Ž . Žcircle graph in terms of planar triangulations of the polygon PP Z see

w x.also 12, 13 .

Ž . Ž .THEOREM 29. Let G s V, E be a circle graph. Let DD G be a circle
model of G and Z its set of scanpoints. Then for e¨ery minimal triangulation

Ž . Ž .H of G there is a planar triangulation T of the polygon PP Z such that
Ž .H s H T .

< <Proof. We claim that for any set Y : Z with Y G 3 and any minimal
Ž . Ž .triangulation H of the realizer R Y , there is a triangulation T of PP Y

Ž .such that H s H T . Note that the claim immediately implies the theo-
Ž .rem, since G s R Z .

Ž .First let H be a complete graph. Then D H s B. Thus Theorem 6
Ž . Ž .implies that R Y is also complete. Hence H s H T for any triangulation

Ž .T of PP Y .
Now let H be a noncomplete graph. We shall prove the claim by

induction on the number of vertices in Y. Let S be a minimal a, b-sep-
arator of H. Since H is a minimal triangulation, S is also a minimal

Ž .a, b-separator of R Y by Theorem 6. Then there exists a Y-nice scanline s
Ž . Ž Ž ..such that S s S s in DD R Y by Lemma 25. Clearly, s divides the

Ž . Ž . Ž . < < < <polygon PP Y into two polygons PP Y and PP Y . Moreover, Y - Y1 2 1
< < < <and Y - Y , since s is between the chords of a and b.2

Ž . Ž .Consider the corresponding realizers R Y and R Y . The subgraphs1 2
Ž . Ž .of H induced by the vertices of R Y and R Y are minimal triangula-1 2

Ž . Ž .tions of R Y and R Y . Now the claim follows by induction.1 2

The consequence of Theorem 29 and Lemma 28 is a minimum fill-in
algorithm for circle graphs, that essentially computes a minimum weight

Ž .triangulation of the polygon PP Z .

4.2. Circular-Arc Graphs

Ž . Ž .Let G s V, E be a circular-arc graph with circular-arc model DD G .
U Ž .Consider the set Z of scanpoints of DD G .

< U < ŽContrary to circle graphs, we only have 1 F Z F 2n. By our assump-
Ž . < U <tion, no arc in DD G covers the whole circle. Hence Z s 0 is impossi-

. < U <ble. If Z s 1, then G has no minimal separator by Theorem 19. Hence
< U <G is complete. If Z s 2 and G is not complete then Theorem 19 implies

Ž .that S s is the unique minimal separator of G, where the scaline s
U Ž .connects the two scanpoints of Z . Moreover, S s is a clique, since G has

Ž .no other minimal separator. Furthermore, any vertex of V _S s is simpli-
cial by Lemma 18. Hence, removing all simplicial vertices, we obtain the

w Ž .xcomplete graph G S s . Thus G has a perfect elimination ordering and is
Žchordal. In fact, one can show that G is an interval graph having at most



FILL-IN ON CIRCLE AND CIRCULAR-ARC GRAPHS 281

. Ž .two maximal cliques. Thus in both cases mfi G s 0. Consequently, we
< U <may assume Z G 3.

Ž U . ULet PP Z be the convex polygon with vertex set Z . Hence the edges
Ž U . Ž .of PP Z are scanlines of DD G .

Ž .DEFINITION 30. Let T be a planar triangulation of the polygon
Ž U . Ž . Ž .PP Z . Then the graph H T is defined as follows. The vertex set of H T

Ž .is the same as the vertex set of G. Two vertices u and ¨ of H T are
adjacent if either they are adjacent in G or there exists a diagonal d in T
such that the arcs of u and ¨ both contain a scanpoint of d.

Note that if the arcs of vertices u and ¨ of G both contain a scanpoint
Ž U .of an edge of PP Z then u and ¨ are adjacent in G, since there is no

minimal u, ¨-separator in G by Theorem 19.

Ž .LEMMA 31. H T is chordal and therefore a triangulation of G.

Ž .Proof. Suppose H T is not chordal and let ZZ be a chordless cycle in
Ž .H T of length greater than 3. Thus there are two vertices x and y of ZZ

Ž .which are nonadjacent in H T . Clearly, the arc a of x and the arc b of y
have empty intersection. By Theorem 19 there are two scanpoints p and q,

Ž .such that the scanline s connecting p and q is between a and b and S s
is a minimal x, y-separator in G.

