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Given a collection II of n jobs that are represented by intervals, we seek a
maximal feasible assignment of the jobs to k machines such that not more than
Ž .c M intervals overlap pairwise on any machine M and that a job is only assigned

to a machine if it fits into one of several prescribed time windows for that machine.
We analyze an on-line version of this NP-complete problem and exhibit an

Ž .algorithm that achieves at least half of the theoretical optimum. In a more
detailed analysis, we bound the performance of our algorithm by an additive term

Žthat only depends on the time window structure of the machines but not on the
. Ž .number of jobs . In the case where each machine M has capacity c M s 1, our

bound implies that our algorithm loses at most k y 1 jobs relative to the optimum.
We show by an explicit construction that the bound is tight for greedy on-line
algorithms. Q 1999 Academic Press

Key Words: greedy algorithm; k-track assignment; interval order; on-line; sched-
uling; time window.

1. INTRODUCTION

The k-track assignment problem is an interval scheduling problem that
Žhas received considerable attention in the literature see, e.g., Arkin and

w x w x w xSilverberg 1 , Brucker and Nordmann 2 , Carlisle and Lloyd 3 , Faigle
w x.and Nawijn 4 . It arises when n jobs requiring specific processing times
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are to be assigned on-line to k machines that are only available during
certain time windows, for instance to satellites that are orbiting the earth
Ž w x.other real world applications are described, e.g., in Kolen and Lenstra 6 .

The overall assignment has to be done in such a way that no two jobs on
the same machine overlap. The objective is to maximize the number of

w xfeasible individual assignments. Brucker and Nordmann 2 reduce the
k-coloring problem for circular arc graphs, which is known to be NP-com-

Ž w x.plete Garey et al. 5 , to a special interval scheduling problem with time
windows, thus showing that the problem in this generality is NP-hard.

The k-track assignment problem is usually studied in an off-line version,
where all problem data are known in advance. Extending the work of

Ž ky1.Arkin and Silverberg, Brucker and Nordmann give an O n dynamic
programming algorithm and note that the algorithm might be of practical
use when there are not more than k s 5 machines.

w xFaigle and Nawijn 4 observe that a simple greedy-type algorithm not
Ž .only solves the problem optimally but it can also be used as an optimal

Žon-line algorithm when the time windows are identical. This situation
corresponds to the problem of maximizing the union of k chains in an

.interval order .
In this paper, we analyze the performance of the greedy on-line heuristic

in the presence of possibly different time windows. The result turns out to
be surprisingly good; our algorithm constructs a feasible schedule that is

Ž .never more than k y 1 jobs off the theoretical optimum, independent of
the number n of jobs. We actually study the problem in a slightly more
general context, where the feasibility of a machine for a job is determined
by several time windows per machine and jobs on a single machine may
overlap as long as a prescribed machine capacity is not exceeded. The

Žmachine capacity then enters the performance bound still being indepen-
.dent of the number of jobs .

w xArkin and Silverberg 1 have generalized the scheduling problem to the
model where job-machine feasibility is modeled by an arbitrary bipartite
graph. While the dynamic programming approaches for the off-line version
go through in this generality, we must leave the complexity analysis of the
general on-line model as an open problem.

The paper is organized as follows. After introducing the full general
model, we concentrate on the class of assignment problems relative to time
windows. We exhibit an explicit on-line scheduling algorithm and bound its
performance by an additive term that only depends on the time window
structure of the machines. We show by example that our algorithm is
optimal; i.e., for any set of problem parameters no on-line algorithm can
improve our bound. Taking a different perspective, we finally observe that
our algorithm achieves at least one half of the optimum. Also this bound
can be shown to be sharp.
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2. THE GENERAL INTERVAL SCHEDULING MODEL

Ž . Ž .We consider an ordered list II s I , I , . . . , I of n ‘‘jobs’’ that are1 2 n
represented by intervals with both endpoints in the set N of natural
numbers. Strictly speaking, the restriction to N in our model is not
necessary. As will be seen below, the algorithmic performance analysis
only uses the relative position of the intervals within the set of II intervals.
For ease of exposition, however, we make this technical integrality assump-
tion right from the beginning.

