
Fast Algorithms for k�Shredders and k�Node Connectivity

Augmentation �

Joseph Cheriyan y Ramakrishna Thurimella z

�� December ����

Abstract� A k�separator �k�shredder� of an undirected graph is a set of k nodes whose removal
results in two or more �three or more� connected components� Let the given �undirected� graph
be k�node connected� and let n denote the number of nodes� Solving an open question� we show
that the problem of counting the number of k�separators is �P�complete� However� we present
an O�k�n� � k�n�����time �deterministic� algorithm for 	nding all the k�shredders� This solves an
open question� e
ciently 	nd a k�separator whose removal maximizes the number of connected
components� For k � �� our running time is within a factor of k of the fastest algorithm known
for testing k�node connectivity� One application of shredders is in increasing the node connectivity
from k to �k� �� by e
ciently adding an �approximately� minimum number of new edges� Jordan
�JCT�B� ����� gave an O�n���time augmentation algorithm such that the number of new edges
is within an additive term of �k � �� from a lower bound� We improve the running time to
O�min�k�

p
n�k�n� � �logn�kn��� while achieving the same performance guarantee� For k � �� the

running time compares favorably with the running time for testing k�node connectivity�

� Introduction

Let G � �V�E� be an undirected� simple graph� A node separator S of G is an �inclusionwise�
minimal subset S � V such that GnS is disconnected� Similarly� an edge separator is an �inclu�
sionwise� minimal subset C � E such that GnC is disconnected� One of the di�erences between
edge connectivity and node connectivity is that the deletion of an edge separator always results in
two connected components� but the deletion of a node separator results in two or more connected
components� Our main contribution is the study of �minimum�cardinality� node separators whose
removal results in three or more connected components� We call a separator S of G a shredder if
GnS has at least three connected components� For example� if G is a tree� each node of degree � �
forms a singleton shredder� For another example� if G is the complete bipartite graph K���� each
part of the bipartition forms a shredder� A separator �shredder� of a graph is called a k�separator
�k�shredder� if it has exactly k nodes� A graph G � �V�E� is said to be k�node connected if jV j � k
and the minimum cardinality of a separator is � k� We focus on the node connectivity� so except
for the introduction� �connectivity� means node connectivity� The number of nodes� jV j� is denoted
by n�

�A preliminary version of this paper has appeared in the Proc� of the ��th ACM S�T�O�C� ������	 pp�
����
yDepartment of Combinatorics and Optimization	 University of Waterloo	 Waterloo	 Ontario	 Canada

N�L
G�� Supported in part by NSERC grant no� OGP��
�
� �NSERC code OGPIN ����� email�
jcheriyan�dragon�uwaterloo�ca

zDepartment of Mathematics and Computer Science	 University of Denver	 �
�� S� Gaylord St�	 Denver CO ������
Supported in part by NSF Research Initiation Award grant CCR�������� email� ramki�cs�du�edu URL�
http���www�cs�du�edu��ramki

�

We present an O�k�n� � k�n�����time �deterministic� algorithm for 	nding all the k�shredders
of a k�node connected graph� This solves an open question raised by Jordan �J ���� e
ciently
	nd a k�separator of a k�node connected graph whose removal maximizes the number of connected
components� For k � �� our running time is within a factor of k of the running time of the fastest
�deterministic� algorithm known for the basic problem of determining whether a graph is k�node
connected� It may not be possible to 	nd all the k�shredders within a time bound that is less than
the time bound for testing k�node connectivity� though we have no proof of such a lower bound� For
k � �� linear�time algorithms are known for testing k�node connectivity� while for k � �� the fastest
algorithm runs in time O�min�kn� � k�n� k�n��� �HRG ���� We also describe a dynamic algorithm
for maintaining the set of all the k�shredders of a k�node connected graph over a sequence of edge
insertions�deletions� The time per edge update is O�jEj� �min�k�pn� � logn�kn��

Counting the number of k�separators of a k�node connected graph is a fundamental problem�
For example� the recent approximation scheme of Karger �K ��� for estimating network reliability
with respect to edge failures is based on counting �and generating� all the minimum�cardinality edge
separators in polynomial time� Karger�s work raised the question whether this method extends to
approximating network reliability w�r�t� node failures� We show that computing the number of
minimum�cardinality node separators is �P�complete� thus resolving an open question in the area�
However� we show that the number of k�shredders of a k�node connected graph is O�k�n�n��� We
present a key lemma on so�called meshing shredders in Section ��

One application of shredders is to an important �and� as yet� partially solved� problem in
network design� A basic goal in network design is� given a �nonnegative� cost for each edge of the
complete graph� construct a subgraph of minimum cost satisfying certain edge�node connectivity
requirements� The edge costs may be either zero�one or not� Problems with zero�one costs on
the edges are usually regarded as augmentation problems� Given an initial graph �whose edges
have zero cost� increase the edge�node connectivity by adding a minimum number of new edges
�each new edge costs one�� For instance� given a tree� one may want to add the minimum number
of new edges to achieve ��node connectivity� Readers interested in network design with arbitrary
edge costs are referred to �GW ��� and �RW ���� and readers interested in edge�node connectivity
augmentation problems for both graphs and directed graphs are referred to �F ����

Let us focus on node connectivity augmentation problems� given a graph� increase the node
connectivity to k� by adding the minimum number of new edges� The case k� � � was solved by
Eswaran � Tarjan �ET ���� and later Hsu � Ramachandran �HR ��� gave a linear�time algorithm�
The case k� � � was solved by Watanabe � Nakamura �WN ���� and a linear�time algorithm was
given by Hsu � Ramachandran �HR ���� The case k� � � was solved by Hsu �H ��� using an
O�jEj � n logn��time algorithm� and earlier Hsu �H ��� gave an almost linear�time algorithm to
increase the node connectivity from three to four� Whether there is an e
cient algorithm for the
node connectivity augmentation problem for arbitrary k� is an outstanding open question�

Jordan �J ��� recently presented an O�n���time approximation algorithm for the problem of
adding the minimum number of new edges to a k�node connected graph to make it �k � ���node
connected� The di�erence between the number of new edges added by Jordan�s algorithm and a
lower bound on the number of new edges is at most k � �� We present an improved version of
Jordan�s algorithm �J ��� that runs in time O�min�k�

p
n�k�n�� �logn�kn�� and achieves the same

performance guarantee� For k � �� the running time of our algorithm compares favorably with
that of the fastest algorithm known for testing k�node connectivity� For � � k � O�

p
logn�� our

running time is within a logarithmic factor of the running time for testing k�node connectivity� and
for larger k� our running time is within a factor of min�k� �n�k��

p
n� of the running time for testing

k�node connectivity� The proof of correctness of our algorithm is based on Jordan�s proof �J ����
but is simpler� Jordan also has a simpler proof in �J�� Moreover� for n � ��k � ��� Jordan �J ���

�

improves the performance guarantee of his algorithm in �J ��� to show a slack of roughly k���
The rest of the paper is organized as follows� Section � has de	nitions� notation and basic

results� Section � describes our algorithm for 	nding all the k�shredders of a k�node connected
graph� and also describes a dynamic algorithm for maintaining the set of all the k�shredders over
a sequence of edge updates� Section � has our results on counting the number of k�separators and
k�shredders in a k�node connected graph� Section � describes our augmentation algorithm and its
proof of correctness�

� De�nitions� notation and preliminaries

For a subset S � of a set S� SnS� denotes the set fx � S � x �� S�g� Let G � �V�E� be a �	nite� undi�
rected� graph without loops or multiedges� �Since this paper studies node connectivity� multiedges
play no role� For example� if we add to G a copy of an existing edge� then G stays the same�� V �G�
and E�G� stand for the node set and the edge set of G� An edge incident to nodes v and w is de�
noted by vw� An x�y path refers to a path whose end nodes are x and y� We call two paths openly
disjoint if every node common to both paths is an end node of both paths� Hence� two �distinct�
openly disjoint paths have no edges in common� and possibly� have no nodes in common� A set of
two or more paths is called openly disjoint if the paths are pairwise openly disjoint� For a subset
V � � V � the induced subgraph of V �� G�V ��� has node set V � and edge set fvw � E � v� w � V �g�
For a subset S � V � GnS denotes G�V nS�� We abuse the notation for singleton sets� e�g�� we use
v for fvg� By a component �or connected component� of a graph� we mean a maximal connected
subgraph� as well as the node set of such a subgraph� Hopefully� this will not cause confusion� The
number of components of G is denoted by �c�G�� For a subset Q � V � NG�Q� or N�Q� denotes
the set of neighbors of Q in V nQ� fw � V nQ � wv � E� v � Qg� The function jN�Q�j on subsets Q
of V is submodular� i�e�� for all Q�� Q� � V �

jN�Q��j� jN�Q��j � jN�Q� 	 Q��j� jN�Q�
Q��j�

Recall that a separator S of G is an �inclusionwise� minimal subset S � V such that GnS has
at least two components� S is said to separate nodes v and w if the two nodes are in di�erent
components of GnS� Clearly� for each component D of GnS� N�D� � S� and each v � S has a
neighbor in each component of GnS� We call a separator S of G a shredder if GnS has at least three
components� A pair of separators S� T is called nonmeshing if T has a nonempty intersection with
at most one component of GnS� otherwise� S and T are said to mesh� In other words� separators S
and T mesh if T has nonempty intersections with at least two components of GnS� A family �i�e��
set� of separators is called nonmeshing if it is pairwise nonmeshing�

Variants of the next lemma have appeared before� Lemma ��� of �J ��� implies a special case
of the lemma�

Lemma ��� If S and T are �not necessarily minimum� separators of a �not necessarily k�connected�
graph G such that S and T mesh� then every component of GnT �or GnS� has a node of S �or T ��
Hence� the meshing relation on pairs of separators is symmetric�

Proof� The key point is this�

every component of GnT contains a node of S�
To see this� consider a node v � V n�S
 T � and suppose that it belongs to a component� say� D�

of GnS� �If V n�S
 T � is empty� then the proof is done�� Focus on a node t � T that belongs to

�

another component� say� D� of GnS� Such a node exists since S and T mesh� Now focus on the
component� say� D� of GnT that contains v� Since T is �inclusionwise� minimal� t has a neighbor�
say� t� in D�� and D� contains a v�t� path� Since S separates v from t� it is clear that this v�t�

path contains a node of S �possibly� t� � S�� Hence� D� contains a node of S� Our claim follows�
Since GnT has at least two components� and each contains a node of S� T and S mesh� The lemma
follows� �

A separator �shredder� of a graph is called a k�separator �k�shredder� if it has exactly k nodes�
A graph G is said to be k�node connected �k�connected� if jV �G�j � k � �� and G has no separators
of cardinality � �k� �� �i�e�� the deletion of any set of � k nodes results in a connected graph�� An
edge vw of a k�connected graph G is called critical �w�r�t� k�connectivity� if Gnvw is not k�connected
�i�e�� Gnvw has a �k� ���separator��

A tight set of a k�node connected graph G � �V�E� is a node set Q such that jN�Q�j � k
and jV nQj � �k � ��� In other words� a tight set is either a component obtained by deleting a
k�separator S from G� or the union of two or more �but not all� components of GnS� See Section ���
for examples and an application� The next lemma on tight sets is used often in Section �� The
proof follows from the submodularity of jN�Q�j over Q � V � Also� see �J ��� Lemma �����

Lemma ��� Given a k�connected graph G � �V�E�� and tight sets X� Y with X 	 Y �� � and
jV n�X
 Y �j � k� the set X 	 Y is tight� and there is no edge with one end in XnY �or Y nX� and
the other end in Y n�X
N�X 	 Y �� �or Xn�Y
N�X 	 Y ���� Moreover� if jV n�X
 Y �j � k � ��
then the set X
 Y is tight�

� A fast algorithm for �nding all k�shredders

This section presents an e
cient algorithm for 	nding all the k�shredders of a k�connected graph�
For ease of description� we assume that the input graph is k�connected� but it is straightforward
to modify the algorithm to include a test for k�connectivity� The algorithm is based on the next
result� See Figure � for an illustration of the algorithm�

Proposition ��� Let G be a k�connected graph and let v� r be a pair of nodes� The number of
k�shredders separating v and r is at most n� and the family of k�shredders separating v and r is
nonmeshing�

Proof� Let P�� � � � � Pk be an arbitrary set of k openly disjoint v�r paths� Every k�separator S
separating v and r has exactly one �distinct� node from each of the paths P�� � � � � Pk� Let Q denote
V �P��
 � � �
 V �Pk�� If S is a k�shredder� then GnS has at least three components D�� D�� D�� � � ��
Suppose that v � V �D�� and r � V �D��� The key point is�

D� stays connected� even after removing all nodes of P�� � � � � Pk �i�e�� D� is a component
of GnQ�� because D� has no node of Q�

The bound on the number of k�shredders separating v and r follows� since there is a distinct
component in GnQ for each distinct k�shredder separating v and r� Suppose that two of the
k�shredders separating v and r� say� S and T � mesh� Then� by Lemma ���� every component
D�� D�� D�� � � � of GnS contains a node of T � Hence� Q has at most �k � �� nodes of T � We have
the desired contradiction� since at least one of the v�r paths P�� � � � � Pk �survives� in GnT � �

The above result gives an O�n�� bound on the number of k�shredders� This bound can be
improved somewhat� see Algorithm � in the box on page ��

�

P�

P�

e d c

b�

b�b�

a

q�

q�
q�q�q�q�

q�

q�

p�

p�p�
p�

v
r

Figure �� Illustrating algorithm Shredders�r�v�� using k � �� P� and P� are two openly disjoint r�v

paths� The components of Gn�V �P��
V �P��� are D� � feg� D� � fdg� D� � fcg� D� � fb�� b�� b�g�
and D� � fag� The candidate shredders are N�D�� � fp�� q�g� N�D�� � fp�� q�g� N�D�� � fp�� q�g�
and N�D�� � fp�� q�g� Step � �nds that N�D�� and N�D�� are incomparable� and discards both� The
remaining candidate shredders are lexicographically ordered as S� � N�D�� and S� � N�D��� There
are � bridges of P�
P�� given by D�� � � � � D� and their open intervals are� ��� ��� ��� ��� ��� ��� ��� ���
and ��� ��� The union of the open intervals is ��� ��� Step � discards S� � N�D��� since the index of
S� is in ��� ��� There is only one 	
shredder separating r and v� S� � N�D�� � fp�� q�g�

Corollary ��� The number of k�shredders in a k�connected graph is O�k�n� n��

Algorithm All�k�shredders �see Algorithm � in the box on page �� outputs all the k�shredders of
a k�connected graph� The main subroutine Shredders�r�v� 	nds all the k�shredders separating two
speci	ed nodes v and r� Let y�� � � � � yk be k arbitrary nodes� A k�shredder either separates some
yi from some yj � � � i �� j � k� or separates fy�� � � � � ykg from some node v � V nfy�� � � � � ykg� To
handle the second possibility� our algorithm adds a new root node z and the edges zy�� � � � � zyk �cf�
�G ����� and then 	nds all the k�shredders separating z and v� for each node v � V nfz� y�� � � � � ykg�

Focus on subroutine Shredders�r�v� �see Algorithm � in the box on page ��� We construct k
openly disjoint v�r paths P�� � � � � Pk� For � � i � k� by an r�v path Pi we mean the path Pi

oriented from r to v� Let Q denote the set of nodes of the paths P�� � � � � Pk� and let D�� � � � � Dc

denote the components of GnQ� By a candidate shredder we mean the neighbor set N�Dg� of a
component Dg of GnQ �� � g � c� such that jN�Dg�j � k� N�Dg� has exactly one node from each
path P�� � � � � Pk� and neither r nor v is in N�Dg�� We take each candidate shredder S � N�Dg�
to be a k�tuple by ordering the nodes in S according to their occurrence in P�� � � � � Pk� A k�tuple
hu�� u�� � � � � uki is said to precede another k�tuple hw�� w�� � � � � wki if for each i� � � i � k� ui precedes
wi on the r�v path Pi� If two k�tuples are incomparable �i�e�� neither k�tuple precedes the other��
then neither of the two corresponding candidate shredders is a k�shredder separating r and v� In
more detail� if the k�tuple hu�� u�� � � � � uki for S � N�Ds� and the k�tuple hw�� w�� � � � � wki for
T � N�Dt� are incomparable� then there exist i and j� � � i� j � k� such that ui strictly precedes
wi on the r�v path Pi but uj strictly follows wj on the r�v path Pj � Hence� in GnT � there is an
r�v path via node ui� Ds and node uj � Similarly� in GnS there is an r�v path via wj � Dt and
wi� Consequently� whenever Shredders�r�v� 	nds a pair of candidate shredders whose k�tuples are
incomparable� it discards both candidate shredders� After this round of elimination� we are left

�

Algorithm � All�k�shredders

Input� A k�connected graph G � �V�E��
Output� The family of k�shredders of G� stored in L�
��� L � ��
��� Choose �arbitrarily� k nodes y�� � � � � yk�

��� For each pair yi� yj � � � i � j � k do

L� �Shredders�yi� yj��
L � L�SL�

��� Add a new node z� and add the edges zy�� � � � � zyk�

��� For each v � V nfz� y�� � � � � ykg do
L� � Shredders�z� v��
L � L�SL�

��� If fy�� � � � � ykg � L� then remove fy�� � � � � ykg from L if Gnfz� y�� � � � � ykg has two compo�
nents�

End

Algorithm � Shredders�r� v�

Input� A k�connected graph G and a node pair r� v � V �G��
Output� The family of k�shredders of G that separate r and v�

��� Find k openly disjoint r�v paths P�� � � � � Pk in G� Let Q denote the set of nodes of the
paths P�� � � � � Pk�

��� For each path Pj � � � j � k� number the nodes �� �� �� � � � � �jPjj � ���� where num�r� � �
and num�v� ��

��� Find the components D�� D�� � � � � Dc of GnQ�
��� Examine the components of GnQ to obtain a list of candidate shredders� Represent each
candidate shredder N�Dg� � fu�� u�� � � � � ukg by a k�tuple hnum�u��� num�u��� � � � � num�uk�i�
where we assume that ui � Pi� � � i � k�

��� Repeatedly discard incomparable pairs of k�tuples� until no incomparable pair remains�

�k�tuples hnum�u��� num�u��� � � � � num�uk�i and hnum�w��� num�w��� � � � � num�wk�i are
incomparable if there exist i and j� � � i� j � k� such that num�ui� � num�wi� and
num�uj� � num�wj���

Lexicographically order the remaining k�tuples� Let the list in ascending order be
S�� S�� � � � � Sf �

��� Examine all the bridges of P�
 P�
 � � �
 Pk � and discard every candidate shredder Sg�
� � g � f � such that Sg is �straddled� by some bridge�

�A candidate shredder Sg with k�tuple hnum�u��� num�u��� � � � � num�uk�i is straddled
by a bridge B if there exist i and j� � � i� j � k� such that B has attachments w � Pi

and x � Pj such that num�w� � num�ui� and num�x� � num�uj���

The remaining candidate shredders are all the k�shredders separating r and v�
End

�

with a totally ordered list of candidate shredders S�� S�� � � � � Sf �Ss occurs before St i� the k�tuple
for Ss precedes the k�tuple for St��

Suppose that one of the remaining candidate shredders Sg� � � g � f � with k�tuple hu�� u�� � � � � uki�
is not a k�shredder separating r and v� �Recall that a bridge of a subgraph H means either an
edge of G that is not in H but has both end nodes in H � or a component of GnV �H� together
with all edges incident to the component� An attachment of a bridge B is a node of H that is
incident to an edge in B�� Then there exists a bridge B of P�
 P�
 � � �
 Pk that �straddles� Sg�
i�e�� there exist i and j� � � i� j � k� such that B has an attachment in the r�v path Pi that
strictly precedes ui� and B has an attachment in the r�v path Pj that strictly follows uj � The last
step of Shredders�r�v� searches for all candidate shredders that are �straddled� by some bridge of
P�
 P�
 � � �
 Pk � and discards all such candidate shredders� The remaining candidate shredders
form the set of all k�shredders separating r and v�

Observe that algorithm All�k�shredders 	nds a k�shredder S that maximizes the number of
components of GnS� since it 	nds all the k�shredders of G�

Theorem ��� The algorithm correctly �nds all k�shredders of G� Shredders�r�v� runs in O�min�k�
p
n�m�

time� and algorithm All�k�shredders runs in O��k� � n� �min�k�pn�m� � O�knm� k�
p
nm� time�

Proof� First consider the correctness of subroutine Shredders�r�v�� Clearly� the set of candidate
shredders contains the set of k�shredders separating r and v� If a candidate shredder S is a k�
shredder separating r and v� then no bridge of P�
 P�
 � � �
 Pk �straddles� S� Therefore� S will
not be discarded by the last two steps of Shredders�r�v�� On the other hand� if candidate shredder
S is not a k�shredder separating r and v� then there must be a bridge B of P�
 P�
 � � �
 Pk that
�straddles� S� This will be detected by either the last step or the second last step of Shredders�r�v��
and so S will be discarded�

Next� consider the correctness of Algorithm All�k�shredders� Focus on an arbitrary k�shredder
S of the input graph G� Either S separates some pair of nodes yi� yj � � � i � j � k� or not� In
the former case� S will be found by Step ��� of Algorithm All�k�shredders� Otherwise� either there
is one component of GnS that contains all nodes of fy�� � � � � ykgnS� i�e�� S separates fy�� � � � � ykgnS
from some node v � V n�S
 fy�� � � � � ykg�� or� S � fy�� � � � � ykg� In this case S will be found by
Step ��� of Algorithm All�k�shredders�

AlgorithmAll�k�shredders invokes Shredders�r�v�O�k��n� times� We will show that Shredders�r�v�
runs in O�min�k�

p
n�m� time� The running time claimed in the theorem for Algorithm All�k�

shredders will follow immediately� The rest of the proof shows how to implement Shredders�r�v�
to run in O�min�k�

p
n�m� time� Step � can be implemented in time O�min�k�

p
n�m� �G ���� and

Steps �� �� and � take linear time� Step � can be implemented by applying a radix sort to order
the k�tuples �of the candidate shredders� according to the total order described above� Whenever
the radix sort encounters a pair of incomparable k�tuples� it discards both� Since the number of
candidate shredders is � n� the running time for the radix sort is O�kn��

Finally� consider Step � of Shredders�r�v�� Since the candidate shredders remaining at the start
of Step � are totally ordered� we may view the collection of candidate shredders as a grid with f
rows �recall that f is the number of remaining candidate shredders� and k columns�

In this setting� Step � checks whether for every row S and for every bridge B of P�
P�
 � � �
Pk�
all the attachments of B are either �above� or �below� S�

Here is a more formal description of Step �� Consider a bridge B of P�
 P�
 � � �
 Pk� We
say that a candidate shredder S with k�tuple hu�� u�� � � � � uki is above �respectively� below� B if for
every attachment w of B� say� w � Pi� � � i � k� ui follows w on the r�v path Pi �respectively�
ui precedes w on the r�v path Pi�� For each bridge B of P�
 P�
 � � �
 Pk� we compute an open

�

interval ��B� hB�� � � �B � hB � f � �� by examining the attachments of B� Take �B �respectively�
hB� to be the highest �respectively� lowest� index of a candidate shredder �from among S�� � � � � Sf�
that is below �respectively� above� B� and if there is no candidate shredder below �respectively�
above� B� then take �B � � �respectively� hB � f � ��� The open intervals ��B� hB� for all the
bridges B of P�
P�
 � � �
 Pk can be found in linear time� The computation of the �B values is as
follows �the computation of the hB values is similar�� Sequentially� for each i � �� � � � � k� we scan
the nodes of the r�v path Pi� keeping track of the highest index of a candidate shredder seen so
far� and whenever an attachment of a bridge B is encountered� then we update �B �initially� �B � f

for every bridge B�� Once we have the open intervals ��B� hB� for all the bridges B� we can delete
all candidate shredders Sg� � � g � f � such that there is a bridge B with �B � g � hB � As the
intervals may overlap� this process can be made more e
cient by 	rst computing the union of all
the open intervals� and then deleting candidate shredders whose indices lie in the union� The union
of a set of open intervals f��B� hB�g can be computed in linear time� by 	rst sorting the tuples
��B� hB� in lexicographic order� because there are at most �n � �� tuples ��B� hB� and the �B� hB
values are integers in the interval ��� n�� Thus� Step � can be implemented in linear time� �

The time bound in the above theorem can be improved by precomputing a sparse certi	cate
for �k � ���connectivity� G� � �V�E��� E� � E� see �NI ��� CKT ��� FIN ���� G� has jE�j �
�k � ���n� �� � O�kn�� and if G is �k� ���connected� then G� is �k � ���connected� Moreover� G�

can be computed in linear time� �NI ���� In detail� we construct a legal ordering v� � v� � � � � � vn
of V � and retain an edge vivj � i � j� in E� i� jfv� � v�vj � E� � � igj � k � �� Also� we need an
extension of �CKT ��� Corollary ����� and �FIN ��� Corollary �����

Proposition ��� ��� S � V with jSj � k is a shredder �or separator� of G i� S is a shredder �or
separator� of G��
�	� If G is k�connected� then Q � V is a tight set of G i� Q is a tight set of G��

Proof� We prove part ��� for shredders� Suppose that S is a shredder of G� but not of G� Then
there is an edge vw in EnE� such that v and w are in di�erent components of G�nS� In the legal
ordering for 	nding G�� let v � vi and w � vj � i � j� and note that jfv� � v�vj � E� � � igj � k � ��
But then the main lemma in �FIN ��� gives the desired contradiction� jS	fv�� � � � � vi��gj � jfv�vj �
E� � � � �� � � � � i� �gj � k � �� �

This gives an improvement on the previous theorem� By precomputing a sparse certi	cate
G� � �V�E�� for �k � ���connectivity� and running the algorithm for 	nding k�shredders on G�� all
the k�shredders of G can be found in time O��k� � n� � �k�n���

Theorem ��� All the k�shredders of a k�connected graph can be found in O�k�n� � k�n���� time�
The same time bound su
ces to �nd a k�separator S that maximizes �c�GnS��

��� A dynamic algorithm for maintaining the set of all k�shredders over edge
insertions�deletions

Given a k�connected graph G� b�G� denotes the maximum number of components obtained by
deleting a k�separator from G� where we take b�G� � � if G has no k�separators� i�e�� b�G� �
maxf�� f�c�GnS� � S � V� jSj � kgg� In this subsection� we sketch an algorithm for maintaining
b�G� over a sequence of edge insertions�deletions� assuming that G stays k�connected throughout�
At the start� we run our algorithm for 	nding all k�shredders of G �if there are no k�shredders� then
b�G� � ��� Next� using the lexicographically sorted list L of all k�shredders� we insert each S � L
into a �max� heap� see �CLR ���� using the value �c�GnS� as the key� �Our heap is organized by

�

maximum key values� and each insertion or deletion takes O�log jLj� � O�logn� time�� Whenever
an edge xy is added to �or deleted from� G� we update the list L and the heap as follows� First� we
run our algorithm Shredders�x�y� on the graph Gnxy �here� G is the graph after the edge update��
to 	nd all the k�shredders separating x and y� This takes time O�jEj�min�k�pn�kn�� and returns
a set of at most n k�shredders Lxy� For each shredder S in Lxy � we search for S in our list L� and if
successful� we also obtain a pointer to S in the heap� If S � L� then we decrement �or increment�
the key of S by one� since inserting �or deleting� edge xy decreases �or increases� the number of
components of GnS by one� If �c�GnS� becomes two �after an edge insertion�� then we delete
S from L as well as from the heap� If we do not 	nd S in L �after an edge deletion�� then we
insert S in L as well as in the heap� Thus the overall time per edge insertion or edge deletion is
O�jEj� �min�k�pn� � log n�kn�� and the time per query of b�G� is O����

Theorem ��� Given a k�connected graph G� b�G� and the set of all the k�shredders can be
maintained over a sequence of edge insertions�deletions such that the time per edge update is O�jEj�
�min�k�

p
n� � log n�kn�� the time per query of b�G� is O���� and the preprocessing time is O��k �

logn�kn� � k�n�����

� Counting the number of k�separators and k�shredders

Our 	rst result in this section settles the open question of counting the number of k�separators in
a k�connected graph� this problem is �P�complete� Our remaining results focus on k�shredders in
a k�connected graph� The algorithm in Section � and Proposition ��� straightaway give a bound
of O��k� � n�n� on the number of k�shredders in a k�connected graph� We derive tighter bounds
for some special cases� Lemma ��� provides the key tool for handling meshing k�shredders and
k�separators� Recall that a separator T is said to mesh with a separator S if T has nodes from at
least two components of GnS�

Theorem ��� The problem of counting the number of k�separators in a k�connected graph is
�P�complete�

Proof� Clearly� the problem is in �P since minimum�cardinality separators can be recognized in
polynomial time� We give a reduction to our problem from the problem of counting the number
of minimum node covers in a bipartite graph H such that H has a perfect matching� The latter
problem is well known to be �P�complete� see �PB ��� Problem �� page ���� �note that the bipartite
graph there has a perfect matching�� Let the bipartition of V �H� be given by P�Q �so V �H� �
P
 Q�� and let k � jP j � jQj� Since H has a perfect matching �of cardinality k�� it is clear that
the minimum cardinality of a node cover is k� We construct a k�connected graph G by adding all
possible edges between nodes of P � and similarly adding all possible edges between nodes of Q� i�e��
we set up a k�clique on each of P and Q� The proof is completed using two claims�
Claim �� G is k�connected�
Let S � V �G� have cardinality � k� Consider GnS� The nodes in PnS induce a connected subgraph
�by the k�clique on P �� and similarly the nodes in QnS induce a connected subgraph� G must have
at least one edge between PnS and QnS� otherwise every edge of H is covered by S� and this is
not possible since every node cover of H has cardinality � k� Then GnS is connected� Since G has
no separator of cardinality � k� it is k�connected�
Claim �� S � P
Q with S �� P � S �� Q is a k�separator of G i� S is a minimum node cover of H �
This follows directly from the proof of Claim �� �

�

Remarks� ��� The above reduction is not parsimonious because P and Q are minimum node covers
of H but are not minimum separators of G� A parsimonious reduction is obtained by modifying the
construction of G� we add two new nodes� one adjacent to all nodes in P and the other adjacent
to all nodes in Q�

��� The number of k�separators in a k�connected graph may be as high as �k
�
bn�kc
�

�
�

Before presenting Lemma ���� we give a few examples to convince the reader that simpler
versions of the lemma are not valid� The next result focuses on ��connected���connected graphs�

Proposition ��� ��� The 	�shredders of a 	�connected graph form a nonmeshing family� In fact�
no 	�separator meshes with a 	�shredder�
�	� Except for the complete bipartite graph K���� in every ��connected graph� the ��shredders form
a nonmeshing family� In a ��connected graph G � �V�E�� G �� K���� there may be ��separators
meshing with a ��shredder� but the removal of each such ��separator results in a single node and
another component�

Proof� Part ��� follows by Lemma ���� since every ��separator meshing with a ��shredder has
cardinality � �� To see part ���� let S be a ��shredder and let T be a ��separator meshing with S�
By Lemma ���� GnS has exactly three components D�� D�� D�� and T has exactly one node in each
of these components� For jV �G�j � �� it is clear that K��� is the unique graph having a ��shredder
and a ��separator meshing with the ��shredder� If jV �G�j � �� then V n�S
 T � �� �� For each node
v � V n�S
T �� say� v is in D�� the induced subgraph G�V �D��
S� has three openly disjoint paths
from v to S �these paths have only node v in common�� so at least two of these paths survive in
GnT � Hence� all nodes of V n�S
 T � are in one component of GnT � and also this component has
at least two nodes of S� Part ��� follows� �

For higher k and n � �k� there may be �k� k�shredders such that every pair is meshing�
Let k � �k�� where k� is a positive integer� Take G to be the graph obtained from the clique
Kk	� by removing the ��k� � �� edges of �k� � �� node�disjoint triangles �K��s� T�� � � � � Tk�	�� It
is easily checked that G is k�connected� each of the k�sets V nTi� � � i � k� � �� is a k�shredder�
and for � � i � j � k� � �� V nTi and V nTj mesh� Finally� consider some meshing k�shredders
on graphs obtained from the complete bipartite graph Kk�k� k � �� as follows� Let the node
sets of the bipartition be S � fs�� � � � � skg and T � ft�� � � � � tkg� Take two new nodes v and w�
and join v to Kk�k by the edges vs�� vs�� vt�� � � � � vtk� and similarly join w to Kk�k by the edges
ws�� ws�� wt�� � � � � wtk� The resulting graph G is easily seen to be k�connected� Now� S is a k�
shredder since GnS has components ft�g� ft�g� ft�� � � � � tk� v� wg� and T is a k�shredder meshing with
S� where the components of GnT are fs�� s�� vg� fs�� s�� wg� fs�g� � � � � fskg� In the above example�
jV �G�j � �k� �� but this construction easily extends to any number of nodes � �k � ��

Lemma ��� Let G be a k�connected graph� k � �� and let S be a k�shredder of G� If there is a
k�separator T that meshes with S� then there is a component Q of either GnT or of GnS such that
Q contains every node of V n�S
 T ��

Proof� First� note that the lemma holds trivially if V n�S
T � � �� Now assume that V n�S
T � �� ��
Let D�� D�� � � � � Dh denote the components of GnS� where h � �� W�l�o�g� suppose that Dh is a
component of GnS having the maximum number of nodes from V nT � and let z be any node in
V �Dh�nT � W�l�o�g� suppose that the components D� and D� of GnS each have one or more nodes
of T �

��

Claim� Every node v � V n�S
 T � in one of the components D�� � � � � Dh�� of GnS has a path to
z in GnT �
To prove the claim� consider v � V �Di�nT � � � i � h� �� There are k openly disjoint v�z paths
in G� since G is k�connected� It can be seen that each of these paths is contained in the subgraph
of G induced by V �Di�
 S
 V �Dh�� i�e�� no path uses a node of �V �D��
 � � �
 V �Dh����nV �Di��
Since T has at least one node in each of V �D�� and V �D��� it has � k nodes in V �Di�
S
V �Dh��
Hence� at least one of the k openly disjoint v�z paths survives in GnT � This proves the claim�

If GnT has a component that contains V �Dh�nT � then the lemma follows since every node
in V n�S
 T � has a path to V �Dh�nT in GnT �by the claim�� Otherwise �i�e�� if V �Dh�nT is
disconnected in GnT �� then T contains all nodes of the other components D�� � � � � Dh�� of GnS�
To see this� suppose that there is a node v � �V �D��
 � � �
V �Dh����nT � By the claim� every node
z � V �Dh�nT has a path to v in GnT � hence V �Dh�nT is contained in a component of GnT � The
lemma follows by taking Q � Dh� since T � V �D��
 � � �
 V �Dh���� �

We can obtain another proof of Proposition ���� namely� the family of k�shredders separating
a given pair of nodes v� z in a k�connected graph is nonmeshing� hence� the family has cardinality
O�n��

Proposition ��� Let G be a k�connected graph� and let v� z be nodes of G� Let S and T be two
k�shredders that separate v and z� Then S and T are nonmeshing�

Proof� Clearly� both v and z are in V n�S
 T �� By way of contradiction� suppose that S and T
mesh� Then by Lemma ���� there is a component either of GnS or of GnT that contains both v
and z� Contradiction� �

� Augmenting node connectivity by one

Our algorithm for augmenting the node connectivity of a graph by one is a variant of Jordan�s
algorithm �J ��� but is signi	cantly faster� First� we describe a lower bound on the number of
new edges required to increase the node connectivity from k to �k � ��� Several recent algorithms
for edge�node connectivity augmentation problems are based on splitting�o� theorems� see the
survey paper �F ���� In particular� Jordan�s algorithm is based on a key theorem for splitting o�
edges while preserving node connectivity� We state and prove a simpler version of this theorem in
Section ��� �Theorem ����� In Section ���� we present the augmentation algorithm� prove it correct�
and analyze its running time�

Readers interested in algorithmic aspects may prefer to skip Section ��� after reading the
overview of the augmentation algorithm given there� and to refer back when required to Theo�
rem ��� and Lemmas ���!����

See Figure � for an illustration of the algorithm�

��� A lower bound on the number of augmented edges

Let G be a k�connected graph� Recall from Section � that a tight set is a node set Q such that
jN�Q�j � k and jV nQj � �k � ��� The maximum number of pairwise disjoint tight sets in G is
denoted by t�G�� i�e�� t�G� is the maximum integer � � � such that D�� � � � � D� are tight sets and
Di 	 Dj � �� � � i � j � �� Recall from Section ��� that b�G� denotes the maximum number of
components obtained by deleting a k�separator �assuming there is one� from G�

��

c�
d

b�

f

c� Q�

D�

D� � Q� D� � Q�

D� � Q�D� � Q�

������

g

e

c�

c�

b�

b�

b�

a�

a�

a�

a�

Figure �� Illustrating algorithm augment node connectivity�
��� G is 	
connected� b�G� � �� and t�G� � �� The leafs are Di � faig� � � i � �� and the
superleafs are Qi � fai� bi� cig� � � i � �� Suppose the algorithm �Lemma ���� chooses Qi � Q�

�so N�Qi� � fd� eg is not a shredder� and takes Qj � Q�� Qp � Q�� Adding edge xy � a�a� fails
�G�a�a� has a new leaf Qi
Qj
feg�� similarly� adding edge xz � a�a� fails� Adding edge yz � a�a�
is guaranteed to succeed�
�	� G is a tree� b�G� � � and t�G� � �� Suppose the algorithm �Lemma ���� chooses Qi � Q� �so
N�Qi� is a shredder� and takes Qj � Q�� Adding the edge between the degree
one nodes in Qi and
Qj succeeds�

Examples� Suppose that G is a tree� Then t�G� is the number of degree�one nodes� and b�G� is
the maximum degree of a node� If G is the complete bipartite graph Kk�k� then t�G� � jV �G�j � �k
and b�G� � k� Lastly� for the graph G in Figure ����� t�G� � � and b�G� � ��

Consider our problem of adding some edges to augment the connectivity of G from k to k � ��
Let G� be the augmented graph� An obvious lower bound on the minimum number of edges
required is max�b�G�� �� dt�G���e�� To see this� 	rst consider a k�separator S such that GnS has
b�G� components� and note that we must add � b�G�� � edges to ensure that G�nS is connected�
Secondly� for every tight set D� G� must have an edge with one end in D and the other in V n�D

N�D��� Since G has t�G� pairwise disjoint tight sets� we must add � dt�G���e edges� Unfortunately�
the lower bound is not tight and there may be a slack of �k���� as shown by the following example
due to Jordan �J ���� consider the complete bipartite graph Kk�k� and note that the minimum
number of new edges required is �k��� but our lower bound is k� since b�Kk�k� � k and t�Kk�k� � �k�
Hence� an algorithm based on the above lower bound� such as the algorithm in this section� will
not 	nd the optimal augmentation on all graphs�

��� A splitting�o� theorem for node connectivity

Let s be a distinguished node of a graph� Splitting o� a pair of edges vs and sw incident to s
means removing edges vs and sw� and adding the edge vw �if vw is already present� then no edge
is added�� The algorithm for augmenting node connectivity is based on a subroutine for 	nding

��

and splitting o� a pair of edges incident to s such that the node connectivity of the resulting graph
does not decrease� Here is an overview of the augmentation algorithm that skips some important
points�

Let G be a k�connected graph that is not �k����connected� We 	rst construct a �k����
connected graph eG by adding a new node s and new edges between s and each node
v � V �G�� � eG is �k � ���connected because every separator of eG contains the node
s as well as a separator of G�� Then for each node v � V �G�� in an arbitrary order�
we remove the edge sv from eG if doing so preserves the �k � ���connectivity of the
resulting graph �also denoted eG�� For each tight set D of G� note that eG has an edge
between some node of D and s �otherwise� NG�D� is a k�separator of eG�� We attempt
to pair up the edges incident to s and split o� all these edge pairs� while preserving
�k � ���connectivity� If we succeed� then the resulting graph G� �without node s� will
be a �k � ���connected augmentation of G�

The earliest splitting�o� theorem is due to Lovasz �Lo ��� and concerns the edge connectivity
of multigraphs� If s is a node of even degree in a multigraph eG� and there are at least k � �
edge�disjoint paths between any two nodes of V � eG�ns� then all edges incident to s can be paired
up and split o� such that the resulting multigraph �without node s� has at least k edge�disjoint
paths between any two nodes� Mader �Ma ��� gave a deep generalization� Mader �Ma ��� also
gave a splitting�o� theorem for the edge connectivity of directed multigraphs� Other expositions
of these three results may be found in �F ��a�� �F ��b� and �F ��� FJ ��a�� respectively� To the
best of our knowledge� the earliest splitting�o� theorem for node connectivity is due to Bienstock�
Brickell and Monma �BBM ��� Theorem ��� A di�erent proof of a variant of this theorem is given
by Jordan �J ��� Theorem ����� Jordan gave a splitting�o� theorem for the node connectivity of
directed graphs �J ��� Theorem ��� Another proof appears in �FJ ��b��

Splitting�o� theorems for node connectivity hold only under appropriate conditions� Here are
three examples �violating the appropriate conditions� such that splitting o� any �or all� edge pair�s�
incident to s decreases the connectivity� These examples are due to Bienstock et al �BBM ��� p� �����
and to Hsu �H ����
Example ���� Start with the complete bipartite graph G � K���� and obtain the ��connected
graph eG by adding a new node s and all the edges fsv � v � V �G�g� Splitting o� any edge pair
incident to s results in a ��connected graph� This example generalizes to all Kk�k� k � ��
Example ���� For another example� start with the complete bipartite graph G � K��p� p � �� and
obtain the ��connected graph eG by adding a new node s and p new edges sv where v � V �G� is
in the larger part of the bipartition of K��p� Splitting o� any edge pair incident to s results in a
��connected graph� This example generalizes to all Kk�p� k � �� p � k � �� Moreover� we can replace
one or more nodes v in the larger part of the bipartition of Kk�p by �k � ���connected graphs Hv

�or �k � ���cliques Hv� and replace the k edges incident to v by k edges incident to distinct nodes
of Hv�
Example ���� For the last example� take three copies of the complete graph K� on the node
sets fai� bi� ci� dig� � � i � �� Identify the nodes b� and a�� i�e�� replace b� and a� by a new node
that is incident to all edges incident to b� or a�� Similarly� identify the nodes b� and a�� and the
nodes b� and a�� Also� add a new node f and the edges fci� � � i � �� The resulting graph G is
��connected� Obtain the ��connected graph eG from G by adding a new node s and the edges sf
and sdi� � � i � �� For every pairing of the edges incident to s� splitting o� all the edge pairs �and
ignoring the node s� results in a ��connected graph� This example generalizes to all odd k � �� take
three copies of the complete graph Kk	�� �join� them as above� then add a copy of Kk��� and for

��

each copy of Kk	� add the edge set of a matching between the degree�k nodes and the copy of
Kk��� Take s to be one of the nodes of the copy of Kk���

Our version of the splitting�o� theorem is weaker than the splitting�o� theorem in �J ��� The�
orem ����� we add the condition degeG�s� � �k� This allows us to simplify the proof� For the main
problem of augmenting the connectivity from k to �k � ��� even our weaker theorem implies the
same slack of �k � �� between the number of new edges and the lower bound� Also� our theorem
omits the condition jV � eG�j � ��k � ��� consequently it has to allow the possibility that eGns � G is
the complete bipartite graph Kk�k� �The only use of this condition in �J ��� Theorem ���� is to show

that eGns �� Kk�k�� The di�erence between our version of the splitting�o� theorem and Bienstock
et al�s splitting�o� theorem �BBM ��� Theorem �� is that a new condition �see ��� in Theorem ����
has been added� This guarantees that the connectivity can be preserved by a single splitting�o�
operation� whereas in �BBM ��� Theorem �� one or two splitting�o� operations are required to
preserve the connectivity� Our proof hinges on the notions of superleafs and the maximal tight sets
Wij �de	ned below�� and follows immediately from Lemmas ���!���� Recall that an edge vw of a
graph H is called critical if the node connectivity of Hnvw is less than that of H �

Theorem ��� Let eG be a �k����node connected graph �k � ��� and let s be a node of eG� Suppose
that s is incident to t � max��k� k� �� edges each of which is critical� Then either

��� there is a pair of edges incident to s such that splitting o� this pair results in a �k � ���node
connected graph� or

�	� eGns � Kk�k� or

��� there is a �k � ���separator X of eG such that s � X and eGnX has degeG�s� components�

The necessity of three of the conditions in the theorem� namely� t � k � �� ��� and ��� can be
seen from Examples ���� ��� and ���� respectively�

Suppose that splitting o� an edge pair vis� svj in a �k����connected graph eG results in a grapheGij that is not �k � ���connected� Then eGij has a k�separator X �

Fact ��� Let X be a k�separator of eGij� Then ��� s �� X� �	� either vi �� X or vj �� X� and ��� ineGijnX the component containing s contains neither vi nor vj �

Proof� First� note that eGijns � � eGns� � �vivj�� since the edges vis and svj �vanish� when s is
removed� Hence� a k�separator X of eGij with s � X is also a k�separator of eG� Since eG has no
k�separator� part ��� follows� Similarly� for part ���� eGijnfvi� vjg � eGnfvi� vjg� so a k�separator X
of eGij with vi � X� vj � X is also a k�separator of eG� See Figure � for an illustration�

To see that s and fvi� vjgnX are contained in di�erent components of eGijnX � 	rst suppose that
neither vi nor vj is in X � Then vi and vj are in the same component of eGijnX � since there is
a new edge vivj � If s is also in this component� then X is a k�separator of eG� contradicting the
�k � ���connectivity of eG� Similarly� if vi � X �vj � X�� then s and vj �vi� must be in di�erent
components of eGijnX � �eGij has a tight set �w�r�t� k�connectivity� that contains vi or vj �or both� but not s� by the
previous fact� Let Wij denote such a tight set that is �inclusionwise� maximal� i�e�� no proper
superset of Wij is tight� �The maximality of Wij will be exploited in Fact ����� Clearly� Wij

contains no neighbor of s in eG other than vi and vj �i�e�� Wij is disjoint from NeG�s�nfvi� vjg��
otherwise the k�separator NeGij

�Wij� of eGij contains s� contradicting the previous fact� There are

three cases�

��

k�separator X

������

s s
split o� vis� svj

vj

vj

vivi

Figure �� Illustrating the de�nition of Wij � ��� Case �i�� �	� Case �ii��

�i� Wij contains both vi and vj �

�ii� Wij contains vi but not vj � and so vj � NeGij
�Wij��

�iii� Wij contains vj but not vi� and so vi � NeGij
�Wij��

�Possibly� there are two di�erent maximal tight sets� one satisfying �ii� and the other satisfying �iii��
but then we takeWij to be either of these two sets�� Case �i� is crucial for our proof of the splitting�
o� theorem� we will avoid cases �ii� and �iii� altogether� �These three cases correspond to cases
���� ��� and �	� in �J ��� p� �����

Let G be a k�connected graph� We call an �inclusionwise� minimal tight set of G a leaf� and
denote the leafs by Di� i � �� �� � � �� For example� ��� if G is a tree� then every degree�one node
is a leaf� ��� if G � Kk�k� then every node is a leaf �in both graphs� there are no other leafs�� and
��� the graph in Figure ���� has four leafs� faig� � � i � �� In general� leafs need not be disjoint�
�Example� Take a complete graph K� having nodes a� b� c� d� e� and add two more nodes f and g�
where f has edges to a� b� g and g has edges to c� d� f � The resulting graph is ��connected� Consider
the ��separators that isolate f and g� fa� b� gg and fc� d� fg� and note that the leafs fa� b� eg and
fc� d� eg intersect�� The next result is from �J ���� Recall from Section ��� that t�G� denotes the
maximum number of pairwise disjoint tight sets in G�

Fact ��� 	Lemma ���
J ��� If a k�connected graph H has t�H� � k � �� then all the leafs are
pairwise disjoint� and the number of leafs is t�H��

Fact ��� Let eG be a �k � ���connected graph� and let s be a node of eG� Every tight set �w�r�t�
k�connectivity� of G � eGns contains a neighbor of s in eG� If eG has � � �k � �� critical edges
incident to s� then G has � � leafs� all the leafs are pairwise disjoint� and t�G� � ��

An �inclusionwise� maximal tight set that contains exactly one leaf is called a superleaf� and
is denoted by Qi� i � �� �� � � �� �This de	nition allows a superleaf to have a nonempty intersection

��

with several leafs� A superleaf may be a leaf�� For example� if G is a tree� a superleaf is a maximal
path starting at a degree�one node such that all other nodes are degree�two nodes� For another
example� the graph G in Figure ���� has four superleafs fai� bi� cig� � � i � �� The notion of
superleafs is used in the proofs of all the splitting�o� theorems for node connectivity cited above�
The next result is essentially from �J ��� �see Claim I in Theorem ���� and summarizes some useful
properties of superleafs�

Fact ��� Let G be a k�connected graph with t � t�G� � k � �� Let D�� � � � � Dt be the �pairwise
disjoint� leafs of G� Then

��� For every leaf� as well as every superleaf� the induced subgraph is connected�

��� For every leaf Di� � � i � t� there is a unique superleaf Qi containing it�

�	� All the superleafs are pairwise disjoint� Hence� except for the leaf contained in it� a superleaf
is disjoint from all other leafs�

Let the �k � ���connected graph eG be obtained from G by adding a new node s� and a new edge
between s and one node vi in Di� for each i � �� � � � � t� Suppose that �in eG� splitting o� the edge
pair vis� svj� � � i � j � t� decreases the connectivity� Let Wij be the node set de�ned above� Then

��� Wij is disjoint from all superleafs Q�� � � � � t� i �� � �� j�

��� Either Wij contains both the superleafs Qi and Qj �case �i��� or Wij � Qi and Dj	N�Qi� �� �
�case �ii��� or Wij � Qj and Di 	N�Qj� �� � �case �iii���

��� If Qj is disjoint from N�Qi� �this implies that Qi is disjoint from N�Qj��� then Wij contains
both the superleafs Qi and Qj �case �i� for Wij��

Let G be a k�connected graph with t � t�G� � k � �� and let D�� � � � � Dt be the leafs of G� A
node pair fvi� vjg of G is called a saturating pair if adding the edge vivj decreases the number of
leafs by two� i�e�� if t�G� vivj� � t�G�� �� Alternatively� fvi� vjg is a saturating pair if there are
leafs� say� Di and Dj � � � i �� j � t� with vi � Di and vj � Dj such that splitting o� the edge pair
vis� svj in the �k����connected graph eG preserves the connectivity� where eG is obtained from G by
choosing an arbitrary node v� � D�� for each �� � � i �� � �� j � t� adding a new node s� and adding
the new edges sv�� � � � � t� If fvi� vjg is not saturating� then G has a tight set Wij containing vi
or vj �or both� and satisfying case �i�� �ii� or �iii� above�

The proof of Lemma ��� follows the proof of Step ���� Theorem � of �BBM ��� and the proof
of Claim II�a���b�� Theorem ��� of �J ���� For the sake of completeness� a proof is included in the
appendix�

Lemma ��� Let G � �V�E� be a k�connected graph �k � �� with t�G� � k � �� Let Qi� Qj

and Qp be three distinct superleafs such that N�Qi� is disjoint from each of Qj and Qp� Let Di�
Dj and Dp be the leafs contained in Qi� Qj and Qp respectively� Then for every three nodes
x � Di� y � Dj and z � Dp� either one of the node pairs fx� yg� fx� zg or fy� zg is saturating� or
N�Qi� � N�Qj� � N�Qp�� i�e�� N�Qi� is a k�shredder�

Lemma ��� Let G � �V�E� be a k�connected graph �k � �� with t�G� � max��k� k � ��� Let
Qi � V be an arbitrary superleaf such that GnN�Qi� has at least three components �so N�Qi� is a
k�shredder��
��� If one of the components of GnN�Qi� contains two or more leafs� then that component contains

��

a superleaf Qj� i �� j�
�	� If a component of GnN�Qi� contains a superleaf Qj as well as another �disjoint� leaf Dp� then
for every node x � Di� and for every node y � Dj� the node pair fx� yg is saturating� where Di is
the leaf contained in Qi and Dj is the leaf contained in Qj�

Proof� Since t�G� � k � �� G has t�G� �pairwise disjoint� leafs and t�G� �pairwise disjoint�
superleafs �Facts ���!����� Let the component C of GnN�Qi� contain leafs Dh and Dg� h �� g�
Consider the superleaf Qh� Qh � Dh� and let X � N�Qh�� If Qh 	 N�Qi� � �� then the proof of
part ��� is done since Qh � C� Otherwise� if Qh 	N�Qi� is nonempty �i�e�� there is an edge with
one end in Qi and the other end in Qh�� then X meshes with N�Qi� since X has nodes in two
components of GnN�Qi�� namely� Qi and C� �To see that X has a node in C� note that C contains
a path from Dh to Dg and X separates Qh from Dg�� By Lemma ���� there are two possibilities�
�I� except for one component of GnN�Qi�� every component of GnN�Qi� is contained in X � Clearly�
the exceptional component is C� �II� There is a component C� of GnX that contains V n�X
N�Qi���
In Case �I�� jV n�C
N�Qi��j � k � � because X 	 C �� �� Hence� from among the � �k superleafs
of G at least �k � �k � �� � k � � superleafs are contained in C
N�Qi�� and one of these �say�
Qj� is disjoint from N�Qi�� In Case �II�� since C

� � Qh� the remaining superleafs are contained in
X
N�Qi�� Since X
 N�Qi� contains � �k � � superleafs and j�X
 N�Qi��nQhj � �k � � �Qh

has at least one node of N�Qi��� we see that every superleaf other than Qh is a single node� so the
superleaf Qg of Dg is a single node and is disjoint from N�Qi�� This completes the proof of part ����
and shows that if a component of GnN�Qi� contains at least two leafs� then the component contains
a superleaf as well as another �disjoint� leaf�

Now consider part ���� Clearly� Qj is disjoint from N�Qi�� since Qj is contained in a component
of GnN�Qi�� Suppose that fx� yg is not saturating� Then G has a maximal tight set Wij such
that Wij � Qi
Qj � �Cases �ii� and �iii� for Wij cannot occur by Fact ��� since N�Qi� 	 Qj � ���
Focus on the k�separator N�Wij� � X � Since Wij contains Qi� X has no nodes from Qi� Then by
Lemma ���� X cannot mesh with N�Qi�� i�e�� all nodes ofXnN�Qi� are contained in one component
of GnN�Qi�� Take H to be a component of GnN�Qi� that contains neither Qi nor Qj � We now
have the desired contradiction� Either XnN�Qi� is contained in H � or XnN�Qi� is contained in
the component of GnN�Qi� which contains Dj and Dp� In the 	rst case� Wij must contain three
leafs Di� Dj and Dp� In the second case� Wij must contain H �and at least one leaf contained in
H�� because Wij contains all nodes in N�Qi�nX � and each such node has a neighbour in H � But�
by Fact ���� Wij contains no leafs besides Di and Dj � �

By a J�graph we mean a k�connected graph G such that there is a k�shredder S such that every
node in S has degree k� no two nodes in S are adjacent� GnS has exactly k components� and each of
these components contains exactly one leaf� Clearly� k is � �� The next lemma and Proposition ���
show that a J�graph is either the complete bipartite graph Kk�k� or is obtained from Kk�k by 	xing
one of the two parts of the bipartition� replacing one or more nodes v in this part by appropriate
subgraphs Hv on � �k � �� nodes� and replacing the k edges incident to v by k edges incident to
distinct nodes of Hv�

Lemma ��� Let G � �V�E� be a k�connected graph �k � �� with t�G� � max��k� k � ��� Let
Qi � V be an arbitrary superleaf such that GnN�Qi� has b � � components �so N�Qi� is a k�
shredder�� Suppose that each of the b components of GnN�Qi� contains exactly one leaf� Then

��� Either b � k � � and b � t�G�� or b � k and G is a J�graph�

�	� For a J�graph G� the minimum number of edges required to augment the connectivity to �k���
is ��k � �� if G � Kk�k� and k � dk��e � � otherwise�

��

Proof� Let S denote the shredder N�Qi�� Let C�� C�� � � � � Cb be the components of GnN�Qi��
Since t�G� � k � �� t�G� equals the number of leafs� and the leafs are pairwise disjoint �Fact �����
We will call a leaf bad if it contains one or more nodes of S� Similarly� we call a superleaf bad if it
contains one or more nodes of S� The proof of part ��� follows from three �easy� claims�
Claim �� If b � k � �� then there are no bad leafs� and no bad superleafs�
This claim follows from Lemma ���� since no k�separator of G meshes with S when b � k � �� so
for every tight set Q� either Q is contained in a component of GnS or Q contains two or more
components of GnS�

From Claim �� it is clear that if b � k � �� then b � t�G��
Claim �� If b � k� then there are k bad leafs� b � k � �� and t�G� � �k�
There are at most k bad leafs �since each contains a distinct node of S�� and exactly b � k nonbad
leafs �since each component of GnS contains exactly one leaf�� So the number of leafs� t�G�� is
� b� k � �k� Since t�G� � �k� the claim follows�
Claim �� If b � k� then every bad leaf consists of exactly one node�
Clearly� every bad leaf has exactly one node of S� since there are k bad leafs� Let D be a tight set
such that �I� exactly one node of S is in D� �II� some component� say� Ck of GnS� has a node in D�
and �III� for j � �� � � � � k� at least one node xj of Cj is not in D� Clearly� jV n�Ck
D�j � �k � � �
k � �� because jSn�Ck
D�j � jSnDj � k � �� and there are �k� �� other nodes x�� � � � � x
k��� not
in Ck
D �the last inequality holds since k � ��� Applying Lemma ��� to the tight sets Ck and D�
we see that Ck 	D is a tight set� Hence� D is not a leaf� This proves the claim�

Suppose that b � k� Claim � implies that every node in S has degree k� No two nodes in S

are adjacent� since each node z � S must have a neighbor in each of the k components of GnS�
Part ��� of the lemma is done� If b � k� then b � k and G is a J�graph�
Part �� Now consider a minimum�cardinality set of new edges whose addition to the J�graph G
augments the connectivity to k � �� If G � Kk�k� then it is clear that ��k � �� edges are necessary
and su
cient�
Claim �� If G is a J�graph and G �� Kk�k� then k� dk��e� � edges are necessary and su
cient to
augment the connectivity to �k � ���
To see the lower bound� note that GnS has k components� so we need to add � �k � �� new edges
incident to nodes of GnS� Moreover� S contains k pairwise disjoint tight sets� so we need to add
� dk��e new edges incident to nodes of S� The lower bound follows since the two augmenting
edge sets are disjoint� To construct the optimal augmentation� 	rst choose one node in each leaf of
each component of GnS� and add the edge set of an arbitrary tree that spans these nodes� Then
add dk��e new edges incident to S such that every node of S is incident to a new edge �i�e�� add
a maximum matching on S� and if jSj is odd� then add one more new edge�� Let G� denote the
augmented graph� The proof of this claim and part ��� of the lemma follows from the next claim�
Claim �� G� is �k � ���connected�
The proof is by contradiction� If G� is not �k � ���connected� then G� has a k�separator X � We
examine three mutually exclusive cases�
Case �I�� X � S� By the augmented tree on the leafs in GnS� G�nX is connected�
Case �II�� X �� S and X is nonmeshing w�r�t� S� Again� by the augmented tree on the leafs in GnS�
G�nX is connected�
Case �III�� X meshes with S� By Lemma ���� X has a node in each of the k components of
GnS� Clearly� X and S are disjoint� and every component of GnS has exactly one node of X �
Let Cj be an arbitrary component of GnS with jCjj � � �Cj exists since G �� Kk�k�� For each
v � CjnX � G�Cj
 S� has k openly disjoint paths from v to S� so at least �k � �� � � of these
paths survive in G�nX � Hence� all nodes of �Cj
 S�nX � except possibly one node� say� z � S� are
in the same component of G�nX � Because of the dk��e augmented edges incident to S� there must

��

be an augmented edge from z to some node of Snz� and so all nodes of S are connected in G�nX �
Then G�nX is connected� The lemma is proved� �

Proof� �Theorem ���� The splitting�o� theorem follows straightaway from Lemmas ���!���� LeteG be the graph in the theorem� and let G � eGns� Since t � �k � ��� G has t �pairwise disjoint�
leafs� and t �pairwise disjoint� superleafs� by Facts ���!���� Take an arbitrary superleaf Qi and
focus on the k�separator S � N�Qi�� At most k superleafs can intersect N�Qi�� so there must be
two superleafs �besides Qi� that are disjoint from N�Qi�� Take these superleafs to be Qj and Qp� If
S is not a shredder� then Lemma ��� guarantees a saturating node pair fv� wg� i�e�� in the graph eG�
the connectivity is preserved on splitting o� the edge pair vs� sw� If S is a shredder� then depending
on whether there is a component of GnS that contains two leafs� either Lemma ��� guarantees a
saturating node pair fvi� vjg� or Lemma ��� guarantees that GnS has t�G� � degeG�s� components�
or Lemma ��� guarantees that G is a J�graph� In the 	rst and second cases� we are done �by the
	rst and third items in the consequent of the theorem�� If G is a J�graph� then either G � Kk�k or
not� In the 	rst case� we are done� since the theorem allows G � Kk�k� In the second case� let S
be a k�shredder of G as in the de	nition of J�graph� For each node z � S� z is a leaf of G� and soeG has the edge zs� By Lemma ���� part ���� splitting o� an arbitrary edge pair of eG of the form
zis� szj � i �� j� zi � S� zj � S results in a graph eGij that is �k � ���connected� �

Remark� Note that in the last case of the above proof� the graph eGij resulting from the splitting�o�
operation will not satisfy the conditions of the theorem� since t� eGij� � �k � ��

The next result helps to characterize J�graphs�

Proposition ��� If G is a J�graph� G �� Kk�k� and S is a k�shredder of G as in the de�nition of
a J�graph� then the number of nodes in a component of GnS is either one or � k � ��

Proof� Let C be an arbitrary component of GnS� and let c denote the number of nodes in C� We
get lower and upper bounds on the sum of the degrees of the nodes in C since �I� every node in C
has degree � k and at most one node in C has degree k� �II� there are � �c

�

�
edges with both ends

in C� and �III� there are exactly k edges with one end but not the other in C�

k � �k � ���c� �� �
X
v�C

deg�v� � c�c� �� � k�

Then �c� ���c� �k � ��� � �� implying that c � � or c � k � �� This proves the claim� �

��� The augmentation algorithm

We 	rst sketch the augmentation algorithm� and then give the running time analysis� Given a
k�connected graph G � �V�E�� an augmenting set means a set F of node pairs �i�e�� edges of
the complete graph on V � such that the augmented graph �V�E
 F � is �k � ���connected and
E	F � �� The slack of an augmenting set F is the di�erence between the cardinality� jF j� and the
lower bound on the number of new edges required for augmenting the connectivity of G by one�
namely� max�b�G�� �� dt�G���e�� Throughout this subsection� we use N ���� for NG����� and eN���
for NeG����
Theorem ���� Given a k�node connected graph with n � �k � ��� the augmentation algorithm
correctly increases the connectivity to k � �� and the number of new edges added is at most k � �
plus the lower bound of max�b�G�� �� dt�G���e��
The running time is O�min�k�

p
n�k�n� � �logn�kn���

��

Algorithm � Augment node connectivity by one

Input� Graph G � �V�E�� integer k � �� G is k�connected and jV j � k � ��
Output� �k � ���connected graph G� and augmenting set E�G��nE with slack � �k � ���

Let E� � E� and G� � �V�E�� �initially� G� � G��

If G� is �k � ���connected� then stop else use Algorithm � �Section �� page �� to compute
b � b�G�� � max

S�V�jSj�k
�c�G�nS��

Obtain a �k � ���connected graph eG � �V � s� eE� from G� by adding a new node s and an
�inclusionwise� minimal subset of the edge set fsv � v � V g�
Throughout the algorithm G� denotes eGns� Let t � degeG�s� � j eN�s�j�
While t � �k do �main loop�

If b � dt��e then
use Jordan�s Theorem ��� �J ��� to augment the connectivity of G� to �k � �� by
adding a minimum�cardinality edge set� and stop�

End �If��
Let Qi be an arbitrary superleaf of G��
If either N ��Qi� is not a shredder of G

� �Lemma ���� or N ��Qi� is a shredder of G
� and

one component of G�nN ��Qi� contains two leafs �Lemma ���� then
	nd and split o� an edge pair incident to s such that eG stays �k � ���connected�

else
G� is a J�graph� so use Lemma ��� to �suboptimally� augment the connectivity of
G� to �k� ��� and stop�

End �If��
Decrease t by � �since we want t � degeG�s��� and use the dynamic algorithm �Section ����
page �� to update b � b�G���

End �While��
Augment G� �suboptimally� using Phase � of Jordan�s algorithm �J ��� and stop�

End

��

The proof is given in two parts� The 	rst part proves the correctness and the performance
guarantee� and the second part analyzes the running time� The 	rst part follows from similar
results for Jordan�s algorithm �J ���� but for the sake of completeness� we include the proof in the
appendix�
Proof� �Running time analysis� Our improvement of Jordan�s O�n�� running time mainly
comes from ��� replacing the input graph G by a sparse certi	cate� and ��� using our fast dynamic
algorithm for maintaining b�G��� At the start of the algorithm� we replace the k�connected input
graph G � �V�E� by �V� "E�� where "E � E is a sparse certi	cate for the �k � ���connectivity of G�
see �NI ��� CKT ��� FIN ���� The cardinality of "E is � �k���n � O�kn�� and "E can be computed
in linear time by 	nding a so�called legal ordering of the nodes� The key point is that for every
node set Q � V � Q is a tight set �or a k�separator� or a k�shredder� of �V�E� i� Q is a tight set
�or a k�separator� or a k�shredder� respectively� of �V� "E�� see Proposition ���� For the rest of the
analysis� assume that the input graph G has jE�G�j � O�kn�� Let eG and G� � eGns be as in the
algorithm�

There are four basic steps in the algorithm� �I� determine whether an edge vs of eG is critical�
�II� given v � eN�s�� 	nd the leaf and �III� the superleaf of G� � eGns containing v� and �IV� deter�
mine whether splitting o� the edge pair vs� sw in eG preserves the �k � ���connectivity� The basic
steps can be implemented to run in time O�min�k�

p
n�jE� eG�j� � O�min�k�

p
n�kn� using standard

network #ow techniques� see �E ����
Focus on the overall algorithm� The initial computation of b�G�� takes time O�k�n� � k�n�����

by Theorem ���� While constructing eG� for each node vi adjacent to s in eG� we also 	nd a leaf Di

containing vi� This takes time O�min�k�
p
n�kn��� since we need O�n� maximum #ow computations�

Consider an iteration of the while loop� If b�G�� � dt��e � k� then we use the construction in
Theorem ��� of �J ���� This takes linear time� Otherwise� we take an arbitrary neighbor vi of s in eG�
and compute the superleaf Qi containing vi� If N

��Qi� is not a shredder� then we apply Lemma ����
We step through the other neighbors of s in eG and compute the corresponding superleafs till we 	nd
two superleafs Qj and Qp that are each disjoint from N ��Qi�� Let vj �vp� be the node of eN�s� in Qj

�Qp�� We update eG by splitting o� either one of the two edge pairs vis� svj or vis� svp �if one of these
two preserves the connectivity�� or the edge pair vjs� svp �otherwise�� Applying Lemma ��� takes
time O�min�k�

p
n�k�n�� since there are O�k� maximum #ow computations� If N ��Qi� is a shredder�

then we 	rst determine whether G�nN ��Qi� has a component containing two leafs of G
�� This takes

time O�n�� since all the leafs of the current G� are available �we computed all the leafs of the initial
G�� and the surviving leafs stay the same throughout the execution�� If there is a component� say� C
of G�nN ��Qi� that contains two leafs� then for each leaf contained in C we construct the superleaf�
till we 	nd a superleaf Qj disjoint fromN ��Qi�� Then we split o� the edge pair vis� svj in eG �here� vj
is the node in Qj	 eN�s��� As before� there are O�k� maximum #ow computations� and it takes time
O�min�k�

p
n�k�n� to apply Lemma ���� If no component of G�nN ��Qi� contains two leafs of G

��
then Lemma ��� applies� and gives the optimal augmenting set for the current graph G�� Updating
b�G�� takes time O��min�k�

p
n� � logn�kn�� by Theorem ���� Summarizing� the O�n� iterations of

the while loop take time O�min�k�
p
n�k�n���log n�kn�� altogether� Phase � of Jordan�s algorithm

�J ��� takes time O�min�k�
p
n�k�n�� since it essentially consists of

�t
�

�
� O�k�� maximum #ow

computations� Totaling up� the running time of the algorithm is O�min�k�
p
n�k�n� � �logn�kn���

�

��

	 Conclusions

Very recently� Jordan showed that in a k�connected graph G � �V�E� with jV j � �k � �� there
are at most jV j k�shredders� �J ��b�� Except for the case jV j � �k � �� this solves one of the open
questions in a preliminary version of this paper�

Let T �n� k� denote the running time for testing an n�node graph for k�connectivity� Is it possible
to 	nd all the k�shredders of a k�connected graph in o�T �n� k�� running time$

The algorithm All�k�shredders in Section � has been implemented by T� Yip at the University
of Waterloo �as part of an undergraduate research project�� As expected� the most time consuming
part of the program is to 	nd the k openly disjoint v�r paths in Step ��� of Shredders�r�v��

 Appendix

The proofs of some of the known results are given here� for the sake of completeness�

Qi Qj

Qp

Wij

Wip Wjp

N�Qp�

N�Qi�

N�Qj�

Figure �� An illustration of the proof of Lemma ����

See Figures ���� and � for illustrations of the next lemma�

Lemma ��� Let G � �V�E� be a k�connected graph �k � �� with t�G� � k � �� Let Qi� Qj

and Qp be three distinct superleafs such that N�Qi� is disjoint from each of Qj and Qp� Let Di�
Dj and Dp be the leafs contained in Qi� Qj and Qp respectively� Then for every three nodes
x � Di� y � Dj and z � Dp� either one of the node pairs fx� yg� fx� zg or fy� zg is saturating� or
N�Qi� � N�Qj� � N�Qp�� i�e�� N�Qi� is a k�shredder�
Proof� Since t�G� � k � �� G has t�G� leafs� these are pairwise disjoint� and also� the superleafs
are pairwise disjoint �Facts ���!����� Suppose that fx� yg and fx� zg are not saturating� Then G
has maximal tight sets Wij and Wip such that Wij � Qi
 Qj and Wip � Qi
 Qp� �Cases �ii�
and �iii� for Wij and Wip cannot occur by Fact ��� since Qj and Qp are disjoint from N�Qi���
Since Wij � Qi� Wip � Qi� both Wij and Wip are tight sets� and there are at least k nodes not in
Wij
Wip �from the other t�G�� � � k leafs�� Lemma ��� shows that Wij 	Wip is a tight set and