Ž U . XAssume s is not an edge of PP Z . Then there is a scanpoint p
contained in the arc a and a scanpoint qX contained in the arc b. Since T

Ž U .is a triangulation of PP Z and there is a diagonal of T in the convex
Ž� X X4. Ž X X.polygon PP p, p , q, q . By the choice of a and b this cannot be p , q ,

Ž .thus s s p, q is a diagonal of T.
w Ž .xLet C and C be the components of G V _S s containing x respec-x y

Ž .tively y. By the definition of H T , there is no edge between a vertex of Cx
Ž .and a vertex of C in H T . Consequently, the cycle ZZ contains twoy

Ž .nonconsecutive vertices u and z that both belong to S s . If s is an edge
Ž U . Ž . Ž .of PP Z then S s is a clique of G as we noticed above. Thus S s is also

Ž .a clique of H T , a contradiction. Otherwise consider the diagonal s s
Ž .p, q . The arcs of u and z either both contain p respectively q or one

Ž .contains p and the other q. Therefore u and z are adjacent in H T ,
which is a contradiction.

Now we give a representation theorem for the minimal triangulations of
Ž .circular-arc graphs in terms of planar triangulations of the convex poly-

Ž U .gon PP Z .

Ž . Ž .THEOREM 32. Let G s V, E be a circular-arc graph. Let DD G be a
circular-arc model of G and ZU its set of scanpoints. Then for e¨ery minimal

Ž U .triangulation H of G there is a triangulation T of the polygon PP Z such
Ž .that H s H T .



KLOKS, KRATSCH, AND WONG282

Proof. The proof is by induction on the number of vertices of the
graph.

Ž .Suppose H is a complete graph. Then G is also complete. Hence H T
Ž U .is a complete graph for any triangulation T of PP Z .

Now assume that H has two nonadjacent vertices a and b. Let S be a
minimal a, b-separator in H. Since H is chordal, S is a clique in H. By
Theorem 6, S is a minimal a, b-separator in G.

Ž . Ž .By Theorem 19, there exists a scanline s of DD G such that S s s S
and s is between the arcs of a and b. Let a and b be the scanpoints of s.
The removal of a and b from the circle CC creates two ‘‘halves,’’ which we
call a-half if it contains the arc of a and b-half if it contains the arc of b.

w xBy Theorem 6, the vertex set of every connected component of H V _S
w xinduces a connected component of G V _S . Let V : V be the union of1

w xS and the vertex sets of all components of G V _S for which all arcs are
in the a-half. Analogously, let V : V be the union of S and the vertex2
sets of all components for which all arcs are in the b-half. Clearly,

< < < < < < < <V l V s B, V - V , and V - V .1 2 1 2
� 4 Ž . w xFor i g 1, 2 , let R V be the graph obtained from G V by making S ai i

Ž .clique. Since H is a minimal triangulation of G, S is a clique in R V asi
w x w xwell as in H, any component of G V _S is either contained in G V or in1

w x w xG V , and the vertex set of each component of H V _S is also the vertex2
w x w xset of a component of G V _S , we obtain that H V is a minimali

Ž .triangulation of R V , which can be seen best by using Theorem 3.i
Ž . Ž .Our aim is to construct a circular-arc model of R V and one of R V .1 2

U U Ž U U .Let Z : Z respectively Z : Z be the set consisting of a , b and all1 2
Ž . Ž < U < < U <.scanpoints in the a-half respectively b-half . Thus min Z , Z G 2.1 2

Ž < U < < U <.Case 1. min Z , Z G 3.1 2
w xConsider the a-half. Clearly, H V is chordal and thus a triangulation1

w x w xof G V . We obtain a circular-arc model of G V by removing the arcs of1 1
Ž .all vertices of V _S from DD G . Then replace any arc of a vertex ¨ of S2

containing only one of a and b by a new arc that has the original end
point in the a-half and a new end point in the b-half, such that all these
new arcs contain a fixed point of the b-half, say one close to a .

First, assume that there is one arc of a vertex in S containing a but not
b , and one arc containing b but not a . Then the new circular-arc model
can be constructed in such a way that the set of scanpoints in the new
model is exactly ZU. Clearly, the new model is a circular-arc model of the1

Ž .graph R V since S is a clique and adjacencies between a vertex of S and1
w xa vertex of V remain unchanged. As we have seen above, H V is a1 1

Ž .minimal triangulation of R V . Thus, by induction, we obtain that there is1
Ž U . w x Ž .a triangulation R of PP Z such that H V s H T .1 1 1 1
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In the remaining case all arcs of vertices in S contain one particular end
Ž .point of s, say a . Hence S is a clique in G and R V s G. Thus removing1

Ž .all arcs of vertices of V _S creates a circular-arc model of R V .2 1
X U � 4However, the set of scanpoints Z in the new model is either Z _ a , b1 1