Ž . Ž Ž .. Ž .For every I g II, we denote by l I r I the left resp. right endpoint
Ž . Ž .of the interval representing I. The difference r I y l I G 0 is the length

of I and can be understood as the ‘‘processing time’’ job I requires.
Without loss of generality, we will always assume that every job I is

Ž . Ž .‘‘nontrivial,’’ i.e., has strictly positive length r I y l I G 1.
Thinking of the jobs as arriving at points t s 1, 2, . . . , n in ‘‘time,’’ we

assume

l I F l I F ??? F l I .Ž . Ž . Ž .1 2 n

Note that we use the term ‘‘time’’ synonymously with the index set of II.
In a real-world situation, the ‘‘actual arrival time’’ of a job I could, for

Ž .example, be the left endpoint l I of its processing interval. We prefer our
terminology in the performance analysis since it allows us to specify a
unique sequential order among jobs with the same ‘‘actual arrival time.’’

The jobs are to be placed on the k ‘‘machines’’ in the set

� 4MM s M , M , . . . , M ,1 2 k

where the placement is subject to two conditions:
First, we assume that there exists a binary relation

f : II = MM ,

indicating if a machine M is feasible for a job I. We use the notation
Ž . Ž . ŽŽ .I, M g f or, equivalently, f I, M s 1 for this feasibility I, M f f is

Ž . .denoted by f I, M s 0 .
Ž .Second, we assume that a machine M g MM has a capacity c M g N

restricting the number of jobs on which M can work simultaneously.
Ž . � 4A feasible schedule is thus a subset s : I , I , . . . , I of jobs I that1 2 n

can be assigned to machines M such that the following feasibility condi-
tions hold:

Ž . Ž .S If I is assigned to M, then f I, M s 1.1

Ž .S If the subset II 9 : II is assigned to the same machine M, then2
Ž .II 9 contains no c M q 1 jobs with pairwise overlapping intervals.
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Ž .A feasible schedule s * is optimal if

< < < <� 4s * s max s : s schedule .

Ž . < <We also use the notation s * s s * II, MM to indicate that s * depends
Ž . Žon the problem II, MM . Strictly speaking, a problem is defined by the

Ž .triple II, MM, f . To simplify the notation, however, we usually suppress the
.symbol f.

We propose a greedy algorithm for this scheduling problem that is
also on-line in the sense that it deals with the jobs in the given order
I , I , . . . , I . We do not assume that full information about the problem1 2 n
Ž .II, MM, f is available in advance. Only at time t, when job I ‘‘arrives’’ tot

w Ž . Ž .xbe dealt with, knowledge of the interval l I , r I and the sett t

MM I [ M g MM : f I , M s 1� 4Ž . Ž .t t

is needed.
Ž .At each time t, the ‘‘incoming’’ job I is either discarded or tentativelyt

placed on some machine M. A tentatively placed job may be replaced by a
job that comes in later and thereby can be discarded. A job may not be
placed anymore once it has been discarded. The algorithm stops after In
has been dealt with. The associated schedule consists of the jobs that have
not been discarded in the course of the algorithm.

To be more precise, we need more terminology. We say that machine M
Ž .is busy at time t if c M jobs I are on machine M with ¨ - t and¨

l I q 1 F r I ,Ž . Ž .t ¨

i.e., I overlaps with each I . If M is not busy, M is free.t ¨
Ž .An algorithm G for the scheduling problem II, MM is a greedy algorithm

if for t s 1, . . . , n G acts on I according to the following rules:t

Ž . Ž .G If MM I contains some free machine M at time t, place I0 t t
onto M.

Ž . Ž .G If all machines in MM I are busy at time t, find some I1 t
Ž . Ž . Ž .currently placed on M g MM I with r I as large as possible. If r I Gt

Ž . Ž .r I q 1, replace I by I thereby removing I .t t

Ž . Ž . Ž .G If neither G nor G applies, discard I right away.2 0 1 t

So during the course of G, at each time t, every feasible machine M is
Ž .either free or busy with exactly c M jobs. G places I on a free feasiblet

machine if such a machine is available. Otherwise G tries to replace a job
I by I on a feasible machine with the goal to reduce the maximal¨ t
remaining processing time. If neither action is possible, G discards I .t
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Ž .Clearly, a greedy algorithm constructs a schedule for II, MM that
respects the feasibility relation between jobs and machines. Note, however,

Ž . Ž . Ž .that G , G , and G do not specify G uniquely. It is easy to see that0 1 2
different greedy algorithms may produce schedules of different cardinality.
We want to bound the worst-case performance of the family of greedy
algorithms.

3. SCHEDULING WITH TIME WINDOWS

In this section, we concentrate on the class of interval scheduling
problems, where the machine-job feasibility arises in the following way:

Ž . Ž .With each machine M g MM, there is associated a finite set WW M of
Ž . Ž .‘‘time windows.’’ Each W g WW M has an ‘‘opening time’’ l W and a

Ž .‘‘closing time’’ r W :

Ž . Ž .W I g II is feasible for M g MM if and only if there is a W g WW M
with

l W F l I - r I F r W .Ž . Ž . Ž . Ž .

We remark that the class of scheduling problems with time windows
amounts to the class of scheduling problems in the general model satis-
fying the property

˜Ž . Ž . Ž . Ž . Ž . Ž . Ž .W l I F l J - r J F r I implies MM J = MM I for all I, J g II.

In our analysis, however, we shall follow the terminology of time
windows.

� Ž . Ž . 4Let R s r W : W g WW M , M g MM be the set of the distinct right
< < � 4endpoints of the time windows. If R s s, then R s r , . . . , r , where we1 s

assume

r - r - ??? - r - r .1 2 sy1 s

We furthermore define

r [ min l W : W g WW M , M g MM .� 4Ž . Ž .0

Without loss of generality, we will assume r s 0.0
Ž .The time window W is said to be of type m, 1 F m F s, if r W s r .m

Time windows of the same type are defined to be equï alent. If m G 1, we
set k [ 0 and0

k [ c M ,Ž .Ým
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where the summation extends over all machines M having a time window
of type m. With the additional notation

sy1

d k , . . . , k [ min k , k q ??? qk ,Ž . Ž .Ýs 1 s m mq1 s
ms0

we can now state our main result.

Ž .THEOREM 3.1. Let II, MM be a scheduling problem with time windows.
Let furthermore s be a schedule obtained by some greedy algorithm and let

Ž .s * be an optimal schedule for II, MM ; then

< < < <s * y s F d k , . . . , k .Ž .s 1 s

Note that the bound in Theorem 3.1 is often quite small; if each
machine has capacity 1 and comprises exactly one time window,
Ž .d k , . . . , k is less than the number k of machines.s 1 s

w xTheorem 3.1 generalizes the result of Faigle and Nawijn 4 , which can
be formulated in the present context as

COROLLARY 3.1. If s s 1, then e¨ery greedy schedule is an optimal
Ž .schedule for II, MM .

We prove Theorem 3.1 by showing that a counterexample could be
assumed to have a special structure. Further analysis of this structure then
shows that no counterexample exists. We first state a technical lemma.

Ž .LEMMA 3.1. Let II, MM be a scheduling problem with time windows, and
Ž .let s be some greedy schedule for II, MM . Then there exists a scheduling

ˆ ˆŽ . Ž .problem II, MM and a greedy schedule s s s II, MM such thatˆ ˆ
ˆŽ . < < < <a II s II

ˆŽ . < Ž . < < Ž . < < < < <b s * II, MM G s * II, MM and s s s .ˆ
Ž .c s is obtained by a greedy algorithm that ne¨er replaces a job butˆ

only either places a job on a free machine or discards a job right away.

Proof. With each sequence II of jobs, we associate its weight,

w II [ l I .Ž . Ž .Ý
IgII

Suppose that, for some n, l g N, counterexamples to the lemma with n
Ž .jobs and largest left interval endpoint l I s l exist. Among all thesen

Ž .counterexamples, consider the ones that maximize the weight w II of the
sequence II of jobs. In the latter class, finally, choose a counterexample
such that the associated greedy algorithm G constructs the greedy sched-
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ule s by a minimal number of replacements. We will derive a contradic-
tion to our choice of G and thus conclude that no counterexample to the
lemma exists.

Ž .In fact, we claim that G has the properties stipulated in property c of
Ž .the lemma and hence yields no counterexample . To prove the claim, we

have to show that G performs no replacements of jobs.
Suppose, to the contrary, that there exists a minimal time t, 1 - t F n,

Ž .so that G replaces a tentatively scheduled job I by the job I on a¨ t
Ž .machine M, relative to the scheduling problem II, MM .

X Ž X . Ž . Ž X . Ž .Let us modify job I to a job I with l I s l I and r I s r I .¨ ¨ ¨ t ¨ ¨
X Ž .Putting I immediately before I , let II 9, MM denote the modified prob-¨ t

Ž .lem. Let G9 be the greedy algorithm on II 9, MM that tries to follow the
actions of G whenever possible.

The crucial point to observe is that G9 will construct a schedule s 9 that
is identical with s . To see this, consider a job I with ¨ - k - t. Becausek

Ž .I is the first job under G that replaces a tentatively scheduled job, Gt
either places I on a free machine or discards I right away.k k

If G places I on a free machine, G9 can apparently do the same. If Gk
discards I because M is infeasible for I , also G9 will have to discard I .k k k
It, therefore, remains to deal with the case where I is feasible for M butk
was discarded under G. Assume that I is placed onto M under G9.k

Ž . Ž . ŽThen we know that r I G r I holds otherwise G should havek ¨
.replaced I with I . Hence machine M will be busy under G9 with some¨ k

Ž . Ž . Ž X . Xjob I, say, instead of I with r I G r I s r I , when I arrives. G9 will¨ ¨ ¨ ¨
not place I X onto a machine M9 / M; if M9 were free for I X under G9, it¨ ¨
would have been free for I under G and if I X were to replace some jobt ¨

Žon M9 under G9, I should have done the same under G becauset
Ž X . Ž . Ž . .r I s r I G r I q 1 . Hence G9 will either replace the job I on M¨ ¨ t

X X Ž Ž . Ž X ..with I or it will discard I namely if r I s r I . Thus, in any case, G9¨ ¨ ¨
will place I onto M. So G and G9 will end up having selected exactly thet
same jobs.

< Ž . < < Ž . < Ž . Ž .Because, apparently, s * II 9, M G s * II, M holds, l I - l I¨ t
Ž .would exhibit II 9, M to also yield a counterexample, contradicting the

Ž . Ž . Ž . Ž .assumed maximality of w II s w II 9 y l I q l I . Therefore, we knowt ¨
Ž . Ž .that l I s l I must be true. If this is the case, however, there is no loss¨ t

of generality when we assume that I is the immediate predecessor of I ,¨ t
i.e., ¨ s t y 1. Indeed, if there is a job I , ¨ - k - t, that is discarded byk

Ž . Ž .G because of the presence of I on M, we have l I s l I and¨ k t

r I G r I ) r I .Ž . Ž . Ž .k ¨ t

Thus, if we move I immediately after I in the job sequence, thek t
corresponding greedy schedule will be unaffected. If the presence of I on¨
M does not influence the action of G on I , moving I behind I clearlyk k t
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leaves the schedule and the number of replacements performed by the
greedy algorithm unaltered.

Ž . Ž .Recalling ¨ s t y 1 and l I s l I , let us now ‘‘switch’’ the jobs I¨ t ¨
Ž .and I in II to obtain the problem II 0, MM . Let G0 be the greedyt

Ž .algorithm on II 0, MM that follows the actions of G whenever possible.
Then G0 generates the same greedy schedule s , placing I on the freet

Žmachine M and discarding I if G0 were forced to place I onto some¨ ¨
other machine M0, then M0 would also be feasible for I and G wouldt

.have had to place I onto M0 as well . So G0 will yield a counterexamplet
with less replacements than G, which contradicts the choice of G.

Summarizing the argument, we conclude that G performs no replace-
ments and thus satisfies the lemma.

Before we proceed to the proof of Theorem 3.1, a remark is in order.
Let G be some version of the greedy algorithm that produces the

Ž .schedule s for the scheduling problem II, MM without performing any
replacements of tentatively scheduled jobs. Let L g II be a job such that
Ž . Ž .r L is maximal in II and consider the scheduling problem II 9, MM , where

II 9 s II _ L.
Take G9 to be a greedy algorithm that follows the actions of G as

closely as possible. So G9 is a greedy algorithm running virtually on the
modified problem such that G9 takes the same decisions as G whenever

Ž .possible. Let s 9 be the associated greedy schedule of II 9, MM . Then the
monotonicity property holds:

< < < <s 9 F s .

Indeed, if G discards L, then apparently s 9 s s holds. If G places L on
Ž .some free machine M, consider an arbitrary job J arriving after L. Either

Ž .J is placed on a free machine M9 by G and thus also by G9 or J is
discarded. If J is discarded because of the presence of L on M, then
Ž . Ž . Ž .r J s r L holds otherwise G would replace L by J . So G9 can place J

on M and all future decisions of G9 will be the same as those of G. If G
discards J for other reasons, G9 does the same. So G9 can possibly place
one such job J onto M instead of L and selects otherwise exactly the same
jobs as G.

Note, furthermore, that also G9 is a greedy algorithm performing no
Žreplacements. We mention without going into details that this monotonic-

ity property may fail to hold if the greedy algorithm G does not have the
.special property above.

As a consequence, we derive a further special structural property that a
counterexample to Theorem 3.1 can be assumed to have. To this end, we
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introduce the notation

LL s LL II [ I g II : r I s r� 4Ž . Ž . s

for the subset of ‘‘long’’ jobs in II.

Ž .LEMMA 3.2. Let II, MM be a scheduling problem with time windows, and
Ž .let s be some greedy schedule for II, MM . Assume that s is obtained by a

greedy algorithm that ne¨er replaces a tentatï ely scheduled job. Then there
ˆ ˆŽ . Ž .exists a scheduling problem II, MM and a greedy schedule s s s II, MMˆ ˆ

Ž .such that property c of Lemma 3.1 holds and

ˆŽ . < < < <i II F II .
ˆŽ . < Ž . < < Ž . < < < < <ii s * II, MM G s * II, MM and s F s .ˆ

ˆŽ . Ž .iii LL : s * for e¨ery optimal schedule s * of II, MM .ˆ ˆ
ˆŽ .iv The jobs in LL form the tail end of II.

Proof. Suppose that Lemma 3.2 is false. Consider the scheduling prob-
Ž . Ž . Ž .lem II, MM that satisfies properties i and ii of the lemma but allows us

< <to exhibit a counterexample with the number n s II of jobs as small as
possible. Let G be the realization of the greedy algorithm upon input
Ž .II, MM yielding such a counterexample and let s be the associated greedy
schedule.

Ž .We first argue that every optimal schedule s * of II, MM contains all
of LL .

Indeed, if there existed some job L g LL with L f s *, then the problem
Ž .II _ L, MM would still yield s * as an optimal schedule. The monotonicity

Ž .property above would, therefore, imply that also II _ L, MM gives rise to a
Ž .counterexample, which would contradict our minimal choice of II, MM .

Second, we claim that we can assume the jobs in LL form the tail end of
the sequence II. To support this claim, we will separately consider the case
where L is discarded by G and the case where L is accepted by G.

Consider first the last job I . If the greedy algorithm G placed I on an n
Ž .free machine, then clearly II _ I , MM would offer a counterexample asn

well, contradicting the minimality of our counterexample. So we know that
I is discarded by G.n

Ž .If the job L g LL is discarded by G, modify L to L9 such that l L9 s
Ž . Ž . Ž .l I and r L9 s r L s r and place L9 immediately after I . Then then s n

Žcorresponding greedy algorithm G9 will discard L9 as well otherwise, In
.could have been placed by G! . Hence, the nature of the counterexample

remains unaltered.
If L g LL is placed by G on a machine M, let us again modify L to L9

as before and move L9 behind I . Suppose the corresponding run of Gn
will now place a successor J of L which could not be placed by G before.
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ŽThen J g LL otherwise G would have been forced to replace L with J in
. Ž . Žthe former situation . Because r J s r , L9 will be discarded otherwise,s

.the machine available for L9 would have been free for I before . In othern
words, the modification does not improve the performance of the greedy
algorithm and yields a counterexample of the same type as before.

Ž .In this way, we can transform the scheduling problem until property iv
holds, i.e., until the lemma is satisfied, which contradicts the choice of
Ž .II, MM as a counterexample.

The proof of Theorem 3.1 can now be finished by induction on s.

Proof of Theorem 3.1. Suppose the theorem is false. By Lemma 3.1 and
Ž .Lemma 3.2, we can find a counterexample II, MM with corresponding

greedy algorithm G such that

Ž .a G never replaces a tentatively scheduled job.
Ž .b Every optimal schedule s * contains LL .
Ž .g LL forms the tail end of II.

Ž . Ž .Among all the counterexamples satisfying the properties a ] g , assume
Ž . < <that II, MM minimizes the number n s II of jobs.

Ž . Ž .The first observation to make is that r L y l L G 2 must hold for
every L g LL .

Ž .Suppose to the contrary that there exists some L g LL with l L s r y 1.s
Ž .Then also l I s r y 1 must hold; i.e., we can assume L s I . G willn s n

necessarily schedule I . This is so because LL : s * and, therefore, not alln
Žmachines can be busy when I arrives otherwise, the machine capacityn

.would not be enough to include all of LL in any feasible schedule .
Ž .Consequently, II _ I , MM would offer a smaller counterexample to then

Ž .theorem, which contradicts our choice of II, MM .
ŽAssume that the counterexample has been chosen so that in addition to

.the previous assumptions the parameter r is minimal and that MMs
Žcontains no time window of length 0 the latter assumption clearly can be
.made without any loss of generality . Our second observation is that the

following property must hold:

Ž .d r s r y 1.sy1 s

Ž .To arrive at d , suppose to the contrary that r G r q 2. Consider thens sy1
Ž . Ž .the problem II 9, MM 9 that arises from II, MM by replacing each job L g ll

with a job L9 such that

l L9 s l L , r L9 s r y 1Ž . Ž . Ž . s

Ž .and each time window W with r W s r by a time window W9 such thats

l W9 s l W , r W9 s r y 1.Ž . Ž . Ž . s
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Ž . Ž . Ž .Because r L y l L G 2 for all L g LL , the scheduling problem II 9, MM

Ž .is completely equivalent with II, MM , but it has a smaller parameter rs
Ž .which is impossible. So d holds.

We now come to the inductive step of the proof of the theorem.
Ž . Ž .Suppose there were a counterexample II, MM with s s 1. By property d ,

we then can assume
0 s r s r y 1 s r y 1.0 1 s

This, however, means that the scheduling problem is trivial and the greedy
algorithm is clearly optimal. In other words, no counterexample with s s 1
exists.

Ž .Let us assume now that II, MM is a counterexample to the theorem with
Ž . Ž .properties a ] d above and satisfies s ) 1. Moreover, we assume that

Ž .the bound in the theorem holds for all problems II, MM whenever MM has
fewer equivalence classes of time windows than MM. We will show that this
assumption leads to a contradiction and thus we conclude that no coun-
terexample exists.

In view of the recurrence relation

d k , . . . , k s d k , . . . , k , k q k q min k , k ,Ž . Ž . Ž .s 1 s sy1 1 sy2 sy1 s sy1 s

there are two cases to be investigated.

Ž . Ž .Case 1. min k , k s k . Consider the problem II, MM 9 , wheresy1 s sy1
Ž .MM 9 arises from MM by replacing each time window W with r W s r bysy1

a time window W9 so that

l W9 s l W , r W9 s r .Ž . Ž . Ž . s

Denote by kX the parameters of the modified machine structure. Thusm
X Ž .k s k q k and the theorem holds for II, MM 9 by the minimality ofsy1 sy1 s

the number s of distinct equivalence classes of time windows.

Ž .LEMMA 3.3. There exists a greedy schedule s 9 s s 9 II, MM 9 so that
< < < <s 9 F s q k .sy1

Proof. This is an immediate consequence of our assumption that G
either places every job on a free machine or discards it right away.

< Ž . < < Ž . <Obviously, s * II, MM 9 G s * II, MM . So we conclude from Lemma 3.3
that

< < < < < < < <s * II , MM y s II , MM F s * II , MM 9 y s 9 II , MM 9 q kŽ . Ž . Ž . Ž . sy1

F d k , . . . , k , k q kŽ .sy1 1 sy1 sy1 s

q min k , kŽ .sy1 s

s d k , . . . , k , k ,Ž .s 1 sy1 s

Ž .a contradiction to the choice of II, MM as a counterexample.
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Ž . Ž .Case 2. min k , k s k . Consider the problem II 0, MM 0 , wheresy1 s s
Ž .MM 0 arises from MM by replacing each time window W with r W s r of MMs

by a time window W0 so that

l W0 s l W , r W0 s r ,Ž . Ž . Ž . sy1

Ž . Ž .and II 0 arises from II by replacing each I g II with r I s r by a jobs
I0 so that

l I0 s l I , r I0 s r I y 1 s r .Ž . Ž . Ž . Ž . sy1

ŽNote that II 0 is a feasible list of jobs since each L g LL has length at
.least 2.

Ž .LEMMA 3.4. There exists a greedy schedule s 0 s s 0 II 0, MM 0 so that

< < < <s 0 II 0 , MM 0 F s II , MM .Ž . Ž .

Proof. Again, this follows directly from the fact that G performs no
replacements of scheduled jobs.

< Ž . < < Ž . <Because r s r y 1, s * II, MM F s * II 0, MM 0 q k holds. Thussy1 s s
we conclude as before,

< < < < < < < <s * II , MM y s II , MM F s * II 0 , MM 0 y s 0 II 0 , MM 0 q kŽ . Ž . Ž . Ž . s

F d k , . . . , k , k q kŽ .sy1 1 sy1 sy1 s

q min k , kŽ .sy1 s

s d k , . . . , k , k ,Ž .s 1 sy1 s

Ž .a contradiction to the choice of II, MM as a counterexample.
Hence no counterexample to Theorem 3.1 can exist. Q.E.D.

We finish this section with an inductive construction of scheduling
Ž .problems showing that the bound d k , . . . , k in Theorem 3.1 is bests 1 s

Ž .possible see, however, an alternative bound in the next section! for
greedy on-line algorithms.

Ž .Every machine M in our set of problems has capacity c M s 1 and has
exactly one time window. We will, therefore, identify the machines with
the time windows for notational convenience. We write for m s 1, . . . , s,

MM [ M g MM : r M s r .� 4Ž .m m

Ž .Of course, the bound d k s 0 is tight for s s 1.1 1
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Ž .Let II, MM be a problem with s y 1 classes MM of machines such thatm

k , if m F s y 2,m< <MM sm ½ k q k , if m s s y 1,sy1 s

Ž .and assume that there is a greedy schedule s for II, MM for which the
bound

d k , . . . , k , k q kŽ .sy1 1 sy2 sy1 s

Ž .is tight. There is no loss of generality when we assume that r I F rsy1
holds for all I g II.

Choose k machines in MM and enlarge the right endpoints of theirsy1 sy1
time windows to

rX [ r q 2.sy1 sy1

Enlarge the right endpoints of the remaining k machines in MM tos sy1

rX [ r q 3s sy1

and denote by MM 9 the new set of machines.
Ž . Ž .Because r I F r for all I g II, the greedy algorithm for II, MM cansy1

Ž .be carried out identically as a greedy algorithm for II, MM 9 .
Now append the following new jobs to II:

w xjobs with associated intervals r , r q 1k sy1 sy1sy1

w xjobs with associated intervals r , r q 2k , kŽ .min sy1 sy1sy1 s

k w xjobs with associated intervals r q 1, r q 3 .s sy1 sy1

Ž .Continue the greedy algorithm for II, MM by placing the first k newsy1
X Ž . Xjobs on MM , the next min k , k new jobs on MM and, finally, k ysy1 sy1 s s s

Ž . Xmin k , k of the remaining new jobs on MM .sy1 s s
The resulting greedy schedule s 9 then satisfies

< < < <s 9 s s q k q k .sy1 s

On the other hand, an optimal schedule s ** for the augmented problem
Ž .consists of an optimal schedule s * for II, MM plus an optimal assignment

of the new jobs to MM
X j M X. Thus,sy1 s

< < < <s ** s s * q k q k q min k , k ,Ž .sy1 s sy1 s

which yields

< < < <s ** y s 9 s d k , k , . . . , k , k .Ž .s 1 2 sy1 s
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4. REMARKS AND OPEN PROBLEMS

There is an alternative approach to bounding the performance of the
greedy algorithm for interval scheduling problems with time windows.

Ž .THEOREM 4.1. Let s be a greedy schedule for the problem II, MM with
time windows. Then

< < < <s * F 2 s .

Proof. Suppose the theorem is false. By Lemma 3.1, we can then find a
Ž .counterexample II, MM with associated greedy algorithm G such that G

never replaces a tentatively scheduled job.
Ž .Note, however, that we can assume the capacity to satisfy c M s 1 for

Ž .each machine M g MM. Indeed, we can replace each M by c M identical
Ž .copies M9 of M with capacity c M9 s 1 and obtain a completely equiva-

lent scheduling problem. We, therefore, make this assumption for the
remainder of the proof.

Ž .With each I g s * _ s we want to associate a job f I g s such that

f I / f J whenever I / J .Ž . Ž .

Clearly, the bound of the theorem will follow if we can construct such an
injection f.

Consider a fixed assignment of the optimal schedule s * to the ma-
chines. If I g s * is discarded by G, the machine M* to which I is
assigned in s * is busy with some job I9 when I arrives. I9 is a member of

Ž .s because G never replaces a tentatively scheduled job. Set f I [ I9.
Ž . Ž .Let f I s f J for some I, J g s * _ s . W.l.o.g. assume

l f I F l I F l J .Ž . Ž . Ž .Ž .

Ž Ž .Then I and J overlap otherwise, I should have replaced f I on M*,
. Ž .instead of being discarded by G . But c M* s 1 yields that I and J

cannot both be feasibly be assigned to M* unless I s J.

In view of Theorem 4.1, the greedy on-line algorithm is also optimal for
˜Ž .the class of scheduling problems with property W in the following sense:

˜Ž .For every on-line algorithm A, there exists a problem with property W
on which A achieves at most half of the theoretical optimum.

Ž . � 4EXAMPLE. Let II, MM be a scheduling problem with MM s M , M1 2
Ž .and l I s 2 t for all I g II and assumet t

2 t q 2 if t is even,r I sŽ .t ½ 2 t q 3 if t is odd.
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Assume that both machines are feasible for the odd jobs. Let now A be
some on-line scheduling algorithm and let for every even job exactly the
machine be feasible on which A has placed the preceding odd job. Clearly,
A will not achieve more than half of the theoretical optimum.

If the time windows are explicitly known to the scheduler, however, it
might be possible that on-line algorithms with an even better performance
guarantee than the one in Theorem 3.1 can be obtained. In particular, it
would be interesting to have an analysis of probabilistic on-line scheduling
under time windows.

Theorem 4.1 is false for the general class of interval scheduling prob-
lems.

EXAMPLE. Consider four machines M , M , M , M and an interval1 2 3 4
w x w x w x w xsequence with five jobs I s I s 0, 4 , I s 0, 3 , I s 0, 2 , I s 2, 4 .1 2 3 4 5

� 4I and I are feasible for all machines, I and I for machines M , M1 2 3 4 1 2
and I only for M .5 1

Assume the greedy algorithm G places I and I on M and M and1 2 1 2
then replaces I on M by I and I on M by I . So I will be discarded1 1 3 2 2 4 5
and G achieves a schedule for only 2 jobs, while the theoretical optimum
is 5.

Using a larger number of machines, the idea of this example can be
extended to construct instances for which the greedy algorithm in the
worst case schedules only approximately one third of the theoretically
optimal number of jobs.

We do not know whether there is an on-line algorithm in our model with
bounded performance ratio on the class of general interval scheduling
problems.
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