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� �domain 1 . . . n . In this paper, we give a faster implementation of the tree
Ž Ž .. Ž .contraction scheme which takes O log n � T n time using P n processors on an

Ž . Ž . Žarbitrary CRCW PRAM. The current best results of T n and P n are O log log
. Ž .log n and O n�log log log n , respectively. To our knowledge, the previously best

Ž 2 . Ž .known implementation needs O log n time using O n�log n processors on an
EREW PRAM. The faster parallel implementation of the tree contraction scheme
may be of interests by itself. We then show the above scheme can be utilized to
solve problems on distance-hereditary graphs. We provide a data structure to
represent a connected distance-hereditary graph in the form of a rooted tree. By
applying the above tree contraction scheme on our data structure together with
graph theoretical properties, we solve the problems of finding a minimum con-
nected �-dominating set and finding a minimum �-dominating clique on a

Ž Ž .. Ž Ž . Ž . Ž ..distance-hereditary graph in O log n � T n time using O P n � n � m �T n
processors on an arbitrary CRCW PRAM, where n and m are the number of
vertices and edges of the given graph, respectively. The above result implies several
other problems related to the minimum �-dominating clique problem can be solved
with the same parallel complexities. � 2000 Academic Press

1. INTRODUCTION

� �A graph is distance-hereditary 2, 25 if the distance stays the same
between any of two vertices in every connected induced subgraph contain-

Žing both where the distance between two vertices is the length of a
.shortest path connecting them . Distance-hereditary graphs form a sub-

� �class of perfect graphs 14, 21, 25 that are graphs G in which the
maximum clique size equals the chromatic number for every induced

� �subgraph of G 3, 20 . Properties of distance-hereditary graphs have been
� �studied by researchers 2, 7, 14, 16, 21, 25 which resulted in sequential

algorithms to solve quite a few interesting graph-theoretical problems on
� �this special class of graphs. However, few results 11, 13, 26 are known in

� �the parallel context. In 11 , Dahlhaus gave a cost-optimal parallel algo-
rithm to compute the all-to-all vertices distances for a distance-hereditary

� �graph. In 26 , efficient parallel algorithms were presented to find a
minimum weighted connected dominating set, find a minimum weighted
Steiner tree, and find a maximum weighted clique for a given distance-
hereditary graph. In this paper, we further study properties of distance-
hereditary graphs that will help in designing parallel algorithms in this
special class of graphs, which may be of interest by themselves.

Ž .Let G be a distance-hereditary graph in which an integer value � � is
assigned to each vertex � . In this paper, we focus on various generaliza-
tions of the �-dominating set problem, where a �-dominating set in G is a
subset of vertices such that for every vertex � � G there is a vertex in the

Ž .�-dominating set with its distance within � � . The concept of dominating
set is used to model many location problems in operations research and



HSIEH ET AL.52

� �game theory 6, 8, 24 . We will study the minimum connected �-dominating
set problem, i.e., the problem of finding a minimum cardinality �-dominat-
ing set which induces a connected subgraph, and the minimum �-dominat-
ing clique problem, i.e., the problem of finding a minimum �-dominating set
which induces a clique. It is easy to see that the minimum connected
�-dominating set problem generalizes the concepts of the well-known

Ž .minimum connected dominating set problem with � � � 1 for all vertices
Ž .and the minimum Steiner tree problem with � � � 0 for any terminal

Ž . � �vertex and � � � � for other vertices 7, 15 . From solving the �-dominat-
ing clique problem, we show that several related problems can also be
solved efficiently in parallel. The sequential linear time algorithms to solve
the minimum connected �-dominating set problem and the minimum

� ��-dominating clique problem have been presented in 7, 16 .
In this paper, we first give an implementation of a parallel tree contrac-

Ž .tion scheme described in Section 3 which in each contraction phase
removes leaves and nodes in the maximal chains. This scheme was applied

�to solve several problems on chordal graphs and reducible flow graphs 12,
� � �29, 32�34 . Given an array of n integers a 1 . . . n , the all nearest smaller

Ž . � ��alues ANSV problem 4, 5 is for each index i to find the largest index j
� � � �such that j � i and a j � a i and to find the smallest index k such that

� � � � Ž . Ž .k � i and a k � a i . Let T n and P n denote the time and processor
complexity required to compute the ANSV problem and the minimum of n

� �values for input elements drawn from the integer domain 1 . . . n . Our
Ž Ž .. Ž .implementation takes O log n � T n time using P n processors on an

Žarbitrary CRCW PRAM concurrent read and write parallel random
. Ž . Ž . Žaccess machine . Currently, the best results for T n and P n are O log

. Ž . � �log log n and O n�log log log n , respectively 5 . To our knowledge, the
previously best-known implementation of the above tree contraction

Ž 2 . Ž .scheme needs O log n time using O n�log n processors on an EREW
� �PRAM 29 . We then show the above scheme can help to solve the

minimum connected �-dominating set problem, the minimum �-dominat-
ing clique problem and related problems on distance-hereditary graphs.
We provide a data structure to represent a connected distance-hereditary
graph in the form of a rooted tree. By applying the indicated tree
contraction scheme to prune such a tree, the above problems can be solved

Ž Ž .. Ž Ž . Ž . Ž ..in O log n � T n time using O P n � n � m �T n processors on an
arbitrary CRCW PRAM, where n and m are the number of vertices and
edges in the input graph, respectively. The sequential complexity of the

Ž . � �above problems is O n � m 7, 16 .
The computation model used here is the deterministic PRAM which

permits CRCW in its shared memory. The arbitrary CRCW PRAM allows
� �an arbitrary processor to succeed 28 when several processors are attempt-

ing to write into the same memory location. The rest of this paper is
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organized as follows. In Section 2, some needed definitions are given. In
Section 3, we provide a new implementation of a tree contraction scheme.
In Section 4, a sequential algorithm using our data structure is presented
for the minimum connected �-dominating set problem on a distance-
hereditary graph. In Section 5, we present a parallel implementation of our
sequential algorithm. In Section 6, the minimum �-dominating clique
problem is discussed. Extensions to several other problems and the conclu-
sion are given in Section 7.

2. PRELIMINARIES

This paper considers a finite, simple, undirected, and connected graph
Ž .G � V, E , where V and E are the vertex and edge sets of G, respec-

� � � �tively. Let n � V and m � E . For graph-theoretic terminologies and
� �notations not mentioned here, we refer to 20 .

Let � be a vertex of G. We denote the number of edges incident to � by
Ž . Ž . � Ž . � 4deg � and let deg G � max deg � � � G . We also denote the neigh-G G

Ž .borhood of � , consisting of all vertices adjacent to � , by N � , and theG
Ž . � 4 � �closed neighborhood of � , the set N � � � , by N � .G G

Ž .Let S be a subset of V. Let N S denote the open neighborhood of S,G
Ž .that is the set of vertices in V G 	S which are adjacent to any vertex in S.

Ž .The closed neighborhood of S is the set N S � S, which is denoted asG
� �N S . The subscript G in the notations can be omitted when no ambiguityG

² :arises. The subgraph induced by S, denoted by S , is the subgraph with S
�Ž . � 4as the vertex set and x, y � E x, y � S as the edge set. A vertex subset

S is homogeneous in G if and only if every vertex in V 	S is adjacent to
either all or none of the vertices of S. A homogeneous set S is further said

� �to be proper homogeneous if 2 
 S 
 n � 1. Note that every vertex
� � V 	S has equal distance to the vertices of a homogeneous set S. We
call a family of subsets arboreal if every two subsets of the family are

Ž .either disjoint or comparable by set inclusion .
Ž .For any two vertices u and � , let dist u, � denote the distance between

u and � in G. Given a vertex u � V, the hanging of a connected graph
Ž .G � V, E rooted at u, denoted by h , is the collection of setsu

Ž . Ž . Ž . Ž .L u , L u , . . . , L u or simply L , L , . . . , L when no ambiguity arises ,0 1 t 0 1 t
Ž . Ž . � � Ž . 4where t � max dist u, � and L u � � � V dist u, � � i for 0 
 i� � V i


 t. For any vertex � � L and any vertex set S � L , 1 
 i 
 t, leti i
�Ž . Ž . �Ž . Ž .N � � N �  L and N S � N S  L . Any two vertices x, y �i�1 i�1
Ž .L 1 
 i 
 t � 1 are said to be tied if x and y have a common neighbori

in L .i�1
A graph G is �-valued if it is associated with a function � on V to

nonnegative integers. For a �-valued graph G, a subset D � V is a
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�-dominating set of G if for every � � V 	 D, there is a u � D with
Ž . Ž .dist u,� 
 � � . For a �-dominating set of G, it is called a connected

² :�-dominating set of G if D is connected and is called a �-dominating
clique of G if D is a clique. The minimum connected �-dominating set

Ž .problem respectively, minimum �-dominating clique problem is the prob-
Žlem of finding a minimum cardinality connected �-dominating set respec-

.tively, �-dominating clique of G.

3. A FASTER IMPLEMENTATION OF A TREE
CONTRACTION SCHEME

The problem of tree contraction involves reducing in parallel a given tree
to its root by a sequence of vertex removals. It has important applications
in dynamic expression evaluation and isomorphism testing, among many

� �others 1, 10, 12, 18, 19, 22, 23, 29�34 .
We first review a tree contraction scheme used in this paper. The

scheme is based upon two abstract parallel tree contraction operations,
namely RAKE and SHRINK. The scheme works in phases: during each
phase, one RAKE and then one SHRINK operation are performed consecu-
tively.

Ž . � 4Let T � V, E be a rooted tree with n vertices and � , � , . . . , � � V,1 2 k
� �where k � 2. We say that CC � � � , . . . , � is a chain of length k � 1 if1 2 k

� is not the root, the degree of � is 2, � is the only child of � ,1 1 i�1 i
1 
 i � k, and � is a leaf. A chain is said to be maximal if it is notk
possible to add any vertex to form a longer chain. Further, we say that a

� �maximal chain CC � � , � , . . . , � is reduced if the vertices � , � , . . . , �1 2 k 2 3 k
are removed from T. The following two operations are defined in T.

1. SHRINK: An operation reduces all the maximal chains of T. An
example of a SHRINK operation is shown in Fig. 1a.

2. RAKE: An operation removes all the leaves from T. An example
of a single RAKE operation is shown in Fig. 1b.

We define a contraction phase of the current tree by first applying a
RAKE operation and then applying a SHRINK operation. The above tree
contraction scheme, called R & S for ease of referencing, applies a se-
quence of contraction phases to the original tree until it being reduced to
its root.

The scheme R & S was applied to solve several problems on chordal
� � � �graphs and reducible flow graphs 12, 29, 32�34 . In 33, 34 , Ramachan-

Ž 2 .dran gave an implementation which needs O log n time using polynomial
many processors to solve the minimum feedback vertex set problem on
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FIG. 1. An example of SHRINK and RAKE operations.

unweighted reducible flow graphs and the minimum feedback arc set on
� �arc-weighted reducible flow graphs. In 32 , the scheme was implemented

Ž 2 . Ž 2 .in O log n time using O n processors to find a perfect elimination
order and an unweighted maximum independent set of a chordal graph. In
� � Ž 2 .12 , Dahlhaus and Damaschke implemented the scheme in O log n time

Ž .using O n processors on a CREW PRAM based on the pointer jumping
technique and used it to solve the dominating set problem and the

� �dominating clique problem on strongly chordal graphs. In 29 , Klein
Ž 2 . Ž .implemented the scheme in O log n time using O n�log n processors

on an EREW PRAM based on the Euler tour technique and used it to
solve the maximum independent set problem on chordal graphs.

� � Ž .LEMMA 1 12, 29, 32�34 . After O log n contraction phases, T is reduced
to a single �ertex which is its root.

In what follows, we present a method to implement the tree contraction
Ž . Ž .scheme R & S in O log n � log log log n time using O n�log log log n

processors on an arbitrary CRCW PRAM. Consider a rooted tree T with
Ž .root r to be contracted. For a node � in T , let child � denote theT

Ž .children of � and par � denote the parent of � in T. Throughput thisT
Ž . Ž .section, we also use child � and par � to denote the children and the

parent of � in the current tree when no ambiguity occurs. We assume that
for each vertex � in T , the children of � are ordered � , � , . . . , � ,1 2 lŽ� .
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Ž .where l � is the number of children of � and each child knows its index.
� �That is, let index � � i be the index of � in this ordering of children. Fori i

Ž . � � Ž .each vertex � we set aside l � locations label � , i , i � 1, . . . , l � in the
� �shared memory. Initially each label � , i is empty or unmarked. Once � isj

� �deleted from the current tree using tree contraction, label � , j is marked.
Ž .We use arg � to denote the number of children of � in the current tree.

Ž . Ž .That is, initially, arg � � l � .
Ž .Our method works in O log n contraction phases. Assume that the

Ž .children of the root r are given by u , u , . . . , u . First of all, we0 1 lŽ r .�1

�compute the Euler tour for T which is represented by an array ET � e1
Ž . Ž .� Ž � �� r, u , e , . . . , e � u , r i.e., ET i records the ith edge in0 2 2Žn�1. lŽ r .�1

. Ž . Žthe tour constructed . This can be achieved in O log n time using O n�
.log n processors on an EREW PRAM by applying the list ranking

� � Ž .technique 27 . For each vertex � , let i respectively, t be the index that� �
� � Ž Ž . . Ž � � Ž Ž ...ET i � par � , � respectively, ET t � � , par � and let I de-� T � T �

� � Ž .note the interval i , t . The index i respectively, t is said to be the left� � � �
Ž .endpoint respectively, right endpoint of I . For any two intervals I and� x

I , we say I co�ers I if i 
 i and t 
 t , and they are disjoint ify x y x y y x
i � t � i � t or i � t � i � t .x x y y y y x x

Ž .LEMMA 2. For any two inter�als I and I , where x, y in V T , either onex y
co�ers the other or they are disjoint.

Ž .Proof. According to the property of trees, if x respectively, y is an
Ž . Žancestor of y respectively, x , then I covers I respectively, I coversx y y

.I ; otherwise, I and I are disjoint.x x y

� � Ž .4By Lemma 2, on any subset II of I � � V T , we can define a partial�
order � that for any I , I in II, I � I if I covers I .x y x y y x� �

To indicate the status of vertices in the current tree, we construct an
� Ž .� Ž .array DD 1, . . . , 2 n � 1 with 2 n � 1 entries corresponding to theET

Ž .2 n � 1 entries of array ET. This array will be updated in each phase as
� �follows. We set DD i � 1, or 2, or 3, depending on the degree of � inET �

the current tree is 1 or 2, or at least 3, respectively. We also set
� � Ž . Ž .DD j � 0 if either j � i for any � � V T or j � i for any � � V TET � �

not in the current tree.
In a contraction phase, we first show how to implement RAKE. For each

Ž .vertex w with arg w � 0, it is a leaf of the current tree. So we delete all
Ž . Ž .the nodes w with arg w � 0 corresponding to a RAKE operation and

� � Ž .modify DD as follows. We first set DD i � 0. Assume f � par w . WeET ET w T
� � Ž .use the following method to compute DD i on O 1 time using totallyET f

Ž .O n processors. Assume each node is assigned with one processor. Using
the arbitrary CRCW PRAM model, we start by setting aside a memory

� �location argindex f � null. Each processor assigned to an unmarked child
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� �writes its index into the memory location argindex f . Assume that one of
� �these children succeeds in writing its index. If argindex f � null, we set

� �DD i � 1 because all the children of f are deleted by executing a RAKEET f
� �operation. To test whether DD i � 2, each processor assigned to anET f

� �unmarked child reads argindex f and if the value is not the same as its
� � � �own index, it rewrites its index to argindex f . If the value of argindex f

� � � �does not change, then DD i � 2; otherwise DD i � 3. The aboveET f ET f
Ž . Ž .modification can be done in O 1 time using O n processors. As with the

� � 5aid of Brent’s scheduling principle 28 , we have the following result.

LEMMA 3. In each contraction phase, a RAKE operation can be imple-
� Ž . � Ž .mented in T n time using P n processors on an arbitrary CRCW PRAM,

� Ž . � Ž . � Ž . � Ž . Ž .for any T n and P n that T n � P n � O n .

We then show how to implement SHRINK. Let H denote the current tree
� Ž . � Ž . 4and N � � � V H deg � � � . To find a maximal chain in thed�� H

� � Ž Ž ..current tree, we first compute the set Q � � � N deg par � � 3d�2 H H
Ž . 4 Ž . Ž .or par � is the root of H in O 1 time using O n processors. We callH

each vertex � � Q chain-leader. According to the definition of a maximal
chain, we have the following lemma.

� � 4 �LEMMA 4. Let II � I � � Q and let II denote the set of minimal�
Ž . �elements in II, � . For each I � II , the subtree rooted at w in the currentw�

� � � � 4tree forms a maximal chain if and only if max DD i i 
 i 
 t 
 2.ET w w

Proof. Straightforward.

Next, we show how to find II
� in II. For the right endpoint t of each I� �

�in II, we aim at finding an I in II such that t � t and t � t � min tu u � � u �
� 4 � �� t I � II, t � t . If i � i , then I � II . If i � i , then I � II .w w w � � u � � u �

The above problem can be reduced to the ANSV problem as follows. First,
� Ž .� Ž .we build an array B 1, . . . , 2 n � 1 corresponding to 2 n � 1 entries of

� � Ž .ET so that each B j records 1, j if j � t for some chain-leader � and�
Ž . � � Ž . � � Ž .records 2, j otherwise. For any two B x � x , x and B y � y , y ,1 2 1 2

� � � �we define B x � B y if either x � y , or x � y and x � y holds. By1 1 1 1 2 2
� Ž .� � � Ž .solving the ANSV problem on B 1, . . . , 2 n � 1 , for each B t � 1, t ,� �

� � Ž .� � Q, we can find its nearest smaller value B j � j , j . By definition1 2
j � 1 and j � j. In other words, j is the right endpoint of some I in II1 2 u
which is the closest to t with smaller value. If i � i , then I � II

�. If� � u �
i � i , then I � II

�. Hence, II
� can be computed with the same com-� u �

plexity to solve the ANSV problem. For each I � II
� we find the�

� � Ž .maximum value t among DD i , . . . , t in O log log log n time usingET � �

5 For the rest of this paper, all the implementations which take a constant time using linear
number of processors can apply Brent’s scheduling principle to achieve the desired complexi-
ties.
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Ž . � �O n�log log log n processors on a common CRCW PRAM 5 . By Lemma
4, the subtree rooted at � in the current tree forms a maximal chain if
t 
 2.

After the above computation, we may contract each maximal chain to its
chain-leader to complete a contraction phase. At this time, we need to
update DD with the new degree of each vertex after executing a SHRINKET

� �operation. For each chain-leader of a maximal chain w, we set DD i � 1ET w
� �because the degree of w in the current tree is 1 and set each DD j � 0,ET

where i � j � t because the vertices in the maximal chain are deleted.� �
Ž . Ž .This takes O 1 time using O n processors. After completing a contrac-

tion phase and updating DD , we then go on executing the next phase.ET
Ž . Ž .Let T n and P n denote the time and processor complexity required

to compute the ANSV problem and the minimum of n values for input
� �elements drawn from the integer domain 1 . . . n . The above discussion

leads to the following result.

LEMMA 5. In each contraction phase, a SHRINK operation can be imple-
Ž Ž .. Ž Ž ..mented in O T n time using O P n processors on a common CRCW

PRAM.

By Lemmas 3 and 5, we obtain the following theorem.

ŽTHEOREM 1. Algorithm R & S can be implemented correctly in O log n �
Ž .. Ž .T n time using P n processors on an arbitrary CRCW PRAM.

Ž . Ž . Ž .Since the best results for T n and P n are O log log log n and
Ž . � �O n�log log log n , respectively 5 , we have the following corollary.

ŽCOROLLARY 1. Algorithm R & S can be implemented to run in O log n �
. Ž .log log log n time using O n�log log log n processors on an arbitrary CRCW

PRAM, where n is the number of �ertices of the input tree.

4. THE MINIMUM CONNECTED �-DOMINATING
SET PROBLEM

In this section, a sequential algorithm is presented to find a minimum
connected �-dominating set on a distance-hereditary graph. It will be
shown in Section 5 that this algorithm can be efficiently parallelized using
Algorithm R & S. In Section 4.1, we give fundamental results of distance-
hereditary graphs. In Section 4.2, we define a data structure, equivalence-
hanging tree, to represent a distance-hereditary graph. In Section 4.3, we
present a sequential algorithm working on a given equivalence-hanging
tree.
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4.1. Pre�ious Known Properties of Distance-Hereditary Graphs

In the rest of this paper, G denotes a connected distance-hereditary
graph whenever no ambiguity occurs.

� � Ž .Fact 1 2, 14, 21 . Suppose h � L , L , . . . , L is a hanging of Gu 0 1 t
Ž .rooted at u. If x, y � L 1 
 i 
 t are in the same connected componenti

² : �Ž . �Ž .of L or tied, then N x � N y .i

� � Ž .Fact 2 2, 21 . Suppose h � L , L , . . . , L is a hanging of G rootedu 0 1 t
�Ž . �Ž .at u. For any two vertices x, y � L , i � 1, N x and N y are eitheri

disjoint or one of them is contained in the other.

Ž . � �For a hanging h � L , L , . . . , L , Hammer and Maffary 21 definedu 0 1 t
an equivalence relation � between vertices of L by x � y means x andi i i
y are in the same connected component of L or x and y are tied. Let �i a

Ž .be defined on V G by x � y means x � y for some i. The equivalencea i
Ž .relation � partitions V G into equivalence classes. For an equivalencea

� 4 � � �class R, let � � R � S � R there is an equivalence class R withR
�Ž �. 4N R � S . � is called the upper neighborhood system in R and SR

Ž �Ž �.. �� N R in � the upper neighborhood of R .R

� �Fact 3 21 . Let h be the hanging of G rooted at u and R be anyu
equivalence class with respect to h . � is an arboreal family of homoge-u R

² :neous subsets of R .

For any equivalence class R, we define a partial order � between two�
different sets S and S in � by S � S � S � S . S is called top q R p q p q q�
immediately succeed S if S � S and there is no S � � such thatp p q r R�
S � S � S .p r q� �

4.2. The Equi�alence-Hanging Tree

� 4Let EE � R , R , . . . , R be the set of equivalence classes of G with1 2 k
Ž Ž . Ž ..respect to h . We define a graph T � V T , E T , as follows. Foru h h hu u u

each S in � � , we create a node for T to represent S. There areR � EE R huk � � Ž .totally Ý � created nodes. For each node � � V T , let S denotei�1 R h �i u
Ž . Ž .the vertex set represented by �. For � , � � V T , � , � is an edge ofhu

Ž .T if it satisfies one of the following two conditions: 1 S , S � � forh � � Ru
Ž .some R � EE and S immediately succeeds S in � ; 2 S is an equiva-� � R �

�Ž . Ž . Žlence class and S � N S . An edge satisfies condition 1 respectively,� �

Ž .. Ž .condition 2 is called an abnormal edge respectively, a normal edge . Let
� 4 Ž .	 be the node in T that S � u u is the root of the given hanging . Byh 	u

Ž . Ž .the above definition, there exists no node 
 � V T such that 	, 
 �hu
Ž . Ž .E T , and for any � � 	, there exists a unique � such that � , � �hu

Ž . � Ž . �E T . Therefore, there are exactly V T � 1 edges in T .h h hu u u
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� Ž . � Ž .LEMMA 6. The graph T is a tree and V T � O n .h hu u

� Ž . �Proof. Since there are exactly V T � 1 edges in T , to show T ish h hu u u

a tree, it suffices to show it contains no cycle. Suppose, by contrast, that
Ž .there is a cycle � , � , . . . , � in T . Let S � L . It leads to q � q �1 2 k h � q 1 2u i i

��� � q � q . Thus, q � q � ��� � q . This implies that S � S � ���k 1 1 2 k � �� �1 2

� S � S , a contradiction. Thus, T is a tree.� � h� �k 1 u
� � � � � �Since there are at most n equivalence classes, � � � � ��� � �R R R1 2 k

Ž . � Ž . � Ž .� O n . Therefore, V T � O n .hu

We call T the equi�alence-hanging tree of the given distance-hereditaryhu

graph G with respect to h . For the rest of this paper, we assume T is au hu
� 4tree rooted at the node representing u , which is an equivalence class. For

Ž . � Ž . �a node 
 in the rooted tree T , we denote Nchild 
 � � � child 
h Tu hu

Ž . 4 Ž . � Ž . �Ž .� , 
 is a normal edge and Achild 
 � � � child 
 � , 
 is anThu

4abnormal edge . Figure 2b shows an equivalence-hanging tree with respect
to the hanging at vertex 1 of the distance-hereditary graph illustrated in
Fig. 2a.

In the following, we consider a process that reduces T to its root node.hu

In an iteration of the reduction process, a leaf node of the current tree is
removed. Let T i denote the resulted tree after the ith iteration and Gi

hu
� Ž . �idenote the subgraph of G induced by � S , for i 
 V T . Note
 � V ŽT . 
 hh uu

that by the hereditary property of distance-hereditary graphs, Gi is also a

Ž .FIG. 2. An equivalence-hanging tree shown in b of a distance-hereditary graph shown in
Ž .a . The bold lines show the normal edges and the dashed lines show the abnormal edges. The

Ž .label a sequence of numbers of each node 
 in the equivalence-hanging tree represents S .
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distance-hereditary graph. For Gi we may consider its hanging rooted at u
Ž . iu is the last removed vertex , denoted by h .u

� Ž . � i i ŽLEMMA 7. For e�ery i 
 V T , G is connected and h � L h u 0u
Ž i. Ž i..V G , . . . , L  V G .t

Proof. We prove the lemma by induction on i. When i � 0, G0 � G is
0 i�1 i�1 Žconnected and h � h . Suppose that G is connected and h � Lu u u 0

Ž i�1. Ž i�1.. i V G , . . . , L  V G . Assume that T is obtained by removingt hu

the leaf node 
 in T i�1. Let the parent of 
 be �. If S is not in EE, sinceh 
u
i i�1 i i Ž Ž i.S � S , G � G ; thus, G is connected and h � L  V G , . . . , L
 � u 0 t

Ž i..V G . Suppose that S is in EE and S � L . Let � be any vertex in
 
 j
Ž i�1. Ž i�1.V G 	S and � � L  V G . It suffices to show that � is of
 k

distance k to u in Gi. Moreover, we show that any shortest path from � to
i�1 i � Ž . Ž .�u in G is also a shortest path in G . Let P � � � � , � , . . . , � � uk k�1 0

Ž i�1.be any shortest path from � to u. By definition, � � L  V G fors s
0 
 s 
 k. Suppose the contrary that P contains a vertex w in S . That is,


Ž i�1. Ž .k � j and w � � . It implies that � in L  V G and � , w �j j�1 j�1 j�1

Ž i. Ž .E G . However, � has to be in S where 	, 
 is a normal edge. Itj�1 	

contradicts that 
 is a leaf node in T i�1. Hence, Gi is connected andhui i iŽ Ž . Ž ..h � L  V G , . . . , L  V G .u 0 t

Ž i. Ž i . Ž .For any � in V G , � � S for some � � V T . Since par � is also� hu
Ž i . � Ž . Ž i. � Ž .iin V T , N � � V G . Let N � denote the upper neighborhood of �h G Gu

Ž i. i Ž i.in V G with respect to h . By Lemma 7, for any vertex � in V G , weu
� Ž . � Ž .ihave N � � N � .G G

Ž .For a rooted tree T , let leaf T denote the leaves of T and for
Ž . Ž .� � V T let T � denote the subtree of T with root � .

Ž i . iLEMMA 8. If 
 � leaf T , then S is a homogeneous set of G .h 
u

�Ž .Proof. By definition, either S � EE or S � N R for some R � EE.
 


First, suppose that S is in EE. By Fact 1, for arbitrary two vertices

� Ž . � Ž . � Ž . � Ž . Ž i .i ix, y � S , N x � N y and thus N x � N y . Since 
 � leaf T ,
 G G G G hu

� Ž . Ž . i
i iN S � N S . By definition, S is a homogeneous set of G . Next,G 
 G 
 


suppose that S is the upper neighborhood of some equivalence class of G.


� � �Ž .Assume that S is a proper subset of a set Q in EE. Let CC � � N S �
 �

4 Ž . Ž i.S . We have that � S  V G � �. Moreover, S is a homoge-
 � � CC � 


² : � Ž . � Ž .i ineous set in Q by Fact 3, and N x � N y for any two vertices xG G
iand y in S . Thus, S is a homogeneous set of G .
 


i Ž . Ž i.LEMMA 9. Suppose 
 is a node of T . Let A � Achild 
  V G . Ifh Tu huŽ i . iA � leaf T , then S is a homogeneous set of G .h 
u

Proof. Similar to the proof of Lemma 8.
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We next describe a method to construct T . We first compute thehu
Ž . Ž .equivalence classes with respect to h in O log n time using O n � mu

� �processors on an arbitrary CRCW PRAM 26 . Using Cole’s parallel merge
� �sorting 9 , the upper neighborhoods of the equivalence classes can be

Ž . Ž .computed in O log n time using O n � m processors on an EREW
� � Ž .PRAM 26 . Thus, V T can be created with the desired complexity. Forhu

each upper neighborhood X in an upper neighborhood system � , aR
� �method shown in 26 can be used to find the upper neighborhood Y � �R

Ž .that immediately succeeds X in � . This takes O log n time usingR
Ž . � �O n � m processors on an arbitrary CRCW PRAM 26 . According to the

Ž .above computation, the parent of each node in V T can be found inhu
Ž .constant time. It is easy to determine the type of each edge in E T .hu

Applying Brent’s scheduling principle, the following result is obtained.

LEMMA 10. Gi�en a distance-hereditary graph G, T can be constructedhu

Ž . ŽŽ . .in O log n � log log log n time using O n � m �log log log n processors on
an arbitrary CRCW PRAM.

4.3. A Sequential Algorithm

� �A linear time sequential algorithm is first described in 7 . Here we
present another sequential algorithm used in the next section for paral-
lelization. Let G� be an induced subgraph of G with a new � value � �

Ž . Ž � .assigned to each of its vertices. Let D G and D G denote a minimum
connected �-dominating set of G and a minimum connected � �-dominat-
ing set of G�, respectively. Fact 4 shows that by properly choosing G� and

� Ž .setting � values, we can reduce the problem of computing D G to the
Ž �.problem of computing D G .

Ž .For a vertex x in a homogeneous set QQ of G, let tag x � 1 if there is a
Ž . Ž . Ž . Ž .vertex y � V G 	 QQ with dist x, y � � y , and let tag x � 0 for other-

wise.

� � Ž .Fact 4 7 . Let QQ be a vertex subset of the given graph G � V, E .

Ž .a Assume that QQ � V is a proper homogeneous set of G. Let x be
Ž . � Ž . � 4 � ²Ž . � 4:a vertex of QQ with � x � min � y y � QQ . Also let G � V 	 QQ � x

�Ž . Ž . � Ž . Ž . Ž . Ž .and � � � � � for all � � G . i If � x � 2, or � x � 1 and tag x �
Ž . Ž �. Ž . Ž . Ž .1, then D G � D G . ii If � x � 0 and � w � 0 for some vertex

Ž . Ž �. � � Ž . 4w � V 	 QQ, then D G � D G � y � QQ � y � 0 .
Ž . Ž .b Assume that QQ contains only one vertex x such that N x forms

Ž . Ž .a homogeneous set in G. Let y be a vertex of N x with � y �
� Ž . � Ž .4 � ² � 4: �Ž . Ž .min � z z � N x . Also let G � V 	 x and � � � � � for all

Ž . Ž . Ž . Ž . Ž . Ž .� � y � G. i If � x � 2, or � x � 1 and tag x � 1, then D G �
Ž �. �Ž . � Ž . Ž . 4 Ž . Ž . Ž .D G with � y � min � y , � x � 1 . ii If � x � 0 and � w � 0 for

� � Ž . Ž �. � 4 �Ž .some vertex w � V 	 N x , then D G � D G � x with � y � 0.
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� �Fact 5 7 . Suppose x is a vertex of a homogeneous set QQ with
Ž . � Ž . � 4 Ž .� x � min � y y � QQ � 1 and tag x � 0. If there is a vertex w � QQ

� � � � Ž . 4 Ž . � 4 Ž .satisfying N w � � � QQ � � � 1 , then D G � w ; otherwise, D G
� 4 Ž .� x, z , where z � N QQ .

For a given �-valued distance-hereditary graph G, the sequential algo-
� � Ž .rithm in 7 processes as follows. If there is a vertex u � V G whose

�-value is 0, we compute h ; otherwise, we compute a hanging rooted at anu
Ž .arbitrary vertex u. Let h � L , L , . . . , L . The sequential algorithm inu 0 1 t

� �7 processes G from the bottom layer L to the top one L based on Factst 0
4 and 5. When L is processed, G is reduced to the induced subgraphi
² i : ² :� L . Then, the algorithm finds the connected components of L .j�0 j i

² i :Each connected component is a homogeneous set of the graph � L .j�0 j
² :The reason is explained below. Let H be a connected component of L .i

�Ž . �Ž . �Ž .According to Fact 1, N x � N y � N H for every two vertices x and
�Ž .y in H. Therefore, every vertex of N H is adjacent to every vertex of H.

² i :By definition, H is a homogeneous set of the graph � L . Next, thej�0 j
connected components are ordered increasingly according to the cardinali-
ties of their upper neighborhoods. Then the algorithm removes compo-
nents from G one at a time starting from the one with the smallest order.
According to Facts 4 and 5, the new �-value is adjusted for the resulting
graph after each removal. If the �-value of the root of the hanging is not 0,
once the �-value of some vertex � is adjusted to 0, the algorithm computes
a hanging rooted at � of the current graph and then continues the process
on the new hanging from the bottom layer of the hanging to the top one as
above. The information of a minimum connected �-dominating set of G is
gathered from the adjusted �-values.

By Facts 4 and 5, to compute the minimum connected �-dominating set
of G, we may choose any homogeneous set of current graph to reduce in
each iteration of the algorithm. This property facilitates obtaining an
efficient parallel algorithm for the minimum connected �-dominating set
problem. By Lemma 8, the sets represented by the leaves of the equiva-
lence-hanging tree are homogeneous, which can be reduced. For better
understanding of the parallel algorithm implementation, we first describe a
sequential algorithm using the reduction order induced by removing nodes
of the equivalence-hanging tree from leaves to the root.

Let 
 , 
 , . . . , 
 be any order of vertices of T such that 
 is a leaf of1 2 k h iu
i�1 ² : ithe induced subtree T � 
 , . . . , 
 , for all i � 1, 2, . . . , k. Let G beh i ku

the subgraph induced by �k S . By Lemma 8, S is a homogeneousj� i�1 
 
j i

set of Gi�1. Thus, processing S , . . . , S in order, we can also obtain an
 
1 k

algorithm for the minimum connected �-dominating set problem. In the
ith iteration, the algorithm removes node 
 in T i�1 as well as S if it isi h 
u i
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an equivalence class and properly updates the �-values according to Facts
4 and 5. For clarity of algorithm presentation, in the following, for each �

Ž . Ž .in V G , we denote its resulted �-value of the ith iteration by � � . Wei
Ž . Ž .next describe the additional data structures, � � , � � , and  associ-�

ated with node � in the given equivalence-hanging tree, where the former
Ž .two variables are integers and the latter one is a set of vertices of V G .

These three variables associated with � are updated whenever a node in
Ž .child � is removed in the execution of the algorithm. We also denoteThu

Ž . Ž .their resulted values of the ith iteration by � � , � � , and  ,i i � , i
˜Ž .respectively. For a node � in V T , let S � S 	� S ifh � , i � 
 � Achil d Ž� . 
iu T hu

i ˜Ž . Ž . Ž .� � V T and S � S otherwise. Initially, for each � � V T , � �h � , i � hu u

˜Ž . � Ž . � 4 Ž . Ž .� � � � min � � � � S . For each � � V T , � � is defined to0 0 � , 0 h iu

˜ ˜� Ž . � 4 � � Ž . Ž .4be min � � � � S and  is defined to be � � S � � � � �i � , i � , i � , i i i

Ž . Ž .for all i. Note that initially � � equals � � for all � , but they are not
always equal in the execution of the algorithm.

We now present a high level description of our sequential algorithm,
Ž .called SCD, to find a minimum connected �-dominating set D G . If there

Ž .is a vertex u � V G whose �-value is 0, we compute the hanging h ;u

otherwise, we compute a hanging root at an arbitrary vertex, u. Next, an
equivalence-hanging tree T is constructed. Assume that we are in thehu

Ž . ii � 1 th iteration. Let � be the leaf to be removed in T which is not thehu

Ž . iroot. Also let par � � �. Note that S is a homogeneous set of graph G�

by Lemma 8. We process � as follows.

Ž .Case 1. � u � 0, where u is the root of the current hanging.i

Ž .Case 1.1 � � � 0. In this case, there exists a node � ini
Ž . Ž . i

0Nchild � with � � � 1. �� � is not in T . �� Pick an arbitraryT i hh uu

Ž . Ž i.vertex x in  . Let tag x � 1 if there is a vertex � � � G with�, i

Ž . Ž . Ž .dist x, � � � � ; otherwise, let tag x � 0.i

Ž .Case 1.1.1 tag x � 1. Pick a vertex y �  . �� Note that� , i
Ž . �� y � 0. �� Let G denote the subgraph of G induced byi

Ž . Ž . Ž . Ž �.0 0� S � S . Let � � � � � for all � � V G 	S .
 � V ŽT .	 V ŽT Ž� .. 
 � i�1 0 �T Th hu u

Determine the handing h of G�. Construct the equivalence-hanging treey

T . Replace T i with T , and go to the next iteration.h h hy u y

Ž . Ž .Case 1.1.2. tag x � 0. �� x �-dominates all �ertices of V G 	
� � Ž .S . �� If there is a vertex w � S satisfying N w �  , output D G� � � , i

� 4 Ž . � 4� w and terminate the execution; otherwise, output D G � x, z ,
�Ž .where z is an arbitrary vertex in N S , and terminate the execution. ���

based on Fact 5. ��
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Ž .Case 1.2. � � � 1.i

Ž . Ž . � Ž .Case 1.2.1. � , � is a normal edge. Let � � � min � �i�1 i
Ž .4 i Ž i.� 1, � � . Remove � and S from T and V G , respectively. If � isi � hu

i Ž . Ž .the only child of � in T and � � � � � , then pick an arbitraryh i�1 iu

Ž . Ž . � 4vertex g in  , let � g � � � , and then  � g .� , i i�1 i�1 � , i�1

Ž . Ž .Case 1.2.2. � , � is an abnormal edge. Let � � �i�1
� Ž . Ž .4 Ž . Ž . Ž .min � � , � � . If � � � � � , then  �  �  . If � �i i i i � , i�1 � , i � , i i
Ž . Ž . Ž .� � � , then let � � � � � and  �  . Remove � fromi i�1 i � , i�1 � , i

i i Ž . Ž .T . If � is the only child of � in T and � � � � � , then pick anh h i�1 i�1u u

Ž . Ž . � 4arbitrary vertex g in  , let � g � � � , and  � g .� , i�1 i�1 i�1 � , i�1

Ž . Ž . Ž . �Case 2. � u � 0. If � , � is a normal edge, let � � � max 0,i i�1
� Ž . Ž .44 Ž . � � Ž .min � � � 1, � � ; otherwise, let � � � max 0, min � � ,i i i�1 i

Ž .44 Ž .� � , using the same method as Case 1.2 to maintain � � ,  ,i i�1 � , i�1
the current tree, and the current graph.

Algorithm SCD works by repeatedly executing the above two cases until
Ž .either D G is found or T is reduced to its root, where T is theh hu u

equivalence-hanging tree of the rehanging if a rehanging occurs. If no
rehanging occurs and no vertex whose �-value becomes 0 during the

Ž . Ž .execution, then D G is the root of the given hanging; otherwise, D G �
� � Ž . 4w � w � 0 .

Note that only if Case 1.1.1 is performed, a rehanging occurs. When a
rehanging occurs, the �-value of the root of the rehanging is 0; then only
Case 2 is performed in the following iterations and no more rehanging
occurs.

Before showing the correctness of the algorithm, we define some nota-
Ž .tions. If a rehanging occurs, the iterations before respectively, after the

rehanging are called �alid for the nodes in the equivalence-hanging tree of
Ž .the initial hanging respectively, the rehanging . For a given equivalence-

hanging tree T , we say a node � is in a complete state when nodes inhu

Ž .child � are all deleted and � is in an incomplete state if some but notThu

Ž . Ž .all of its children are deleted. The critical �alue cri � for all � � V T ishu

Ž . Ž . � Ž . �defined recursively as follows. If � � leaf T , cri � � min � � � �h 0u

4 Ž . Ž . � 4S . For an arbitrary node � not in leaf T , let cri � � min q, r, s � 1� hu

Ž . Ž . � � 44 Ž .if � u � 0 and cri � � max 0, min q, r, s � 1 if � u � 0, where0 0
˜� Ž . � 4 � Ž . � Ž .40q � min � � � � S , r � min cri 
 
 � Achild � , and s �0 � , 0 Thu

� Ž . � Ž .4 Ž .0min cri 
 
 � Nchild � . Note that in the case of � u � 0, theseThu

nodes with negative critical values will not be processed in the algorithm,
since according to Case 1.1, the minimum connected �-dominating set is
found or a new hanging is created.
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Suppose that following a reduction order, a rehanging occurs in the ith
iteration when processing node � and y is the root of the hanging of G� as

Ž . Ž . Ž �.in Case 1.1.1. Note that since � � is reset to � � for all � � V G 	S ,i�1 0 �

Algorithm SCD following the reduction order has done up to the end of the
ith iteration is equivalent to that following a reduction order � , . . . , � �1 k

� 4k� , where � is the set of nodes in the subtree rooted at � . In otherj j�1
words, in this case, we may assume that Algorithm SCD reduces the subtree
rooted at � of the initial equivalence-hanging tree T to the node � ,hu

creates the hanging tree h of G�, and then reduces the equivalence-hang-y

ing tree of the rehanging T to its root. With this assumption, no node ish y

in an incomplete state when the rehanging occurs.

Ž .LEMMA 11. Let � � V T , where h is the initial hanging or theh uu

rehanging, and let k be the first iteration that � becomes a leaf in T . Thenhu
Ž . Ž .� � � cri � for all �alid iterations j � k for �.j

Proof. We will prove the case of the initial hanging. The proof for the
case of the rehanging is the same. Since after � becomes a leaf, the

Ž .�-value of � will not change any more, it suffices to prove that � � �k
Ž .cri � . We prove the lemma by induction on the height of � in T . If � ishu

Ž . Ž .of height 0, it is a leaf of T and thus k � 0. By definition, cri � � � � .h 0u

Suppose for all nodes of height less than h, the lemma is true. Let � be a
node of height h and let � be any child of � in T . Let i be the firsth �ui� Ž .iteration that � becomes a leaf of T . Thus, i � k for all � � child � .h � Tu huŽ . Ž .Since the height of � is h � 1, by induction, cri � � � � for all j � i .j �

Now we assume the k th iteration is valid for �. Then the lemma is implied
by the �-value updating rules in Cases 1.2 and 2 in the k th iteration, in

Ž . Ž .which � � is actually cri � .k�1

As a node � becomes a leaf, the set of vertices in S with �-values�

Ž .equal to cri � is called the critical �ertex set of � . By Lemma 11, the
critical vertex set of � is exactly  .� , i�

THEOREM 2. Algorithm SCD correctly finds a minimum connected �-
Ž .dominating set for a distance-hereditary graph G in O n � m time and space.

Proof. If a rehanging occurs, as discussed in the paragraph before
Lemma 11, we make an assumption on the reduction order of Algorithm
SCD that only the nodes in the subtree rooted at � are reduced before the
rehanging, where � is the node processed in Case 1.1.1.

First, we prove that Algorithm SCD is correct if it follows a particular
reduction order. It suffices to show that the reduction in each iteration

� �satisfies Facts 4 and 5 7 . A reduction order of T is special if for anyhu
Ž . Ž .node � in V T , any child in Nchild � is removed after all theh Tu hu

Ž .children in Achild � are removed. It is easy to see that there exists aThu
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special reduction order that satisfies the assumption on the reduction
order of Algorithm SCD. Following a special reduction order, whenever a
node � with S � EE is removed in an iteration, by Lemmas 8 and 9, both�

S and S are homogeneous sets in the iteration. The reduction in� p ar Ž� .
Cases 1.2.1 and 2 can be looked as shrinking S to a vertex first as in Fact�

Ž . Ž .4 a and then removing the vertex as in Fact 4 b . In Case 1.2.1, the
Ž Ž ..�-value passed from S is recorded in � par � , and the vertex in S� p ar Ž� .

to record the passed value is maintained by  . Since S and Sp ar Ž� . � p ar Ž� .

are homogeneous sets, the reduction satisfies Fact 4. Case 1.1.2 satisfies
Fact 5. As Case 1.1.1 is performed, a new hanging is created and in Case
1.2.2, the vertex of minimum �-value in S is maintained. No reduc-p ar Ž� .

tion is performed in Cases 1.1.1 and 1.2.2. Thus, executing Algorithm SCD

following a special reduction order is correct.
Now consider an arbitrary reduction order that satisfies the assumption

on reduction order of Algorithm SCD. In any iteration a node � is
Žprocessed, � is in a complete state it is a leaf of current equivalence-

.hanging tree . By Lemma 11, the �-value of � is the same as that
computed by the algorithm following a special reduction order. In the
meantime,  contains a vertex of minimum �-value in S . In other words,� �

when reducing � , the update of �-values in S is the same as that in the�

algorithm following a special reduction order. Therefore, Algorithm SCD

following arbitrary reduction order is correct.
The following reasons assert the time complexity of the algorithm.

Without loss of generality, we assume the �-value of the root of a given
hanging is nonzero. When the algorithm processes a leaf node � with
Ž . Ž . Ž .� � � 0, tag x is first determined in linear time. If tag x � 1, then a

new equivalence-hanging tree is constructed in linear time. The following
iterations aim at finding those vertices with �-value zero after each
reduction, and the reconstruction of an equivalence-hanging tree cannot

Ž .occur. If tag x � 0, then a minimum connected �-dominating set is
generated and the algorithm is terminated. Note that the tag value is
computed at most once in the whole execution. For the other values of
Ž . Ž .� � , the time to process � is O 1 . Therefore, the algorithm runs in

linear time and space.

5. FINDING A MINIMUM CONNECTED �-DOMINATING
SET IN PARALLEL

In this section, we show that the utilization of the equivalence-hanging
tree and the tree contraction scheme R & S make the parallelism of
Algorithm SCD possible. Given a distance-hereditary graph G in the form
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of its equivalence-hanging tree T , recall that Algorithm SCD removeshu

leaves of T one at a time. After removing a node 
 , the algorithm eitherhu

outputs a minimum connected �-dominating set or updates the �-values
associated with some nodes in current tree and graph. Though the above
process seems to be highly sequential, we observe that some proper subset

Ž .Q � V T can be removed simultaneously without affecting the computa-hu
Ž .tion of the �-values associated with V T . In other words, the adjustmenthu

of �-values caused by one node in Q does not affect the adjustment caused
by each of the other nodes of Q. We further observe that the nodes
removed by a SHRINK or RAKE operation satisfy the above property.

Ž i . Ž . � 40Let 
 � leaf T and child 
 � � , � , . . . , � . In executing Algo-h T 1 2 ku hu
Ž . Ž .rithm SCD, the situation that � 
 equals cri 
 occurs after deleting

Ž . Ž . Ž .0child 
 . In deleting each � , we provide 
 � � cri � as an inputT j j jhu

Ž . Ž .�alue to update � 
 depending on the type of � , 
 . Recall that whenj

Ž .0nodes in child 
 are all deleted, we say 
 is in a complete state.Thu
Ž .Moreover, we say 
 is in an almost complete state without � if cri 
 can be

Ž .computed by giving cri � .

5.1. Algorithms for RAKE and SHRINK

We first briefly describe how our parallel algorithm works as follows. If
Ž . Ž .there is a vertex u � V G with � u � 0, we construct T ; otherwise, wehu

construct an equivalence-hanging tree T , where u is an arbitrary vertex.hu

The initial values and the data structure used to maintain T in thehu

computation are the same as the ones used in Algorithm SCD. We then
design algorithms executed with RAKE and SHRINK to adjust �-values of

Ž .the current tree and graph such that D G can be generated consequently
using Algorithm R & S.

� 45.1.1. Algorithms for RAKE. Suppose W � � , � , . . . , � is a maximal1 2 k
i Ž .set of leaves in T which have the common parent, denoted by par W �hu

Ž .par � � �. We will refer W by a maximal common-parent leaf set forj
� Ž . � Ž . 4iconvenience. Let r � min � � � � Achild �  W and s �i j j Thu� Ž . � Ž . 4imin � � � � Nchild �  W . Below are two algorithms applied withi j j Thu

RAKE on W.

Ž .ALGORITHM R1. �� works on W when � u � 0. ��i

� 4 Ž .Case 1. min r, s � 0. Find a node � � W such that � � � 0. Leti
Ž . Ž . Ž . Ž .0� be a node in child � satisfying � � � cri � � 1 and �, � isT ihu

Ž .normal. Pick an arbitrary vertex x in  . Determine tag x as in Case�, i
Ž .1.1 of Algorithm SCD. If tag x � 1, then execute Case 1.1.1 of Algorithm

SCD; otherwise, execute Case 1.1.2 of Algorithm SCD.
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� 4 Ž . � Ž . 4Case 2. min r, s � 1. Let � � � min � � , r, s � 1 . For eachi�1 i
i Ž .i� � W, remove � from T , and for each � � Nchild �  W, removeh Tu hu

Ž i. � Ž . 4 � � Ž .iS from V G . Let l � min � � , r and PP �  
 � Achild � � i 
 , i Thu

Ž . 4 Ž .W and � 
 � l . If l � � � , then let  � � X ; otherwise leti i X � PP

Ž . � � X �  ;X � PP � , i

Ž . Ž .iCase 2.2.1. W � child � and � � � l. Select an arbitraryT i�1hu
Ž . Ž . � 4vertex x from . Let � x � � � and  � x .i�1 i�1 � , i�1

Ž . Ž . Ž .iCase 2.2.2 W � child � or � � � l. Let � � � l andT i�1 i�1hu
 � .� , i�1

Ž .ALGORITHM R2. �� works on W when � u � 0. ��i

Ž . � � Ž . 44 Ž .Let � � � max 0, min � � , r, s � 1 . Maintain � � ,  ,i�1 i i�1 � , i�1
the current tree, and the current graph as in Case 2 of R1.

5.1.2. Algorithms for SHRINK. Suppose T is the equivalence-hanginghu
Ž . � �tree with respect to h � L , L , . . . , L . Let CC � � , � , . . . , � be au 0 1 t 1 2 k

maximal chain of T i , where � is a leaf. Note that � is in a completeh k ku

state and each � , 1 
 j � k, is in an almost-complete state without � .j j�1
Ž .We define le�el � � q if L � S . A node � in CC is said to be aj q � jj

Ž . Ž Ž .jumped 0-node if CC contains a node � , s � j, such that � � � le�el �s s s
Ž ..� le�el � � 0. Note that CC may contain more than one jumped 0-node.j

We further say � is the lowest jumped 0-node if CC contains no otherj
jumped 0-node � with s � j.s

� � Ž .LEMMA 12. Suppose CC � � , � , . . . , � is a chain. Let d � le�el �1 2 k j j

Ž . � Ž . Ž . Ž . Ž .�le�el � and l � min � � � d , � � � d , � � � d , . . . , � � �1 1 1 2 2 3 3 k
4 Ž . Ž .d . Then, cri � � l if one of the following two conditions is satisfied: 1k 1
Ž . Ž . Ž .� u � 0 and l � 1, 2 � u � 0 and l � 0.

Ž .Proof. We only consider the situation 1 . The other one can be shown
Ž .similarly. We show this lemma by induction on length CC , the length of CC.

� � Ž Ž . .We first consider CC � � , � i.e., length CC � 1 . According to Algo-1 2
Ž . Ž . � Ž . Ž . 4rithm SCD, if � , � is normal, then cri � � min � � , � � � 1 �2 1 1 1 2

� Ž . Ž . 4 Ž . � Ž . Ž .4min � � � d , � � � d ; otherwise, cri � � min � � , � � �1 1 2 2 1 1 2
� Ž . Ž . 4 Ž . Ž .min � � � d , � � � d , where d � le�el � � le�el � � 0.1 1 2 2 2 2 1

Hence the basis case is true.
Ž .Assume the lemma is correct for length CC � k � 1. Assume that CC �

� � Ž .� , � , . . . , � . Here we consider � , � to be a normal edge. The1 2 k k k�1
Ž .case for � , � being abnormal can be proved similarly. Since � isk k�1 k�1

Ž . � Ž .in an almost-complete state without � , so cri � � min � � ,k k�1 k�1
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Ž . 4� � � 1 . Now the length of the resulting chain is less than k � 1. Byk
the induction hypothesis,

cri � � min � � � d , � � � d , . . . , cri � � d� 4Ž . Ž . Ž . Ž .1 1 1 2 2 k�1 k�1

� min � � � d , � � � d , . . . ,Ž . Ž .� 1 1 2 2

min � � , � � � 1 � d� 4Ž . Ž . 4Ž .k�1 k k�1

� min � � � d , � � � d , . . . ,� Ž . Ž .1 1 2 2

� � � d , � � � 1 � d 4Ž . Ž .k�1 k�1 k k�1

� min � � � d , � � � d , . . . ,� Ž . Ž .1 1 2 2

� � � d , � � � d .4Ž . Ž .k�1 k�1 k k

This completes the proof.

With an argument similar to showing Lemma 12, we can generalize the
above result as follows.

� �LEMMA 13. Suppose CC � � , � , . . . , � is a chain. Gi�en an integer s1 2 k
Ž . Ž .such that 1 
 s 
 k, let d � le�el � � le�el � for s 
 j 
 k and letj j s

� Ž . Ž . Ž . 4 Ž .l � min � � � d , � � � d , . . . , � � � d . Then, cri � � l ifs s s�1 s�1 k k s
Ž . Ž . Ž .one of the following two conditions is satisfied: 1 � u � 0 and l � 1, 2

Ž .� u � 0 and l � 0.

� �LEMMA 14. Suppose CC � � , � , . . . , � is a chain and � is the lowest1 2 k t
jumped 0-node of CC. Then, � is the largest-index node whose critical �aluet
is 0.

� Ž . Ž . Ž Ž . Ž .. Ž .Proof. Let � � � � , � � � le�el � � le�el � , . . . , � �j j j�1 j�1 j k
Ž Ž . Ž ..4 � �� le�el � � le�el � . Since � is the lowest jumped 0-node, min q qk j t

4 � � 4 Ž .� � � 0 for t � j 
 k, and min q q � � � 0. By Lemma 13, cri � �j t t

� � 4 Ž .min q q � � � 0 and cri � � 0 for t � j 
 k. Hence, the result holds.t j

According to Lemma 14 and the computation of Algorithm SCD, we
have the following lemma.

� � i Ž .LEMMA 15. Suppose CC � � , � , . . . , � is a chain of T with � u � 01 2 k hu
Ž . Ž .and � being its lowest jumped 0-node. Then, cri � � cri � � ��� �t 1 2

Ž .cri � � 0.t

� �Below are two algorithms applied with SHRINK on CC � � , � , . . . , � .1 2 k

Ž .ALGORITHM S1. �� works on CC when � u � 0, where u is the root ofi
the current hanging. ��
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Case 1. CC contains a jumped 0-node. Find the lowest jumped 0-node
Ž .� and compute its critical vertex set  . If t � k, � , � is normal,t � , i�1 t�1 tt

Ž .and cri � � 1, then compute the critical vertex set of � .t�1 t�1

Ž . Ž . Ž .0Let � be an arbitrary node in child � satisfying � � � cri � � 1T t ihu
Ž . Ž .and �, � is normal. Pick an arbitrary vertex x in  . Determine tag xt � , i

Ž . Ž .as in Case 1.1 of Algorithm SCD. If tag x � 1, let � y � 0 for a vertexi�1
y �  and execute Case 1.1.1 of Algorithm SCD to determine an� , i�1t

equivalence-hanging tree T ; otherwise, execute Case 1.1.2 of Algorithmh y

SCD.

Ž .Case 2. CC contains no jumped 0 � node. Let d � le�el � �j j

Ž . Ž . Ž . � Ž .le�el � for j � 1, . . . , k. Let � � � cri � � min � � � d ,1 i�1 1 1 i 1 1
Ž . Ž . Ž . 4� � � d , � � � d , . . . , � � � d according to Lemma 12. Com-i 2 2 i 3 3 i k k

Ž . Ž .pute the critical vertex set  and let � x � cri � for each� , i�1 i�1 11
Ž . Ž .x �  if � x � cri � .� , i�1 i 11

Ž .ALGORITHM S2. �� works on CC when � u � 0. ��

Case 1. CC contains a jumped 0-node. Find the lowest one � . Lett
Ž . Ž . Ž .� � � � � � ��� � � � � 0 according to Lemma 15. Com-i�1 1 i�1 2 i�1 t

Ž .pute the critical vertex set  and let � x � 0 for each x � � , i�1 i�1 � , i�11 1

Ž . � � 4if � x � 0. Let Z � � S is an equivalence class, 1 
 j 
 t . For eachi j � j

Ž .� � Z, compute the critical vertex set  and let � x � 0 for each� , i�1 i�1
Ž .x �  if � x � 0.� , i�1 i

Case 2. CC contains no jumped 0-node. The computation is the same
as Case 2 of S1.

Remark. In Algorithm S2 and Case 2 of S1, we only need to compute
the critical vertex set for the chain-leader � and for those vertices whose1

Ž�-value are 0 because they belong to a minimum connected �-dominating
.set . In Case 1 of S1, we only need to compute the critical vertex sets of � t

Ž Ž . .and � if cri � � 1 for reconstructing a new hanging or determin-t�1 t�1
ing a new minimum connected �-dominating set. These are the reasons
that Algorithms S1 and S2 do not compute the critical vertex sets for all
the nodes of a maximal chain.

The following lemma provides a method to implement Case 2 of S1 and
Case 2 of S2. The method can be used to implement Case 1 of S1 similarly.

� � i ŽLEMMA 16. Suppose CC � � , � , . . . , � is a chain of T not neces-1 2 k hu
. Ž .sary maximal . If cri � � 0, 2 
 j 
 k, the critical �ertex set of � can bej 1

Ž . Ž .found in O log log log k time using O k�log log log k processors on an
arbitrary CRCW PRAM when CC is reduced.
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Proof. There are two cases.

Ž .Case 1. � , � is normal. We first compute2 1

� � � cri �Ž . Ž .i�1 1 1

� min � � , � � � le�el � � le�el � , . . . ,� Ž . Ž . Ž . Ž .Ž .i 1 i 2 2 1

� � � le�el � � le�el � 4Ž . Ž . Ž .Ž .k k k 1

Ž . Ž .in O log log log k time using O k�log log log k processors on a common
� � Ž . Ž .CRCW PRAM 5 . If � � � � � , then we select a vertex x fromi�1 1 i 1

� 4 and let  � x ; otherwise,  � � , i � , i�1 � , i�1 � , i1 1 1 1

Ž .Case 2. � , � is abnormal. We first compute the integer f so2 1
Ž . Ž . Ž . Ž . Ž .that le�el � � le�el � � ��� � le�el � and le�el � � le�el �1 2 f f�1 f

Ž . � Ž . Ž . Ž Ž .�1. Then, we compute cri � � min � � , � � � le�el � �f i f i f�1 f�1

Ž .. Ž . Ž Ž . Ž ..4le�el � , . . . , � � � le�el � � le�el � . The above computationf i k k f

Ž . Ž .needs O log log log k time using O k�log log log k processors on a com-
� �mon CRCW PRAM 5 . Here we assume f � k. The case of f � k can be

Ž .implemented similarly. According to Lemma 13, we have cri � �j
� Ž . Ž . Ž . Ž .4min � � , � � , . . . , � � , cri � , 1 
 j 
 f. Based on the suffixi j i j�1 i f�1 f

6 � � Ž .minimum finding technique 5 , cri � for all 1 
 j 
 f can be computedj
Ž . Ž .in O log log log k time using O k�log log log k processors on an arbi-

trary CRCW PRAM.

� �Next, given the chain � , � , . . . , � , we compute the critical vertexf f�1 k
set  using the method described in Case 1. Define a binary tree: for� f , i�1

each node � , 1 
 j 
 f � 1, let � represent its right child and j j�1 � j, i

Ž . Ž .represent its left child. For each � , 1 
 j 
 f � 1, if cri � 
 � � ,j j�1 i j
Ž . Ž .we mark � . If cri � � � � , we mark  . The above operationsj�1 j�1 i j � j, i

Ž . Ž .need O 1 time using O k processors. We then find the smallest integer g
between 1 and f so that � has no marked right child. If f � g, we alsog

Ž . � � 4 Ž .mark  . Let M a, b �   is marked, a 
 j 
 b and  a, b �� � �f , i�1 j j

Ž .� X. If there exists no node � , 1 
 j 
 g, such that � � �X � M Ža, b. j i j

� Ž . Ž .4 Ž .min cri � , � � , then  1, g is the critical vertex set of � ; other-j�1 i j 1
wise, let g� be the smallest index so that � � satisfies such a condition, andg

� 4 Ž � .then x �  1, g � 1 is the critical vertex set of � , where x is an1
Ž � .arbitrary vertex in  g , g . Since the union operation can be done easily

by maintaining each set with a linked list, the desired parallel complexities
can be achieved.

6 Ž .The suffix minimum of array B � b , b , . . . , b , where b is an integer, is the elements1 2 n i
Ž . � 4of the array c , c , . . . , c such that c � min b , b , . . . , b , for 1 
 i 
 n.1 2 n i i i�1 n
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We next show how to implement Case 1 of S2 to find the desired critical
vertex sets. Using the method described in the proof of Lemma 16, we first
find the critical vertex sets  and  , respectively. For each� , i�1 � , i�11 t

Ž . Ž .�� � Z, let � denote the node in CC satisfying le�el � � le�el � �j j j j�1
Ž . Ž . Ž .� � ���� � le�el � � le�el � . If � � � 0, select an arbitrary vertex x �j j �1 i j

 to be the critical vertex set of � �; otherwise,  �  . We next� � �� j � �j, i j, i�1 j, i

� �compute the critical vertex set for each � � Z as follows. Let PP �  jj � l, i� Ž . 4 �
 l � j and � � � 0 . Let the union of the critical vertex set of � andi l j
the set � X be the critical vertex set of � . Note that the aboveX � PP j

Ž . Žimplementation can be done in O log log log k time using O k�log log
.log k processors on a common CRCW PRAM.

In the rest of this section, we show how to find the lowest jumped
�0-node in a maximal chain. We first partition the nodes of CC � � , � ,1 2

� Ž .. . . , � according to their levels. This can be done by sorting in O log kk
Ž . � �time using O k processors on an EREW PRAM 9 . Let C , C , . . . , C1 2 l

� 4 � 4denote the partitioned sets. We define function f : � , � , . . . , � � 0, 11 2 k
� � Ž .as follows. For each C � � , � , . . . , � , let f � � 1 and lets r r r rs, 1 s, 2 s, �C � s, 1s

Ž . � � � � Ž .f � � 0, 2 
 j 
 C . Let A be an array keeping A r � f � . Wer s s, j rs, j s, j

� � Ž .perform the parallel prefix sum computation 27 on A with O log k time
Ž . � �using O k�log k processors on an EREW PRAM, and let p � A j forj

all 1 
 j 
 k, after this computation. We define a new level function l
Ž .with l � � p , 1 
 j 
 k. For ease of referencing, we call the above workj j

the preprocessing of CC. A node � � CC is a jumped 0-node if there is ap
Ž . Ž Ž . Ž ..node � for q � p with � � � l � � l � � 0. For each � � CC,q q q p j

Ž . Ž . Ž . � Ž .let weight � � l � � � � . We then compute x � max weight � ,j j j 1
Ž . Ž .4 Ž . Žweight � , . . . , weight � in O log log log k time using O k� log log2 k
. � �log k processors on a common CRCW PRAM 5 . If x � 0, then � isr x , �C �x

the lowest jumped 0-node. If x 
 0, then CC contains no jumped 0-node.

� �LEMMA 17. Gi�en a maximal chain CC � � , � , . . . , � after prepro-1 2 k
Ž .cessing, the lowest jumped 0-node can be computed in O log log log k time

Ž .using O k�log log log k processors on a common CRCW PRAM.

5.2. The Complete Parallel Algorithm and Its Implementation

Before preceding to the description of our complete parallel algorithm,
PCD, we first describe a method to preprocess an equivalence-hanging tree
to make our implementation more efficient. Given T , we make a copy ofhu

Ž .this tree. We then contract it in t � O log n phases using the strategy
described in Section 3. With the help of tree contraction, we find subsets
of the nodes of T that are leaves or maximal chains in each contractionhu

phase of Algorithm R & S. Then, for the nodes deleted by RAKE, we
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further partition them into several common-parent leaf sets according to
their parents. For each subset CC corresponding to a maximal chain, we

� �perform the list raking 27 to number the nodes of CC starting from the
chain-leader and preprocess it by the argument to show Lemma 17. Hence,

Žall the maximal chains and common-parent leaf sets with respect to the
.ith contraction phase for all 1 
 i 
 t can be completely identified in

Ž . Ž .O log n � log log log n time using O n log log log n processors on an arbi-
trary CRCW PRAM.

Ž . Ž .For each 
 � V T , the initial � 
 and the vertex set  can beh 
u
Ž . Ž .computed in O log n time using O n processors on an EREW PRAM

� � � �based on Cole’s parallel sorting 9 and minimum finding technique 27 .
Throughout this implementation, we assume  is manipulated with a


linked list. We now present our complete parallel algorithm to solve the
minimum connected �-dominating set problem.

ALGORITHM PCD

Ž .INPUT: A connected distance-hereditary graph G � V, E .
Ž .OUTPUT: A minimum connected �-dominating set D G .

Ž . Ž .1 if there is a vertex u � V with � u � 0
Ž .2 determine the hanging h ;u
Ž .3 flag � 0;
Ž .4 else determine a hanging rooted at an arbitrary vertex, u;
Ž .5 flag � 1;
Ž .6 endif
Ž .7 construct an equivalence-hanging tree T and preprocess it;hu
Ž . i8 While T is not a single vertex dohu

Ž .9 let W , W , . . . , W be all the maximal common-parent leaf sets of1 2 k
T i ;hu

Ž .10 if there is a leaf � � W satisfying Case 1 of R1j
Ž . Ž . Ž .11 perform R1 W to generate D G and terminate, or reconstructj

Ž .an equivalence-hanging tree along with preprocessing ;
Ž .12 if a new equivalence-hanging tree is constructed
Ž . Ž .13 flag � 0 and goto line 8 ;
Ž .14 endif
Ž .15 endif
Ž .16 else
Ž .17 for each W do in parallelj
Ž . Ž .18 if flag � 1 then perform R1 W ;j
Ž . Ž .19 else perform R2 W ;j
Ž .20 endif
Ž . i21 remove W from T ;j hu
Ž .22 endfor
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Ž . i23 let CC , CC , . . . , CC be all the maximal chains of T ;1 2 k hu
Ž .24 if there is a CC satisfying the condition of Case 1 of S1j

Ž . Ž . Ž .25 perform S1 CC to generate D G and terminate, or reconstruct aj
Ž .new equivalence-hanging tree along with preprocessing ;

Ž .26 if a new equivalence-hanging tree is constructed
Ž . Ž .27 flag � 0; goto line 8 ;
Ž .28 endif
Ž .29 endif
Ž .30 else
Ž .31 for each CC do in parallelj
Ž . Ž .32 if flag � 1 then perform S1 CC ;j
Ž . Ž .33 else perform S2 CC ;j
Ž .34 endif
Ž . i35 reduce CC from T ;j hu
Ž .36 endfor
Ž .37 endwhile
�� T is reduced to its root. ��hu

Ž . Ž . � � Ž . 438 if flag � 0, then D G � z � V � z � 0 � �  , where SS �� � SS �

� � Ž . 4� cri � � 0 and S represents an equivalence class ;�

Ž . Ž . � 439 else D G � u , where u in the root of the given hanging;
Ž .40 end of the algorithm.

The correctness of PCD can be shown by induction on the number of
contraction phases.

Ž .We now show how to implement the algorithm in O log n � log log log n
ŽŽ . .time using O n � m �log log log n processors on an arbitrary CRCW

� �PRAM. By Lemma 10 and the parallel strategy to compute a hanging 13
Ž .and preprocess T , lines 1�7 can be done in O log n � log log log n timehu

ŽŽ . .using O n � m �log log log n processors on an arbitrary CRCW PRAM.
By Theorem 1, we can preprocess T to find all the chains in each treehu

Ž . ŽŽ .contraction stage in O log n � log log log n time using O n � m �
.log log log n processors on an arbitrary CRCW PRAM.

According to Lemmas 1 and 6, the iteration at lines 9�37 is executed in
Ž . Ž .O log n times. In each iteration, lines 9�22 corresponding to RAKE can

Ž .be implemented as follows. We first consider the situation that � u � 0,
where u is the root of the current hanging. We can decide which case of
R1 to be applied in constant time. Suppose that the condition of Case 1 of
R1 holds, the tag value of vertex x can be determined by computing the

Ž . Ž .hanging rooted at x. It takes O log n time using O n � m processors on
� � Ž . Ž .an arbitrary CRCW PRAM 13 . If tag x � 0, then output D G . If

Ž .tag x � 1, then we construct a new equivalence-hanging tree. The above
Ž . Ž .work can be done by executing line 11 in O log n time using O n � m

processors on an arbitrary CRCW PRAM by Lemma 10. Now assume the
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condition of Case 2 of R1 holds. Line 18 is performed on each maximal
common-parent leaf set. Note that computing �-values and union of the

Ž . Ž .given sets can be done in O log log log n time using O n�log log log n
� �processors on a common CRCW PRAM 5 .

Ž . ŽWe now consider the case when � u � 0, line 19 corresponding to
. Ž . Ž .Algorithm R2 is executed in O log log log n time using O n�log log log n

Ž .processors on a common CRCW PRAM. Note that generating D G ,
reconstructing an equivalence-hanging tree, and determining the tag value

Ž .is executed at most one time under O log n contraction phases. There-
Ž .fore, the execution of lines 9�22 totally takes O log n � log log log n time

ŽŽ . .using O m � m �log log log n processors on an arbitrary CRCW PRAM
Ž .after O log n phases.

We now consider the implementation of lines 23�36 in each iteration.
Ž .We first consider the case when � u � 0. For all the maximal chains CCj

Ž .after preprocessing in the current tree, their lowest jumped 0-nodes can
Ž . Ž .be computed in O log log log n time using O n�log log log n processors

on an arbitrary CRCW PRAM according to Lemma 17. If no maximal
Ž .chain contains jumped 0-node, Case 2 of S1 corresponding to line 32 can

Ž . Ž .be implemented in O log log log n time using O n�log log log n proces-
sors on an arbitrary CRCW PRAM by Lemmas 16 and 17 and minimum

� �finding technique 5 ; otherwise, we find one maximal chain CC and itsj
Ž .lowest jumped 0-node to either output D G or reconstruct a new equiva-

Ž . Ž . Ž .lence-hanging tree line 25 . It takes O log n time using O n � m
processors on an arbitrary CRCW PRAM.

Ž .Now we consider the case when � u � 0. It is not difficult to see that
Žthe desired complexity can be achieved. Hence, lines 23�36 corresponding

. Ž .to SHRINK can be implemented in O log n � log log log n time using
ŽŽ . .O n � m �log log log n processors on an arbitrary CRCW PRAM after
Ž .O log n phases. Note that checking whether the current tree is a single

vertex and setting flag can be done easily. Besides, the implementation of
lines 38 and 39 can be done in constant time. With the aid of Brent’s
scheduling principle, we conclude this section with the following result.

THEOREM 3. The minimum connected �-dominating set problem on
Ždistance-hereditary graphs can be sol�ed by Algorithm PCD in O log n �

. ŽŽ . .log log log n time using O n � m �log log log n processors on an arbitrary
CRCW PRAM.

6. THE MINIMUM �-DOMINATING CLIQUE PROBLEM

� �A linear time sequential algorithm is first described in 16 . Here we
present another sequential algorithm which can help us to design a
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parallel algorithm. We show that the minimum �-dominating clique prob-
lem on distance-hereditary graphs can also be solved using R & S. Let G�

be an induced subgraph of G with a new � value � � assigned to each of its
Ž . Ž �.vertices. Let KK G and KK G denote a minimum �-dominating clique of

G and a minimum � �-dominating clique of G�, respectively. The sequential
algorithm for finding a minimum �-dominating clique on a distance-here-
ditary graph G is also based on a reduction scheme similar to the one
described in Fact 4. That is, we first properly choose G� and set � �, and

Ž .then reduce the problem of computing KK G to the problem of computing
Ž �.KK G .

� � Ž .Fact 6 16, 17 . Let QQ be a vertex subset of the graph G � V, E .

Ž .a Assume that QQ � V is a proper homogeneous set of G. Let x be
Ž . � Ž . � 4 � ²Ž .a vertex of QQ such that � x � min � y y � Q . Also let G � V 	 QQ

� 4: �Ž . Ž . � Ž . Ž .� x and � � � � � for all � � G . If � x � 2, or � x � 1 and
Ž . Ž . Ž �.tag x � 1, then KK G � KK G .
Ž . Ž .b Assume that QQ contains only one vertex x such that N x forms

Ž . Ž .a homogeneous set in G. Let y be a vertex of N x with � y �
� Ž . � Ž .4 � ² � 4: �Ž . Ž .min � z z � N x . Also let G � V 	 x and � � � � � for all

Ž . � Ž . Ž . Ž . Ž . Ž �.� � y � G . If � x � 2, or � x � 1 and tag x � 1, then KK G � KK G
�Ž . � Ž . Ž . 4with � y � min � y , � x � 1 .

The construction of an equivalence-hanging tree T with associatedhu

data structure, and the method to reduce it are the same as Algorithms
SCD in Section 4.3. Let � be an arbitrary leaf of T i which is not the root.hu

Ž .Also let par � � �. We consider the following two cases to process � .

Ž .Case 1. � u � 0, where u is the root of the current hanging.i

Ž .Case 1.1. � � � 0. In this case, there exists a node � ini
Ž . Ž . i

0Nchild � with � � � 1. �� � is not in T . �� Pick an arbitraryT i hh uu
Ž . Ž i.vertex x in  . Let tag x � 1 if there is a vertex � � V G with�, i

Ž . Ž . Ž .dist x, � � � � . Otherwise, let tag x � 0.G i

Ž .Case 1.1.1. tag x � 1. Pick a vertex y �  . �� Note that� , i
Ž . �� y � 0. �� Let G denote the subgraph of G induced byi

Ž . Ž . Ž . Ž �.0 0� S � S . Let � � � � � for all � � V G 	S .
 � V ŽT .	 V ŽT Ž� .. 
 � i�1 0 �h Tu hu

Determine the hanging h of G�. Construct the equivalence-hanging treey
T . Replace T i with T , and goto the next iteration.h h hy u y

Ž . Ž .Case 1.1.2. tag x � 0. �� x �-dominates all �ertices of V G 	
� � Ž .S . �� If there is a vertex w � S satisfying N w �  , output KK G �� � � , i

� 4 Ž .w and terminate the execution; otherwise, output KK G �
� 4 �Ž .x, z , where z is an arbitrary vertex in N S , and terminate the�

execution.
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Ž .Case 1.2. � � � 1.i

Ž . Ž . � Ž .Case 1.2.1. � , � is a normal edge. Let � � � min � �i�1 i
Ž .4 i Ž i.� 1, � � . Remove � and S from T and V G , respectively. If � isi � hu

i Ž . Ž .the only child of � in T and � � � � � , then pick an arbitraryh i�1 iu

Ž . Ž . � 4vertex g in  , let � g � � � , and  � g .� , i i�1 i�1 � , i�1

Ž . Ž .Case 1.2.2. � , � is an abnormal edge. Let � � �i�1
� Ž . Ž .4 Ž . Ž . Ž .min � � , � � . If � � � � � , then  �  �  . If � �i i i i � , i�1 � , i � , i i
Ž . Ž . Ž .� � � , then let � � � � � and  �  . Remove � fromi i�1 i � , i�1 � , i

i i Ž . Ž .T . If � is the only child of � in T and � � � � � , then pick anh h i�1 i�1u u

Ž . Ž . � 4arbitrary vertex g in  , let � g � � � , and  � g .� , i�1 i�1 i�1 � , i�1

Ž .Case 2. � u � 0.i

Ž .If � � � 0 and � is not the root, then our algorithm terminates. ��i
The current graph contains no �-dominating clique because there are two

Ž . Ž . Ž .�ertices x and y satisfying � x � � y � 0 and dist x, y � 1. �� Other-
Ž . Ž .wise, use the same method as Case 1.2 to maintain � � , � � ,i�1 i�1

 , the current tree, and the current graph.� , i�1

Our sequential algorithm, called SDK, works by applying the above two
cases to T until T is reduced to its root or until a minimum �-dominat-h hu u

ing clique is found by executing Case 1.1.2. Suppose T is reduced to itshu

root. If there is no vertex whose �-value is adjusted to 0 during the
execution, then the root of the hanging is a minimum �-dominating clique;

� � � �otherwise, G contains a minimum �-dominating clique H � w � N u
Ž . 4 ² :� w � 0 if H forms a complete subgraph. Clearly, the structure of

Algorithm SDK is similar to that of Algorithm SCD. By slightly modifying
Algorithms R1, R2, S1, and S2 developed in Section 5, we can also
parallelize SDK with the desired complexities.

THEOREM 4. The minimum �-dominating clique problem on distance
Ž . ŽŽhereditary graphs can be sol�ed in O log n � log log log n time using O n �

. .m �log log log n processors on an arbitrary CRCW PRAM.

7. DISCUSSION AND CONCLUSION

We have proposed a new implementation of the tree contraction scheme
R & S. Based on this scheme, we have solved the minimum connected
�-dominating set and minimum �-dominating clique problems in parallel
on distance-hereditary graphs. Furthermore, both �-dominating set prob-

Ž Ž .. Ž Ž . Ž . Ž ..lems can be solved in O log n � T n time using O P n � n � m �T n
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Ž . Ž .processors on an arbitrary CRCW PRAM, where T n and P n are the
time and processor complexities required to solve the maximum finding

� �and all the nearest smaller values computing problems. Dragan 16
showed that the problems of finding a central vertex, finding a central
clique, and computing the radius on distance-hereditary graphs G can be
solved using the algorithm to compute a minimum �-dominating clique
Ž . Ž .KK G . The key concept is first to set special �-values on V G and then run

Ž .the algorithm to compute KK G . Since the transformation can be easily
parallelized, the above mentioned problems can be solved with the same
time-processor complexity as solving the �-dominating clique problem. Our
results show these problems on distance-hereditary graphs belonging to
NC class, i.e., the class of problems which can be solved by parallel random
access machines in polylogarithmic parallel time with polynomial many

� �processors 28 . We hope that our general parallel technique can be
applied to other special classes of graphs which are tree-representable.
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