U � 4or Z _ b . Similar to the case considered first, using induction, we obtain1
X Ž X . w x Ž X.that there is a triangulation T of PP Z such that H V s H T .1 1 1 1

Ž < X <Possibly Z - 3. Then take just the ‘‘degenerate triangulation’’ of the1
.‘‘polygon’’ on one or two vertices, which simply means no diagonals. Let

a X and b X be the scanpoints in the a-half that are closest to a and b ,
Ž U .respectively. Then we obtain a triangulation T of the polygon PP Z in1 1

Ž . X Ž X .DD G by adding to the triangulation of T of PP Z the scanlines s and a1 1
X X U � 4scanline between a and a if Z s Z _ b , and additionally a diagonal1 1

X X X U � 4between b and a and a scanline between b and b if Z s Z _ a , b .1 1
w x Ž X. Ž .Then H V s H T , the fact that S is a clique in G, R V , and H, and1 1 1

w x Ž .the construction of T imply H V s H T .1 1 1
Ž U . w xAnalogously, there is a triangulation T of PP Z such that H V s2 2 2

Ž .H T .2
Finally, take the scanline s and all the diagonals of T and T . This gives1 2

Ž U . Ž .a triangulation T of PP Z . Furthermore, H s H T since any edge of H
w xthat does not have both end vertices in S is either an edge of H V or1

w xH V , and thus represented by some diagonal of T.2

Ž < U < < U <.Case 2. min Z , Z s 2.1 2
< U < w xWithout loss of generality assume Z s 2. Then consider H V and2 1

the set ZU s ZU. There is no scanpoint in the b-half, thus S is a clique in1
Ž .G and R V s G. Hence, removing all arcs of vertices in V _S from1 2

Ž . Ž . w xDD G , we obtain a circular-arc model of R V . H V has fewer vertices1 1
Ž .than H and it is a minimal triangulation of R V . Thus, by induction,1

Ž U . w x Ž .there is a triangulation T of PP Z such that H V s H T . By Lemma1 1 1 1
18, all vertices of V _S are simplicial in G. No minimal triangulation of a2

Žgraph G adds an edge for which an incident vertex is simplicial. This
follows easily from Theorem 3 as well as from Theorem 6 and the fact that
no minimal separator from Theorem 3 as well as from Theorem 6 and the

.fact that no minimal separator of a graph contains a simplicial vertex.
Ž . Ž U .Consequently, H T s H, where T is the triangulation T of PP Z1 1

UŽ .taken as a triangulation of PP Z with respect to G.

5. END TRIANGLES

The concept of an end triangle is important for obtaining efficient
algorithms that compute the minimum fill-in on circle graphs and circular-
arc graphs.
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5.1. Circle Graphs

Ž . Ž . Ž .Let G s V, E be a circle graph with circle model DD G and let PP Z
be the convex polygon with vertex set Z.

DEFINITION 33. Let a and b be nonadjacent vertices of G. A triangle
Ž . � 4Q in PP Z , that is, all vertices of Q are in Z, is an end triangle for a, b , if

the chords of a and b both intersect Q, but there is only one edge of Q
that is crossed by both chords.

Ž .LEMMA 34. Let T be any triangulation of PP Z . If the chords of two
nonadjacent ¨ertices a and b both intersect some triangle of T , then there are

� 4exactly two end triangles for a, b in T.

Proof. Suppose the chords of a and b both intersect a triangle Q of T.
Then the chords of a and b both cross at least one common edge, say r, of
Q. Hence the chords of a and b also intersect a neighboring triangle QX

which shares the edge r with Q. In this way we find a path of triangles
� 4which must end with an end triangle for a, b .

Notice that the set of triangles having nonempty intersection with the
chords of a and b is exactly the path of triangles between the two end

� 4triangles for a, b . This shows that there are exactly two end triangles for
� 4a, b .

Ž . Ž .DEFINITION 35. Let Q be a triangle of PP Z . Then w Q , the weight of
� 4Q, is the number of unordered pairs a, b of noncrossing chords for which

Ž .Q is an end triangle. The weight w T of a triangulation T is the sum of the
weights of all the triangles in T.

Ž .COROLLARY 36. Let G s V, E be a circle graph. Then
1 <mfi G s min w T T triangulation of PP Z .� 4Ž . Ž . Ž .2

Ž . Ž .Proof. Let T be a triangulation of PP Z . Consider H T . The weight
Ž .of T is twice the number of edges of H T minus the number of edges in

Ž .G, since Lemma 34 implies that every edge in H T that is not an edge in
G is counted exactly twice, namely once for each end triangle. Thus the

Ž .minimum weight of a triangulation T of PP Z is exactly twice the
minimum fill-in of G.

5.2. Circular-Arc Graphs

Ž . Ž .Let G s V, E be a circular-arc graph with circular-arc model DD G
Ž U . Uand let PP Z be the convex polygon with vertex set Z .

DEFINITION 37. Let a and b be two nonadjacent vertices of G. A
Ž U . � 4triangle Q of PP Z is an end triangle for a, b if the arcs of a and b each

contain exactly one vertex of Q.
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Ž U .LEMMA 38. Let T be any triangulation of PP Z . If there is a diagonal s
of T such that the arcs of the two adjacent ¨ertices a and b both contain one

� 4scanpoint of s, then there are exactly two end triangles for a, b .

Proof. Consider the diagonal s. Let us say that it is horizontal. We
claim that there is exactly one end triangle above s and exactly one end
triangle below s.

Since s is a diagonal, there are two triangles incident with s, one below
and one above s. Consider the triangle Q above s. Let s have end points a
and b and let g be the third vertex of Q.

First, assume g is not contained in the arcs a or b. Then Q is an end
triangle. All triangles above Q are above one of the scanlines between a
and g or b and g . This shows that there can be no other end triangle
above Q.

Now, without loss of generality, assume g is contained in b. Let sX be
the scanline between a and g . By Theorem 19, there is a scanline between
a and b. This scanline clearly intersects sX. It follows that sX must be a

Ž U .diagonal in T rather than an edge of PP Z . Now the claim follows by
induction.

Ž U . Ž .DEFINITION 39. Let Q be a triangle of PP Z . Then w Q , the weight
� 4of Q, is the number of unordered pairs a, b for which Q is an end

triangle.

Ž .COROLLARY 40. Let G s V, E be a circular-arc graph. Then

1 U<mfi F s min w T T triangulation of PP Z .� 4Ž . Ž . Ž .2

Ž U . Ž .Proof. Let T be a triangulation of PP Z . Consider H T . Lemma 38
Ž .implies that the weight of T is twice the number of edges of H T minus

Ž .the number of edges in G, since every edge in H T that is not an edge in
G is counted exactly twice, namely once for each end triangle. Conse-

Ž U .quently, the minimum weight of a triangulation T of PP Z is exactly
twice the minimum fill-in of G.

6. THE ALGORITHMS COMPUTING THE MINIMUM FILL-IN

In this section we describe simple polynomial time algorithms to find the
minimum fill-in of circle graphs and circular-arc graphs.

Luckily, for both graph classes we were able to define a weight function
Ž .on the triangles such that the minimum weight of a planar triangulation

is equal to twice the minimum fill-in of the input graph. Hence both
algorithms compute the minimum weight of a triangulation of the polygon
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Ž . Ž U .PP Z and PP Z , respectively, using a classical dynamic programming
w xalgorithm for this problem which has also been applied in 13, 21 .

Ž U .Let s , s , . . . , s be the scanpoints of the set Z respectively Z in1 2 h
some clockwise order. Then h s 2n for circle graphs and h F 2n for

Žcircular-arc graphs. Note that all indices in this section are to be taken
.modulo h.

Ž .Let c i, j, k be the weight of the triangle with vertices s , s , s . Supposei j k
Ž . Ž Ž U ..the weights of all triangles of PP Z respectively PP Z are given. Then

Ž 3.there is an O h algorithm that computes the minimum weight of a
Ž . Ž Ž U ..triangulation of PP Z respectively PP Z .

Ž .Define w i, t as the minimum weight of a triangulation of the polygon
Ž .with vertices s , s , . . . , s . Then, for all i, w i, 2 s 0, and, for alli iq1 iqty1

� 4t g 3, . . . , 2n ,

w i , t s min w i , j q w i q j y 1, t y j q 1Ž . Ž . Ž .
2Fj-t

q c i , i q j y 1, i q t y 1 .Ž .

By Corollaries 36 and 40, the minimum fill-in of the input graph can be
Ž 3.computed in time O n plus the time for computing the weights of all the

Ž 3. Ž . Ž U .O n triangles of the polygon PP Z and PP Z . It is not hard to see that
Ž 5.the weights of all triangles can be computed in time O n for circle and

Ž 5.circular-arc graphs. This would give O n algorithms computing the
minimum fill-in. In the remainder we show how to get faster algorithms.

6.1. Circle Graphs

The weight of the triangle Q is the number of nonadjacent vertices a
and b of G for which the chords of a and b both cross Q, but there is only

Ž .one edge of Q that is crossed by both chords. The weight c p, q, r of all
Ž .triangles of PP Z can be computed as follows.

Ž . ŽLet L i, k; j where s is not on the part of the circle going clockwisej
.from s to s be the number of chords that have exactly one endi iqky1

point in clockwise order between s and s and that cross the scanlinei iqky1
Ž .between s and s . The numbers L i, 2; j are easy to determine, sincei j

there is a unique chord with an end point on the part of the circle going
Ž .clockwise from s to s . The numbers L i, k q 1; j an be determined asi iq1

follows. Check if the chord with an end point on the part of the circle
going clockwise from s to s , crosses the scanline between s andiqky1 iqk i

Ž . Ž .s . If it does, then L i, k q 1; j s L i, k; j q 1 and if it does not, thenj
Ž . Ž .L i, k q 1; j s L i, k; j .

Ž . ŽLet A i, k; j where s is not in the part of the circle going clockwisej
.from s to s be the number of pairs of nonadjacent vertices a and bi iqky1

such that chords of a and b have one end point on the part of the circle
going clockwise from s to s , the chord of a crosses the scanlinei iqky1
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between s and s , and the chord of b crosses the scanline between si j iqky1

Ž .and s . Then A i, 2; j s 0 for all i and j, since there is only one chordj
with an end point on the part going clockwise from s to s . Theni iq1
consider the chord with an end point on the part of the circle going
clockwise from s to s . If this chord crosses the scanline betweeniqky1 iqk

Ž . Ž . Ž . Žs and s , then A i, k q 1; j s A i, k; j q L i, k; j . Otherwise A i, kiqk j
. Ž .q 1; j s A i, k; j .

Now the weight of the triangle with vertices s , s , and s , wherep q r
s , s , s is in clockwise order, can be computed asp q r

c p , q , r s A p , q y p q 1; r q A q , r y q q 1; pŽ . Ž . Ž .
q A r , p y r q 1; q .Ž .

Ž .Consequently, the weight of all triangles of PP Z can be determined in
Ž 3.O n time.

Ž 3.THEOREM 41. There is an O n time algorithm computing the minimum
fill-in of a circle graph.

6.2. Circular-Arc Graphs

Ž w x.First, check in linear time see 10 whether the graph is a chordal
graph. If so, its minimum fill-in is 0. Thus, we may assume that the input

< U <graph G is not an interval graph, implying Z G 3.
Ž U .We shall demonstrate that the weights of all triangles of PP Z can be

computed by solving the corresponding problem on a suitable circle model.
First, add scanpoints to the original set ZU such that there is exactly one
scanpoint between any two consecutive end points of arcs. Similar to the
circle graph terminology, we call the set of all these points Z. Clearly,

U Ž . XŽ .Z : Z. Now transform DD G into a circle model DD G by replacing any
arc with end points x and y with a chord connecting x and y.

Let a and b be two nonadjacent vertices of G. Then, for every triangle
Ž . XŽ .Q of PP Z , the chords corresponding to a and b in DD G intersect Q

such that exactly one edge of Q is crossed by both chords if and only if the
Ž .arcs of a and b in DD G have empty intersection and each contains

exactly one vertex of Q.
Ž U .Consequently, the weight of all triangles of PP Z can be computed in

Ž 3.time O n by using the algorithm for circle graphs, given in Section 6.1,
XŽ .additionally counting a pair of noncrossing chords in DD G only if the

corresponding vertices are nonadjacent in the circular-arc graph G, which
Ž .can be determined easily in DD G .

Ž 3.THEOREM 42. There is an O n time algorithm computing the minimum
fill-in of a circular-arc graph.
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7. CONCLUSIONS

In this paper we described elegant and efficient algorithms for solving
the MINIMUM FILL-IN problem on circle graphs and circular-arc graphs,
which are based on representation theorems for the minimal triangulations
of such graphs. Representation theorems of this type are powerful tools
for designing treewidth and minimum fill-in algorithms. Similar theorems
for other graph classes could be a step forward in clarifying the relation of
TREEWIDTH and MINIMUM FILL-IN. Graph classes for which the algorithmic
complexity of the problems TREEWIDTH and MINIMUM FILL-IN might be
different, up to our knowledge, are, e.g., circular permutation and weakly
triangulated graphs.

Earlier results for permutation graphs were generalized to d-trapezoid
w xgraphs in 3 . It would be interesting to see a suitable definition of a

higher-dimensional circle graph and circular-arc graph, respectively, to
which the algorithms presented in this paper can be generalized.
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