��

N�WijnWip� is disjoint fromWipn�Wij
N�Wij 	Wip��� Since Wij 	Wip satis	es all the conditions
for the superleaf containing Di� the maximality of Qi implies that Qi � Wij 	 Wip� Then Qp is
disjoint from N�Wij 	Wip� � N�Qi�� and hence Qp is disjoint from N�Qj�� since Qj � WijnWip

and Qp � Wipn�Wij
N�Qi��� If fy� zg is saturating� then the proof is done� Otherwise� G has
another maximal tight set Wjp such that Wjp � Qj
 Qp �Cases �ii� and �iii� for Wjp cannot occur
by Fact ��� since Qp is disjoint from N�Qj��� As above� we can show that Wij 	Wjp � Qj and
Wip 	Wjp � Qp� Finally� we examine the two sets �Wip
Wjp� and Wij � Since jN�Wip
Wjp�j � k
�this holds since either Wip
Wjp is a tight set or there are exactly k nodes not in this set��Wij is a
tight set� and jN�Wip
Wjp
Wij�j � k� the submodularity of jN�Q�j implies that the intersection
�Wip
 Wjp� 	 Wij � �Wip 	 Wij�
 �Wjp 	 Wij� � Qi
 Qj must have jN�Qi
 Qj�j � k� The
proof is done since jN�Qi
 Qj�j � k implies that N�Qi� � N�Qj�� Similarly� it follows that
N�Qi� � N�Qp�� Clearly� N�Qi� is a k�shredder� �

Theorem ���� �Part �� The augmentation algorithm correctly increases the connectivity of a graph
G from k to k � �� and the number of edges added is at most k � � plus the lower bound of
max�b�G�� �� dt�G���e��
Proof� �Correctness and performance guarantee� Let G� denote eGns throughout the proof�
The initial graph eG has at least �k � �� edges incident to s since eG is �k � ���connected� IfeG has t � �k � �� edges incident to s each of which is critical� then t�G�� � t� and G� has t
�pairwise disjoint� leafs and t �pairwise disjoint� superleafs� by Facts ���!���� �The case k � � and
t � degeG�s� � k � � � � is an exception� because for k � � the leafs of G� are always pairwise

disjoint� so G� satis	es the previous assertion in this case too�� For k � �� if the initial graph eG has
exactly �k � �� edges incident to s� then the leafs of G� may not be pairwise disjoint� and possibly
t�G�� is less than degeG�s�� Nevertheless� every leaf of G� must contain at least one of the neighbors

of s in eG� since eG is �k � ���connected�
First� consider a nonterminal iteration of the while loop� Then we have t � degeG�s� � �k� and

b�G�� � dt��e� If t � �k���� then by Theorem ��� and Lemmas ���!���� we add a new edge vivj to
G� such that t�G�� decreases by two� In terms of eG� we split o� an edge pair vis� svj that preserves
the �k � ���connectivity� �For k � �� �� t � �k does not imply t � �k � ��� But then we have one
of the special cases k � �� t � �� k � �� t � �� or k � �� t � �� and it can be proved that for each
of these cases there exists a new edge whose addition to G� decreases t�G�� by two�� Thus every
nonterminal iteration of the while loop satis	es a key property�

the cardinality of the augmenting set increases by one� and the lower bound decreases
by one�

At the terminating steps of the algorithm� if we can prove that the slack for the current graph G�

is at most �k � ��� then this key property guarantees that the slack for the original graph G is at
most �k � ���

To complete the proof� we examine each of the cases in which the algorithm terminates� and
show that the slack for the current graph G� is at most �k � ��� If the current graph G� in an
execution of the while loop has b�G�� � dt�G����e � k� then a minimum�cardinality augmenting set
for G� is easily found by Theorem ��� of �J ����

Suppose that a k�connected graph G has b�G� � k � � and b�G� � dt�G���e� Then
there is an augmenting set of cardinality b�G�� ��

In this case� the overall augmenting set for the original graph G is optimal� If the current graph G�

in an execution of the while loop is a J�graph� then a minimum�cardinality augmenting set F � for

��

G� is easily found by Lemma ���� In this case� the overall augmenting set F for the original graph
G may not be optimal� because jF �j exceeds the lower bound for the current graph G�� However�
the slack of F for the original graph is at most k� �� because the slack of F � for the current graph
is at most k � ��

If t � degeG�s� � �k� either initially or after several iterations of the while loop� then the algo�
rithm executes the last step �Phase � of Jordan�s algorithm�� This step increases the connectivity
of the current graph G� to �k � �� by adding an �inclusionwise� minimal subset F � of the edges
fvivj � � � i � j � tg� where v�� � � � � vt are the neighbors of s in eG� As shown in �J ���� a well�known
result of Mader implies that F � contains no cycles�

Mader�s result is� In a �k����connected graph� a cycle consisting of critical edges must
be incident to at least one node of degree k � ��

Hence� jF �j � �t� ��� If t � �k � ��� then since t � t�G��� the lower bound is � dt�G����e � dt��e�
and so the slack is � �t � ��� dt��e � �k � ��� since t � ��k � ��� Otherwise� if t � �k � ��� then
possibly t�G�� � t� but we may assume t�G�� � �� so the slack is � �k� � d���e � �k � ��� �The
algorithm can easily recognize the special case t�G�� � �� and 	nd a one�edge augmenting set by
�J ��� Lemma ������ �

References

�BBM ��� D� Bienstock� E� F� Brickell and C� L� Monma� �On the structure of minimum�weight k�connected
spanning networks�	 SIAM J� Discrete Math� �
������ ������

�CKT �� J� Cheriyan� M� Y� Kao and R� Thurimella� �Scan��rst search and sparse certi�cates� An improved
parallel algorithm for k�vertex connectivity�	 SIAM J� Computing ��
����� ��������

�CLR ��� T� H� Cormen� C� E� Leiserson and R� L� Rivest� Introduction to Algorithms� The MIT Press�
Cambridge� MA� �����

�E ��� S� Even� Graph Algorithms� Computer Science Press� Potomac� MD� �����

�ET ��� K� P� Eswaran and R� E� Tarjan� �Augmentation problems�	 SIAM J� Computing �
������
�������

�FIN �� A� Frank� T� Ibaraki and H� Nagamochi� �On sparse subgraphs preserving connectivity proper�
ties�	 J� Graph Theory ��
����� ��������

�F ��a� A� Frank� �Augmenting graphs to meet edge�connectivity requirements�	 SIAM J� Disc� Math� �

������ �����

�F ��b� A� Frank� �On a theorem of Mader�	 Annals of Discrete Math� ���
������ ������

�F �� A� Frank� �Submodular functions in graph theory�	 Discrete Math� ���
����� ������

�F ��� A� Frank� �Connectivity augmentation problems in network design�	 in Mathematical Program�

ming� State of the Art �����
Eds� J� R� Birge and K� G� Murty�� The University of Michigan�
Ann Arbor� MI� ����� ����

�FJ ��a� A� Frank and T� Jord�an� �Minimal edge�coverings of pairs of sets�	 J� Combinatorial Theory

Series B ��
������ ������

�FJ ��b� A� Frank and T� Jord�an� �How to make a strongly connected digraph two�connected�	 Proc�

�th I�P�C�O�� Egon Balas and Jens Clausen
Eds��� LNCS ���� Springer�Verlag� Berlin�
������
��������

��

�G ��� Z� Galil� �Finding the vertex connectivity of graphs�	 SIAM J� Computing �
������ ��������

�GW ��� M� X� Goemans and D� P� Williamson� �The primal�dual method for approximation algorithms
and its application to network design problems�	 In Approximation Algorithms for NP�hard Prob�

lems�
Ed� D� S� Hochbaum�� PWS Publishing Co�� Boston� MA� �����

�HRG ��� M� R� Henzinger� S� Rao and H� N� Gabow� �Computing vertex connectivity� new bounds from
old techniques�	 Proc� ��th IEEE F�O�C�S�
������ ��������

�HR ��� T� Hsu and V� Ramachandran� �A linear time algorithm for triconnectivity augmentation�	 Proc�
�	nd IEEE F�O�C�S�
������ ��������

�H ��� T� Hsu� �On four�connecting a triconnected graph�	 Proc� ��rd IEEE F�O�C�S�
������ ������

�HR �� T� Hsu and V� Ramachandran� �Finding a smallest augmentation to biconnect a graph�	 SIAM

J� Computing ��
����� ��������

�H ��� T� Hsu� �Undirected vertex�connectivity structure and smallest four�vertex�connectivity augmen�
tation�	 Proc�
th ISAAC
������

�J �� T� Jord�an� �Increasing the vertex�connectivity in directed graphs�	 Proc� Algorithms � ESA���

�st Annual European Symposium� LNCS ���� Springer� New York
����� �������

�J ��� T� Jord�an� �On the optimal vertex�connectivity augmentation�	 J� Combinatorial Theory Series

B ��
������ ����� Preliminary version in Proc� �rd I�P�C�O�
����� ������

�J� T� Jord�an� Ph� D� thesis�

�J ��� T� Jord�an� Personal communication� February �����

�J ��b� T� Jord�an� �On the number of shredders�	 manuscript� November �����

�K ��� D� Karger� �A randomized fully polynomial time approximation scheme for the all terminal
network reliability problem�	 Proc� 	�th ACM S�T�O�C�
������ ������

�Lo ��� L� Lov�asz� Lecture at Conference in Graph Theory� Prague� �����

�Ma ��� W� Mader� �A reduction method for edge�connectivity in graphs�	 Annals of Discrete Math� �

������ ��������

�Ma ��� W� Mader� �Konstruktion aller n�fach kantenzusammenh�angenden Digraphen�	 European J�

Combinatorics �
������ �����

�NI ��� H� Nagamochi and T� Ibaraki� �A linear�time algorithm for �nding a sparse k�connected spanning
subgraph of a k�connected graph�	 Algorithmica �
������ �������

�PB �� J� S� Provan and M� O� Ball� �The complexity of counting cuts and of computing the probability
that a graph is connected�	 SIAM J� Computing ��
����� ��������

�RW ��� R� Ravi and D� P� Williamson� �An approximation algorithm for minimum�cost vertex�
connectivity problems�	 Preliminary version in Proc�
th ACM�SIAM S�O�D�A�
������ �����
To appear in Algorithmica�

�WN ��� T� Watanabe and A� Nakamura� �A smallest augmentation to �connect a graph�	 Discrete Appl�

Math� �	
������ �������

��

