Competitize Parallel Disk PrefetchingandBuffer Managemerit

RakesHBarve* MaheshKallahalld Peterd.Varmarn Jefrey ScottVitter"

rbane@cs.duke.edu kalla@rice.edu pjv@rice.edu jsv@cs.duke.edu
Dept.of CS Dept.of ECE Dept.of ECE Dept.of CS
Duke University Rice University Rice University DukeUniversity

DurhamNC 27708 HoustonTX 77251 HoustonTX 77251 DurhamNC 27708

Abstract

We provide a competitive analysisframework for online prefetchingand buffer manage-
mentalgorithmsin parallell/O systemsusinga read-oncanodelof block referencesThis has
widespreadipplicabilityto key I/0O-boundapplicationssuchasexternalmeiging andconcurrent
playbackof multiple video streamsTwo realisticlookaheadnodels globallookaheadindlocal
lookaheadaredefined. Algorithms NOM and GREEDbasedon thesetwo forms of lookahead
are analyzedfor sharedbuffer and distributed buffer configurations both of which occurfre-
guentlyin existing systemsAn importantaspecbf our work is thatwe shav how to implement
boththe modelsof lookaheadn practiceusingthe simpletechnique®f forecastingandflushing.

Givena D-diskparallell/O systemandaglobally shared/O buffer thatcanholdupto M disk
blocks,we derive a lower boundof 2(+/D) on the competitie ratio of any deterministiconline
prefetchingalgorithmwith O(M) lookahead.NOM is showvn to matchthe lower boundusing
global M -block lookahead In contrastusingonly local lookaheadesultsin an (D) compet-
itive ratio. Whenthe buffer is distributedinto D portionsof M /D blockseach,the algorithm
GREEDbasedn local lookaheads shown to be optimal,andNOM is within a constanfactor
of optimal. Thuswe provide a theoreticalbasisfor the intuition that globallookaheads more
valuablefor prefetchingn the caseof a sharedouffer configurationwhereast is enoughto pro-
videlocallookaheadn caseof thedistributedconfiguration Finally, we analyzetheperformance
of thesealgorithmsfor referencestringsgeneratedby a uniformly-randomstochastiprocessand
we show thatthey achiese the minimal expectedhumberof I/Os. Theseresultsalsogive bounds
on the worst-casexpectedperformanceof algorithmswhich employrandomizatiorin the data
layout.

t A preliminaryversionof this papethasappearedh the Proceedingsf theFifth AnnualWorkshopon /O in Paralleland
Distributed Systems

{Supportedn partby anIBM graduatefellowship. Partof this work was donewhile the authorwas visiting Lucent
TechnologiesBell LaboratoriesMurray Hill, NJ.

§Supportedn partby a grantfrom the Schlumbeger Foundationand by the National ScienceFoundatiorundergrant
CCR-9704562.

TSupportedn partby the NationalScienceFoundatiorundergrantCCR-952204 Andby Army ResearciDffice MURI
grantDAAH04-96-1-0013. Partof thiswork wasdonewhile theauthorwasvisiting LucentTechnologiesBell Laboratories,
Murray Hill, NJ.

1 Intr oduction

Theincreasingmbalancebetweerthe speed®f processorandl/O deviceshasresultedn thel/O
subsystenbecominga bottleneckin mary applications Theuseof multiple disksto build a parallel
I/O subsystenmasbeenadwocatedo enhancéd/O performancendsystemavailability [3], andmost
currenthigh-performancsystemsncorporatesomeform of parallell/O.

Prefetchingis a powerful techniqueto reducethe I/O lateny seenby an application. This is
particularlytruein a parallell/O systemwhereprefetchingcanbe effectively usedto obtainparal-
lelismin disk accesssothatthe disksaremostefficiently used.To fully exploit this potential,it is
importantto designandimplementprefetchingandbuffer managemenrtlgorithmsthatensurethat
themostusefulblocksarefetchedandretainedn thel/O buffer.

We considera parallel /O systemconsistingof D independentlisks that canbe accessedn
parallel[12]. Thedatafor thecomputatioris spreacbutamongthedisksin unitsof blocks.A block
is the unit of accesgrom a disk. As far asl/O is concernedthe computationis characterizedby
a referencestring consistingof an orderedsequencef blocksthatthe computationaccessesin
generalthereferencestringcorrespondingo a computatiorcanconsistof anarbitraryinterleasing
of referencestringsof several concurrentapplications.For the computatiornto successfullyaccess
a data-block,t shouldbe residentin the internalmemoryof the computersystem. By servinga
referencestring, we referto the actof carryingout a seriesof 1/0 operationghatmakeit possible
for thecomputatiorto accesdlocksin the orderspecifiedby thereferencestring.

A recentstudy [6] focussedon the off-line problem of servingan arbitrary but fully known
referencestring of blocks spreadacrossD parallel,independentlisks using parallel prefetching
in conjunctionwith pagereplacement. The authorspresentedand analyzeda very clever but
someavhat complicatedapproximationalgorithmfor this problem. However, the practicalissueof
devisinganonlinealgorithmin the frameavork of competitve analysiq9] for thesameproblemwas
notaddressed.

The performanceof parallelversionsof LRU andMIN [2] wasanalyzedn [11]. Modelinga
distributedparallelI/O system,with independentisks anda partitionedl/O buffer, they defined
a parallelversionof MIN, andshaved thatit is optimal. The performanceof online algorithms
in a moretightly coupledsystemwherethe buffer can be sharedby the differentdisks was not
considered.

In this papemwe present competitve analysisSramevork for parallelprefetchingalgorithmson
paralleldisk systemdor a restrictedfamily of referencestrings. In contrastto the requiremen{6]
of knowing a priori theentirereferencestringexactly, our parallelprefetchingapproachs basen
modelsof boundedookaheadhatareeasilyrealizablan practice.

Our restrictedfamily of referencestringsarecalledread-onceconsumptiorsequencesn which
all referencesreread-onlyandno blockis readmorethanonce. Suchread-onceeferencestrings
arisevery naturallyandfrequentlyin I/O-boundapplicationgunningon paralleldisk systems:ex-
ternal meging and megesorting(including carrying out sereral of theseconcurrently[13]) and
real-timeretrieval and playbackof multiple streamf multimediadata,suchascompressedideo
andaudio.

Sinceno block is referencednore thanonce,it would seemthat we only needto be ableto
fetch blocksin the order of their appearancen the referencestring,in orderto designan optimal
prefetchingalgorithm. Whenthe 1/O buffer canhold M blocks, a prefetchingalgorithmthat is
allowed a lookaheadof M blocksinto the referencestring would know, at eachpoint, the next
memory-loado fetchand caneasilyfetch blocksin the orderof their appearancen the reference
string.

Counterto intuition, in the parallelmodelthe information provided by a lookaheadof M is

INotethatreplacementlecisionsarenecessitatetly thefactthatthe /O buffer canhold only somefixed numbeysay M,
of pages.

insufficient to prefetchaccurately In factin certaincaseghe optimal off-line algorithmdoesnot
follow the policy of fetching blocksin the order of their appearancén the referencestring: at
timesit needdo prefetchblocksthatarereferencedanuchlaterin thefuture,befoe blockson some
otherdisk that are aboutto be referencedn theimmediatefuture. An importantcorollary is that
informationbeyond the next memoryload of referencess necessaryo makethe performanceof
thesealgorithmsoptimal.

Asiillustration,considera systenconsistingof 3 diskswith anl/O buffer of capacity6. Assume
that blockslabeledA; (respectiely B;, C;) areplacedon disk 1 (respectiely 2, 3), andthatthe
referencestringis Ay Ay Az Ay B1C1 A5 ByCsAg BsC3A7B,CyC5CsC7. Saythata parallell/O is
initiatedonly whenthereferencedlock is not presentn thebuffer. Theschedulen Figurel is one
obtainedby alwaysfetchingin the order of the referencestring. At stepl, blocks B, andC; are
prefetchedalongwith the A;. At step2, B, andC'; areprefetchedalongwith A,. At step3, there
is buffer spaceor just 1 additionalblock besidesAs, andthe choiceis betweerfetching Bs, C's or
neither Fetchingin the orderof ¥ meansthatwe fetch Bs; continuingin this mannerwe obtain
a scheduleof length9. In analternatve scheduleFigure2, which doesnot alwaysfetchin order
at step2 disk 2 is idle (eventhoughthereis buffer space)and C; which occurslaterthanB; in &
is prefetchedsimilarly, at step3, C's which occurseven laterthan Bs is prefetched.However, the
overalllengthof theschedulds 7, betterthanthe schedulghatfetchedin theorderof X.

Disk 1 Ay Ay | A3 | As | As | As | Ay
Disk 2 Bl Bz Bg B4
Disk 3 Cl Cz 03 04 C5 06 C7

Figurel: Schedulingn order

Disk 1 Ay Ay | A3 | Ay | As | Ag | Ay
Disk 2 By B> Bs | By
Disk 3 C1 Cy Cs Cy | Cs Cs Cy

Figure2: Schedulingput of order

It is unclearasto how 1/0s oughtto be scheduledn a parallell/O system.Thefirst stepin this
directionwould be to know boundson the achievable performancef schedulingooliciesknowing
thenext memoryloadof requestsandhow theseboundsmaybeachieved. We obtaintheinteresting
resultthatthereareread-onceeferencesequencesuchthatanyparallel prefetting algorithmwith
aboundedookaheadf M incursQ(+/D) timesasmary parallell/O operationsasdoesthe optimal
off-line prefetchingalgorithmthatknows the entiresequenceUsing novel techniqueswe go on to
shav thata simpleprefetchingalgorithmcalledNOM thatuseshe boundedi/ -block lookaheado
fetch blocksfrom a disk in the order of their appearancén the referencestring never incursmore
thanO(+/D) timesthenumberof parallell/O operationsequiredby theoptimaloff-line prefetching
algorithm. Thus,©(+/D) is atight fundamentaboundon the performanceof bounded-lookahead
parallelprefetchingelative to optimaloff-line parallelprefetching.

Motivatedby the above results,in this paperwe study online parallel prefetchingalgorithms
for read-oncesequences several modelsvaryingin paralleldisk configurationandthe natureof
lookaheadavailableto the algorithm. Lastbut not least,we identify practicalsituationsin which
our modelsof lookaheadareapplicableandin fact,canbeefficiently implementedisingtechniques
suchasforecastingandflushing[1].

Precisalescription®f 1/O performancenetrics,Jookaheadnodels,andparalleldisk configura-
tionsaregivenin sectionl.1. Our parallelprefetchingalgorithmsNOM and GREEDaredescribed

in section1.2. In section2, we discusspracticalsituationsin which lookaheadnay not be readily
available. In section3, we stateand prove upperandlower boundson competitiveratios for the
sharedouffer configuratiorfor bothformsof boundedookaheadSectiord givessimilar resultsfor

the distributedbuffer configuration.We considerthe performanceof our paralleldisk prefetching
andbuffer managemergchemesn a probabilisticsettingin section5. In section6 we describenow

to implementthetwo formsof lookaheady usingsimpleandpracticaltechniquesuchasflushing
andforecasting.

1.1 Model and Main Results

We considerthe standard®DM (paralleldisk model) consistingof D paralleldiskswith an asso-
ciatedl/O buffer capableof holding M blocks(M > 2D) [12], for parallell/O performance.In
eachparallell/O step,upto D blocks,at mostonefrom eachdisk, may bereadconcurrentlyinto
the buffer. Notethatthe parallelprefetchingalgorithmdecideghe disksfrom which blocksareto
be prefetchedweighingthe parallelismobtainableagainstthe buffer spaceoccupiedoy the blocks
which are read. We measurehe performanceof a parallel prefetchingalgorithm on a reference
string ¥ by countingthe numberof parallell/O operationgequiredto sene that referencestring.
Hencewe shallusetheabbreiatedterm*“l/O” to referto a“parallel /O step”.

In the tagetedapplicationgvideo senersandexternalmeging), a form of simpleprefetching
usedin practiceis to prefetchconsecutie datablocksfrom a streamwith the aim of reducingthe
averageseektime. In the parallell/O model, by treatingthis larger unit of fetch asa block, the
gainsfrom reducedaverageaccesdime canbe combinedwith the performancebenefitsof disk
parallelism. For a fixed size of the I/O buffer, thereis a tradeof betweenrthe benefitsof a larger
block sizeandtheachiezablel/O parallelismwith thelatterdominatingat practicalbuffer sizeg[5].

We consideonly read-onceeferencestringsin which eachblockappeargxactly once.In order
to enableprefetchingve considetwo naturaimodelsof boundedookaheadn this paper:Global M-
block lookaheadbermitsthe prefetchetto know preciselythe M referencesn the referencestring
immediatelyfollowing the last reference.In local lookaheadonly one block (the next reference
missingin the buffer) from eachdisk is known to the prefetcher beyond what is presentin the
buffer.

Global M-Block Lookahead: LetY = rq,ry, - - -7, andsupposehatthelastblock referenceds
r;. An /O schedulingalgorithmhasglobal A7 -block lookaheadf it knowsthenext M blocks

iNYE, rig1, Tiga, - TigM.

Local Lookahead: An 1/0O schedulingalgorithmhaslocal lookaheadf it knows for eachdisk the
next blockin X thatis notin the buffer.

We considertwo naturalconfiguration®f the paralleldisk systemmodelingcommonlyfound
I/O architectures.We refer to theseasthe distributed buffer configurationand the shaed buffer
configuratiorrespectiely, andareillustratedin Figure3.

Distrib uted Buffer: In this configurationeachdisk hasalocal, privatebuffer of A /D blocks. A
disk’'sbuffer is usedexclusively for holdingblocksreadfrom thatdisk, andcannotbe usedto
buffer blocksof otherdisks.

Shared Buffer: In this configuratiorthereis acommonbuffer of M blocksthatis sharedglobally
amongall thedisks.

For read-oncesequencesye considerbotha worst-casenodelwhereineachblock of the read-
oncesequencenayberequestedrom ary arbitrarydisk anda stodasticmodelwhereineachblock
is requestedindependentf theothers from arandomlychoserdisk.

=~ @‘—'EEE\
=@ O =
% / /O Buffer Processor @_.EEEI/ Processor

Disks Disks Locall/O Buffers

Shared Distributed

Figure3: Two configurationf thel/O buffer

Below, we stateour boundsonthel/O performancef theonline parallelprefetchingalgorithms
NOM andGREEDthatrespectrely employglobal M -block lookaheadindlocal lookaheadn the
two paralleldisk configurationswe mentionedearlier We expressthe I/0O performanceof these
onlinealgorithmsin termsof competitive ratiosin theworst-casenodel.

Definition 1 An online parallelprefetchingalgorithm A is saidto have a competitize ratio of c 4
if for ary read-onceeferencestring X, the numberof I/O operations;T’s (), that A requiresto
sene X is nomorethanc, Topt (X) + b, whereb is a constanandTopr (X) is the numberof /O
operationgequiredby anoptimal off-line algorithmto sene X..

In the stochastianodel,we expressl/O performancen termsof the expectedvalueof thetotal
numberof parallell/O operationsncurredasafunctionof N, thelengthof theread-once&eonsump-
tion sequence.

¢ In theworst-caseamodel,the competitize ratio of parallelprefetchingalgorithmsusingonly
global M -block lookahead runningin the sharedbuffer configuration,is at leastQ(+/D).
NOM hasa competitive ratio of ©(v/D) andis thus optimal amongall algorithmsusing
global M -blocklookahead.

¢ In theworst-casenodel,the competitie ratio of algorithmsusingonly local lookaheadrun-
ning in the sharedbuffer configurationis at leastQ (). GREED hasa competitive ratio of
©(D) andis thusoptimalamongall algorithmsusinglocal lookahead.

¢ In theworst-casenodel, GREEDhasacompetitveratioof 1 for thedistributedbuffer config-
uration,andis henceoptimalamongall algorithms(online andoff-line). On the otherhand,
NOM hasa competitveratio of aconstant > 1, andis hencenearoptimal.

¢ Forstochasticallgeneratedeferencestringsof length N, NOM incurstheminimumexpected
numberof I/Os, namely®(N/D), in both the sharedand distributedbuffer configurations
working with a buffer of size M = Q(D log D); whereasGREEDrequiresa buffer of size
M = Q(D?)andM = Q(Dlog D) respectiely in the two configurationgo achieve the
samd/O performance.

1.2 PrefetchingAlgorithms

All the algorithmswe considergenerate valid schedule thatis, in the resultingschedulea block
mustbe presentn the buffer beforeit is consumedndthe numberof blockspresenin buffer must
never exceedthe buffer size.For the shareduffer this meanghatthereareat mostM blocksin the
buffer atary time; in the caseof distributedbuffer therearenever morethan A4/ D bufferedblocks
from ary disk. We saythata valid schedulas normalif eachparallell/O containsa demanddlock;
thatis, the block which is to be consumedhext, therebynecessitatinghatl/O. Finally, the optimal

algorithm (OPT) generatesn optimal sdhedulewhich minimizesthe total numberof parallell/Os
amongall valid schedulesNotethatthe optimalalgorithmmaybe anoff-line algorithm.

We defineschedulingalgorithmsNOM andGREED ,thatmakeuseof M -blockandlocallooka-
headrespectiely. Both thesealgorithmsdo not evict a block onceit hasbeenfetchedinto the I/O
buffer, till a requestor thatblock hasbeenserviced. Also, asthesealgorithmsserviceread-once
referencestrings,oncea requestor a block hasbeenservicedthe requesteddlockis evictedfrom
the buffer.

The performanceof thesealgorithmsareanalyzedn section3 for the sharedouffer configura-
tion, andin section4 for thedistributedbuffer configuration.

NOM: algorithmusesglobal M -block lookaheado build a normalscheduleasfollows: on every
parallell/O it fetchesa block from eachdisk thathasan unreadblock in the currentglobal
M-blocklookaheadprovidedthereis spacdn the (local) buffer.

As the depthof lookaheadisedby NOM is M, or onememory-loadtherewill alwaysbefree
buffer spacefor the unreadblocksin the sharedbuffer configuration. However, in the distributed
buffer configuration,somelocal buffers may be full, and no readsfrom the associatedlisks can
occur

GREED : algorithmusedocal lookaheado build a normalscheduleasfollows: on every parallel
I/O it fetchesthe next block notin buffer from eachdisk providedthereis spaceavailablein
the (local) buffer. In the distributedbuffer configuration|f thereis no buffer spacen some
local buffer thenno block is readfrom thatdisk. In the sharedouffer configurationjf there
arelessthan D freeblockswhenthel/O is made thenonly thedemandblockis fetched.

To illustratethefunctioningof NOM andGREEDalgorithmsconsidetthereferencestring
Y = A1A2A3A4BlBQBgB4D1D20102B5B6A5A6

The letter denoteghe disk from which the block is requestedndthe subscriptdenoteghe block
index within thedisk. Let M = 8.
Thefollowing is the schedulegeneratedy NOM for the sharedbuffer configuration.

Disk A Ay A, Az | Ay | As | As
Disk B By B B3 By | Bs Bg
Disk C 01 Cz
Disk D Dy Dy

During the I/O for A; thelookaheadwindow extendsup to (andincluding) B,4. As this window
doesnotincludeary blocksfrom disksC and D, no blocksareprefetchedrom thosedisks. For the
second/O thelookaheadvindow extendsuntil Dy, causingit to be prefetched.Similarly, during
the fourth 1/0 the lookaheadwindow includesC', which is then prefetched. From the schedule
abore it canbeseenthatNOM requiresatotal of six I/0Os.

For thesamereferencestringthe schedulegeneratedy GREEDis asfollows.

Disk A Ay As As | Ay | As As
Disk B By B Bs | By | Bs Bg
Disk C Cl CQ

Disk D Dy Dy

Duringthel/O for A;, GREEDprefetcheblocksfrom all otherdisksastherearemorethanD = 4
freeblocks.WhenAj; is requestedREEDwill have six prefetchedlocksandhencenoblocksare
prefetchedluringthethird I/O. Blocksarefreedlater, andwhen Bj; is requestedhereareonly four
prefetchedlocksin the buffer; consequentlyAs is prefetchedwvith Bs. Thus,GREEDservices:
in eightl/Os.

2 Practical Issuesconceming Lookahead

In this sectionwe considefdocal lookaheadn the context of two distincttypesof paralleldisk data
layoutstratgiesfor applicationsuchasexternalmeiging andvideosenersthatgenerateead-once
consumptiorsequenceslt may be obsenred that both the abore-mentionedapplicationsinvolve
sequentiallyretrieving datablocksfrom multiple streamdaid out on disk. Fundamentadifficul-
ties [12, 8, 1] arisefrom the fact that (exceptin specialcircumstanceshhe differentstreamsare
“consumed”at varying,dynamicallychangingrates.Local lookaheadctanplay a key rolein imple-
mentingprefetchingandbuffer managemerin suchcircumstances.

Local lookaheadefersto beingableto tell, for eachdisk, at ary point of time, which disk-
residentblock will be referencedhe earliest. In the “run on a disk” schemeanalyzedn [8], it is
possibleto obtaina directimplementatiorof local lookaheadising simple predictiontechniques
[7, 1]. Thiscanbeachievedwithoutrequiringary informationto beimplantedin the datablocks,as
in moresophisticatedlatalayoutschemeg$1]. Thisis thecasen certainexisting databassystems
[8] or in videosenerswith eachvideoclip storedentirelyon a disk.

However, thereare certainalgorithmicadwantagedo having the streamsstripedacrossthe D
disksduringmeiging or meige sorting,aspointedout in [1]. Existingandproposed/ideo seners
generallyeitherstripevideoclips acrosglisksin aroundrobinfashionor employmoresophisticated
formsof striping[10]. Thevideosenerin [10] usesndependentlghoserrandompermutationsas
orderingsof the D disksin whichto placesuccesse groupsof D contiguousblocksof aclip. (Such
randomizedstriping helpspreventextendeddurationsof time in which anl/O hot spotmovesfrom
onediskto thenext in cyclic orderbecauselisk blocksfrom severalvideoclips have active portions
co-locatedon the samedisk, gettingconsumedat uniform rates. The randompermutatiorensures
thatthehotspotdoesnotmovein synchrory from onediskto thenext andsoon.) In thesesituations,
local lookaheaddoesnot comefor free andinvolvespicking out, for eachdisk, oneblock from the
setof next blocksof all thestream®nthatdisk. It is in thesecircumstancethattheforecastinglata
structureg[1] canbefruitfully employedo implementocallookaheadvith negligible preprocessing
overheadaswe discussn section6.2.

3 SharedBuffer Configuration

In the sharedbuffer configurationa globally sharedbuffer is usedto cacheblocksfetchedin an
I/0. Sincethe buffer is sharedby all disks,thereis no specificportion of the buffer allocatedto
ary particulardisk asin the distributedbuffer configuration.Henceit is possibleto allocatebuffer
spaceunevenlyto differentdisks. This allows theinitiation of prefetchegven on disksfrom which
alreadya lot of blockshave beenprefetchedand buffered,which is not possiblein the distributed
buffer configuration.

This choicein allocatingbuffer spaceto differentdisksmakesprefetchingandbuffer manage-
mentdifficult andchallenging.The buffer managemersalgorithmhasto judiciouslyallocatebuffer
spaceamongblocksfetchedfrom differentdisks. In orderto servicethe referencestring with the
leastnumberof 1/0Os,thenumberof disksbusyduringeachl/O oughtto bemaximized.However ex-
cessie prefetchingmayfill up the sharedouffer with prefetchedlocks,which maynotbe usedtill
muchlater. Suchblockshavetheadwerseeffectof chokingthebuffer andreducingtheparallelismin
fetchingmoreimmediateblocks. But, counterto intuition, it is not alwaysbetterto preferfetching
a block just becausehatblock is requiredearlierthananother Suchsituationsare presentecnd
usedto give a lower boundon the performanceof algorithmsusingglobal A7 -block lookaheadn
section3.1. Henceagoodprefetchingandbuffer managemerdlgorithmoughtto co-operatrely de-
cidehow muchbuffer spaceo allocatefor aparticular/O andwhich blocksoughtto be(pre)fetched
in aparticularl/O, sothattheentirereferencestringcanbeservicedn theleastnumberof 1/Os.

In this sectionwe studythe on-line versionof the abore problem,whereinthe entirereference

stringis notavailableto thealgorithm.Insteadhe algorithmis allowedonly thelimited knowledge,
of futurerequestsgivenby referencesn thelookahead.

3.1 Global M-block Lookahead

We first study the performanceof algorithmswhich, at ary time, have knowledge of the next
memory-loadof future accesser thenext M referencesThisis interestingsinceat ary instant
the buffer canhold at most M blocks; hencealgorithmswhich have suchknowledgemight intu-
iti vely keepthe buffer filled with immediatelymportantblocksandtherebybe expectedo perform
verywell. Thisis truein thellimited sensehatglobal M -block lookaheads moreusefulthanlocal
lookahead.Global M -block lookaheadyivesinformationregardingthe relative orderof reference
of blocksfrom disks,which canbeeffectively usedto performprefetchesleverly.

However, surprisingly we shallshav thatany algorithmthatusesonly global A7 -block looka-
headis fundamentallylimited to have a competitize ratio of at leastQ(+/D). This non-intuitive
boundis primarily dueto thefactthatin theshareduffer configurationknowledgeof thereference
stringbeyondthenext M blocks,canbeusedto performmoreeffective prefetching.

3.1.1 Lower Bound

Givenary online parallelprefetchingalgorithmthatemploysi -blocklookaheadyve shov how to
constructinemesiseferencestring ¥, thatforcestheonlinealgorithmto performQ(+/D) timesthe
numberof I/Os incurredby the optimaloff-line algorithmOPTon X.

As discussedbefore, global M-block lookaheadprovides information regarding the next
memory-loadof data. Hence,we considerthe performanceof thesealgorithmsin a sequencef
block referencesgachof length M. Thisintuition is naturallycapturedy the concepif phase

Definition 2 Considera read-onceeferencestring X that consistof referencesq, r1, 72,73,
ThestringX is saidto consisbf asequencef phase& = phase(0), phase(1), ..., wherephase(i)
consistof thesequencéry), iM < k < (¢ + 1) M, of referencesfor : > 0.

By theabove definition,whenthefirst block of aphases referencedanalgorithmwith M -block
lookaheadknows all the blocks (andtheir order of reference)n that phase. As the computation
proceedsthe lookaheadwindow includesblocks from the subsequenphaseaswell. Hence,in
generakhelookaheadvindow canspanmorethanone(at mosttwo) phase.

Let ¢(¢, d) denotethe numberof blocksfrom disk d thatarereferencedn phase(:). Notethat
¢(i, d) depend®nly uponthereferencestringandis independentf the schedulingalgorithm.

Definition 3 Considerary parallel prefetchingalgorithm A. Let p4(7,d) be the numberof
prefetchedblocks from disk d in the buffer at the startof phase(i). Definethe dominantpeak
in phase (i) asdom 4 (1) = maxq {c(7,d) — pa(7,d)}. Theminimumnumberof I/Osthat.4 needs
to makein phase(:) is givenby dom 4 (7).

We will usethefollowing notationduringour analysis.Let 74y bethetotal numberof I/Os used
by A to serviceX andlet Topt bethe numberof I/Os takenby OPT to serviceX.. We useD to
denotethe setof the D paralleldisks.

In orderto facilitatethe presentatiomf our lower boundproofwe definegoodandbad phases.

Definition 4 A phasephase (), is calleda goodphaseif the constituentd/ blocks, (ry), iM <
k < (i 4+ 1)M, arestripedin around-robinmanneracrosshe setD of D disks.

A badphasephase (i), with baddiskparameted; consistof blocks(ry),iM < k < (i+1)M,
laid out suchthatthefirst M — M/2+/D blocks(ry), whereiM < k < (i + 1)M — M/2+/D, are
stripedin around-robinmannemcrosghesetD — {d;} of D — 1 disksandtheremainingi /2/D
blocks(rg), where(i + 1)M — M/2v/D < k < (i + 1) M, all originatefrom the baddisk d;.

<

3

ok

12..d; ... D 12 D
Badphase Goodphase

Figure4: lllustrationof BadandGoodphases

Figure4 illustratesthe distribution of blockson differentdisksin thetwo kinds of phases.

Notethatif noblockfrom abadphasewereto be prefetchedgrior to thebeginning of thephase,
atleastM/2v/D 1/0s needto be performedto sene the requestsn thatphase.We will force ary
online algorithmto getinto a situationwhereits limited lookaheadpreventsit from prefetchinga
substantiahumberof blocksfor the next badphase.

The blocksreferencedn goodphasesarestripedacrossall D disks. This guaranteeghatall
therequestganbe servicedwith exactly A/ D fully parallell/Os, providedthatthe numberof free
blocksin the buffer at the startof the phases atleastD.

Givenary deterministiconline algorithm.4 with a boundedookaheadf M blocks,we shav
belon how to constructa nemesigeferencestring from good and bad phasesdependingon A’s
prefetchingdecisions.

Definition 5 We constructreferencestringn of 2./DM referencesuchthatthe nemesistring®
is obtainedoy repeatinghestringn anarbitrarynumberof times. Thereferencestringn consistof a
sequencef 2+/D phasesphase(1), . . ., phase(2+/D), suchthatodd-numbereghaseghase (2k —
1), with 1 < k < +/D, arebadandeven-numberephaseghase (2k), with 1 < k < +/D, aregood.

Thefirst badphase phase(1), hasa baddisk parametepf 1. Thebaddisk parameteof every
subsequertiadphaseas dependendn.4’s prefetchinglecisionsandis choserasfollows: For £ > 1,
let B, denotethe setof baddisk parametergsorrespondingo all bad phaseghase(2k’ — 1) with
k' < k, occurringprior to phase(2k — 1). Let G, denotethesetD — By, of D — k + 1 disksnotin
By. It is possiblethaton accountof A’s prefetchingponeor morefuture disk blocks’ arealreadyin
thel/O bufferattheendof phase(2k — 3). Thediskdy, € G}, suchthatamongall thedisksin theset
Gy, di, hasthesmalleshumberof futureblocksin algorithm.A’s buffer attheendof phase (2k — 3),
is choserto bethebaddisk parameteof phase(2k — 1).3

Theorem 1 Thecompetitiveratio of anydeterministiconlinealgorithmhavingboundedylobal M -
block lookaheads at leastQ(v/D).

Proof: We shallshav thatthereferencestringX definedabore is suchthat7 4 /Topr IS Q(\/ﬁ).
In Lemmal we shaw that.4 will incur Q(M) I/Os for every instanceof the substringy, defined
abore, in thenemesisstring X.. On the otherhandwe shav in Lemmaz2 thatthereexists anormal
scheduleS thatincursonly ©(M/+/D) 1/Os correspondingo every instanceof the substrings,.
Hencethetheorentollows. O

Intuitively, the subsequence is constructedy alternatingbad phaseavith goodphases.Bad
phasesreconstructedo have alargenumber(1//2+/D) blocksrequestedrom a singledisk, and

2By future disk blockswe meanblocksthat get referencedsometime in the future with respecto the presentpointin
time.

3Thisis avalid constructioras.A canseeonly M blocksaheadn thereferencestringandsocannotmakeanyprefetching
decisionglependingn phase(2k — 1) priorto theendof phase(2k — 3).

therestof the blocksstripedacrossall the remainingdisks. Hencethesephasesancausea large
numberof I/Os if no blocksare prefetchedrom the disk which hasthe “peak”. Good phasesare
designedo hide the skeved disk block distribution of bad phasedrom the boundedookahead
algorithm,while not permitting“free” prefetchingopportunitiesasthenext badphases discovered.

It may be notedthatthe referencestring n’s disk blocksaredistributedso asto classifythe D
disksinto two setsD, andD of sizesv/D andD — /D respectiely: eachdisk of D; hasexactly
K + A blocksof 5 originatingfrom itself, while eachdisk of D, hasexactly K blocksoriginating
from itself; whereX = O(M/v/D) andA = M/2v/D — (M — 35)/(D — 1) additionalblocks
arerequestedrom abaddiskin abadphase.

We force the online algorithm.4 to incur approximatelyA I/Os for every consecutie pair of
phase®f 5 thusresultingin a costof Q (M) for .A. Onthe otherhand,we shaw thatit is possible
to designanoptimal off-line scheduleS thatfetchesA futureblocksfrom /D — 1 disksof the set
D1 in thefirst phaseitself therebyleaving anevenly balancedlisk block placementor subsequent
phasesWe shaw thatS incursno morethanO (M /+/D) 1/Osin doingso.

Thefollowing lemmadormalizethe abore intuition.

Lemmal AlgorithmA incursatleastT 4 1/Osto servicen, whee Ty = Q(M).

Proof: For1 < k < /D — 1, considetthe kth badphase phase(2k — 1), in 7. Let the next bad
phasephase(2k + 1), have baddisk parametetl, ;1. By constructiondy 1 is chosersuchthatit
hasnotbeentheparametefor ary previousphaseandto whichtheleastnumberof blockshave been
prefetchedy .A. SinceatmostM prefetchedlockscanbein thebuffer attheendof phase(2k—1),
thenumberof prefetchedlocksfrom disk dj 41 in thebuffer attheendof phase(2k — 1) is atmost
M /(D — k). During phase(2k), onel/O is requiredfor eachblock of phase(2k + 1) that.A chooses
to prefetchfrom disk dy, +1. Henceif during phase(2k), A prefetchesy, blocksfrom diskdy 41 for
phase(2k + 1), it mustperformatleastn;, 1/0sin phase(2k). Thetotalnumberof blocksfrom disk
di+1 thatcouldhave beenprefetchedtthestartof phase (2k + 1) isnomorethanM /(D — k) + ny,
andsothetotalnumberof I/Osdoneby A in phase(2k + 1) isatleastM /2v/D — M/ (D — k) —ny.
Thetotal numberof I/Os doneduring phase(2k) andphase(2k + 1) combineds thereforeat least
M/2v/'D — M/(D — k). Hencethe numberof I/Os doneby A to servicer is

ey (M)

1<k<V/D-1
HenceT 4 = Q(M). 0

In thefollowing lemmawe shav how to constructan off-line schedulghatsenesthe sameset
of requestdn muchfewer I/Os. Essentially during the I/Os for the first bad phase the off-line
schedulgrefetchedlocksfrom baddisksof all futurebadphaseshusreducingthe numberof I/Os
thatneedto be performedin future badphaseso O(M/ D). It exploits the fact thatgood phases
canbeservicedwith full parallelism(needing) /D 1/0s)with justa smallamountof storagg(D).
By prefetchingnto only A7 /2 memoryblocks,thescheduldeaves M /2 > D blocksfreeto getfull
parallelismin thegoodphasesHenceno blocksneedto be prefetchedor thegoodphases.

Lemma2 A normalsceduleS canbe constructedthatincursat most7s = ©(M/+/D) 1/Osto
servicen.

Proof : We constructa scheduleS to serviceX by runningthe following algorithmon it. As
before let 7 have baddisk paramete,,, correspondingo phase(2k — 1), for 1 < k < +/D andlet

= (M- %)/(D— 1).

e In phase(1) of n, we prefetchasfollows:

10

— Duringthefirst I/0Os we fetchonly blocksrequiredin thesamephase.

— DuringtheremainingM /2v/D — 1/0Os of phase (1), we prefetchM /2v/D — 7 blocks
from eachoneof thedisksdy, for 2 < k < +/D, thatconstitutethe baddisk parameters
of theremainingy/D — 1 badphasesThe M /2+v/D — blocksprefetchedrom disk dy,,
for 2 < k < /D, arepreciselythefarthest M /2+/D — r diskblocksof phase (2k — 1).

¢ During eachsubsequenphase we prefetchblocks of that phasewith full disk parallelism.
Dueto theprefetchingcarriedoutin thefirst phaseno badphasenow hasmorethanr blocks
residingon ary disk so evenbadphasesncur only ©(M /D) 1/Os. Sincethel/O buffer can
hold M > 2D blocks,disk blocksprefetchedn thefirst phasedo not have to be evicted or
flushedout to makespacdor subsequerprocessing.

SinceS hasprefetched\f/2+/D — 7 blocksfrom eachof the disksdy, for 2 < k < /D, the
dominantpeakin eachof the/D — 1 badphasegollowing phase (1) will bereducedo . Hence
in eachof thesebadphasessS will incur r 1/0Os.

As discussedreviously, ary goodphasecanbe servicedin exactly M/ D 1/Os provided there
are D freeblocksin thebuffer. Thisis satisfiedby the schedule Hence,in ary goodphaseS will
incur exactly M/ D I/Osto fetchall blocksthatarereferencedn the samephasatself. Therefore,
in servicingn, thetotal numberof I/Osdoneby S is

M M
Ts=——+ —xVD+71x D-1
s=o5tp 0V (v)

And henceTs = ©(M/\/D). O

3.1.2 Upper bound on the Competitive Ratio

Fromtheoreml, the competitize ratio of ary online algorithmusingglobal M -block lookaheads
Q(v/D). This raisesthe questionasto whetherwe candesignan algorithmwhich canmatchthis
bound. We shallshaw in this sectionthat a simplealgorithmNOM canmatchthe lower boundup
to constanfactors.

In this sectionwe prove anupperboundon theratio of the numberof 1/Os requiredoy NOM to
thenumberof I/Osrequiredby theoptimaloff-line algorithmin the shareduffer configuration.The
followinglemmaensureshat,while consideringoptimalalgorithmshatserviceread-onceeference
strings, it sufiicesto considersimple off-line prefetchingalgorithmsthat never evict prefetched
blocksbeforethey arereferenced.We omit the simple proof here: we cancancell/Os for blocks
which areevictedbeforetheblockis referencedvith noincreasen the numberof parallell/Os.

Lemma3 For every I/O scheduleservicinga read-oncerefeencestring, there existsa sthedule
that performsthe sameor fewer numberof 1/0s and never evicts a prefethed block befoe it is
refeenced.

Considerareferencestring Y. anda parallelprefetchingalgorithm.4 servingit. Any phaseof X is
saidto have completedatthetime of consumptiorof thefinal block referencedn thatphase.

Thesequencef consecutie I/Os madeby .4 betweerthe I/O immediatelyfollowing the com-
pletion of phase(i — 1) up to but not including the I/O immediatelyfollowing the completionof
phase(i), is referedto asthel/Osincurredby A in phase(i).

Considerthe set P, , of blocksof phase(!) thatareyetto be readafter completionof the h-th
parallell/O doneby OPT. We denoteby A(!, h) the largestnumberof blocksof the set P, , that
needto bereadfrom ary singledisk, takingall disksinto consideration.

4The: farthestblocks of a phasearethe ¢ blocks belongingto that phasewhich get consumedarthestin the future,
relative to all blocksof thatphase.

11

We cannow presenthenotionof ausefulblodk thatplaysa key rolein ouranalysis.

Definition 6 Considerthe j-th parallell/O, R;, of OPT andlet it be incurredin phase(i). It is
possiblethatreadR; prefetchedlocksbelongingto phase®ccurringafter phase (). We saythata
blockb referencedn phase(k), wherek > i, prefetcheddy readR; is a usefulblock prefethiedin
phase(i) for phase(k) if thefollowing conditionshold: (a) A(k,j) = A(k,7 — 1) — 1; (b) among
all blocksof phase (k) prefetchedy readR; blockb is the (unique)blockto bereferencedarthest
in thefuture.

We next introducethe notionof a superphasavith respecto theactionsof the optimalprefetch-
ing algorithmOPT while servicingareferencestring. Givenareferencestring X, we breakit down
into contiguoussubsequenceslledsuperphases

Definition 7 The ith superphasedenotedby S;, ¢ > 0, is definedto be the subsequence
(phase(t), phase(t + 1), ..., phase(t + s)) suchthatthe following conditionsare satisfied: (a)
phase(t — 1) belongsin S;_; if i > 0 elsephase(t) = phase(0) if i = 0 (b) the numberof use-
ful blocksprefetchedn &§; is atleastM and(c) the numberof usefulblocksprefetchedn phases
(phase(t), phase(t + 1), ..., phase(t + s — 1)) islessthan M.

In its essencea superphases a collectionof a minimal numberof contiguougphasesn which
atleastM usefulblocksareprefetched.

Considerthe i-th superphase; of the referencestring. Let I'; denotethe setof phaseof S;
suchthatfor eachphase(j) € T;, atleastoneusefulblock hasbeenprefetchedn someprevious
phase(k), wherek < j. LetTl; denotethesetof all remainingphase®f S;: thatis, phaseso which
no usefulblock hasbeenprefetched.

Let~; = |T;|. Letthenumberof usefulblocksprefetchedy OPTin superphasesefores; for
phase®f S; be«; andthenumberof usefulblocksprefetchedy OPTin S; for phasesn S; beg;.
Let Inom andIopt bethenumberof I/Osdonein superphasé; by NOM andOPTrespectiely.

Thefollowing lemmadollow directly from previousdefinitions.

Lemma4 For aparticular phasephase (k), notwo usefulblockscanbe prefethiedin thesamel/O
opem@tion.

Lemma5 NOM doesnotincur anymore I/OsthanOPTin phasedelongingto IT;.

Lemma6 NOMincursat mostm more I/Osthan OPTin a phasebelongingto T';, whee m is the
numberof usefulblodks prefethiedby OPTin previousphasedor that phase

Lemma7 Thenumberof usefulblocksprefethhedby OPTin S; for phasesn S; is 3; < M.

Proof : LetS; = (phase(t), phase(t + 1), ..., phase(t + s)). Thelemmafollows from the fact
thatno usefulblock prefetchedn phase(t + s) canbe for for phasesn S;. But by definition, the
numberof usefulblocksfetchedin theremainingphase®f S; is at mostM . m|

The following key lemmaensureghat essentiallyit is enoughfor usto shav thatOPT incurs
Q(M/+/D) l/0sin asuperphase.

Lemma8 Inom < lopT + 2M.

Proof : By definition,a; < M, andfrom Lemma?, 5; < M. Applying Lemma5 andLemma6
completeghe proof. a

We shallnow prove Theoren2 consideringhefollowing mutually exclusive cases.

Lemma9 If Yi Z \/E, thenINOM / IOPT is O(\/E)

12

Proof: Thetotalnumberof blocksreferencedn S; is atleastM v;, sinceeachphaseeferences/
blocks. Sinceat most M blocksof theseblockscould have beenprefetchedeforethe startof S;,
atleastM~; — M blocksmustbefetchedin S;. This would requireatleast(M~; — M)/D 1/Os.
Sincey; > /D, Iopt > M/v/'D — M/D. Applying Lemma8, we have Inowm/lopt = O(VD).
O

Lemma10 If i < \/ﬁandﬂi Z M/2 thenINOM/IopT is O(\/E)

Proof : By the definition of 8; and~;, theremustbe somephasein S; suchthat at leastg; /v;
useful blocks were prefetchedoy OPT for that phasein previous phasef S;. It follows from
Lemmad, that at least 3; /; 1/0s must have beenincurredby OPT in superphases;. Hence
TopT > Bi/7vi > (M/2)/v/D = M/2+/D. Applying Lemma8, we have Inom/Topt = O(VD).
O

Lemmall LetS; and S;;; betwo consecutivenon-overlappingsuperphaseslf y; < +/D and
Bi < M/2, thentheratio of the sumof the numberof I/Os in S; and S;1; by NOM and OPT is

O(VD).

Proof: If ;11 > /D orif 841 > M/2, thentheamortizedratio over the two superphases at
mostO(v/D) by ananalysissimilar to thatof Lemma9 andLemma10.

Theinterestingcaseis when~; 11 < VD andg;y1 < M/2. In this caseatleastM /2 useful
blocksprefetchedluringS; lie in the buffer of OPT atthe endof superphasé;, sinceatmosti//2
usefulblocksprefetchedn S; werefor phasesn S; (5; < M/2). Now in S;1, OPT prefetches
atleastM additionalusefulblocks. Sincethel/O buffer canhold at most M blocks,at leasti/2
of all the usefulblocksthat were prefetchedn eitherS; or S;41 mustnecessarilyoe for phases
of S;4+1. Butthe numberof phasedor which usefulblockswerefetchedin ;41 is viy1 < VD.
Consequentlyheremustbe somephasein S;;; for whom at leastM/2v/D usefulblocks were
prefetched Hence,invoking Lemma4, OPT incurredat least M /2+/D 1/Os during phasesS; and
S;i+1. Now, applyingLemma8, we againhave Inom/lopT = O(\/ﬁ) consideringhetwo super
phasedogether a

Theorem 2 Thecompetitiveratio of NOMis O(\/ﬁ) andhenceit is optimalamongall algorithms
usingonly global M -block lookahead.

Proof : Partition X into non-overlappingsuperphaseas describedpreviously. Lemmas9, 10
and 11 show that eitherthe ratio of the numberof I/Os doneby NOM to thosedoneby OPTin a
singlesuperphasis O(v/D) (Lemmas9, 10), or thatthis boundis satisfiedoy the I/Os donein two
consecutie superphased.emmall). Hencethe competitie ratio of NOM is O(v/D). O

3.2 Local Lookahead

In this section,we considerthe benefitsof using pure local lookahead:that is, the prefetching
algorithmhasno accesdo ary informationregardingthe relative orderof consumptiorof blocks
originatingfrom differentdisks. It turnsoutthatthisis avery powerful advantageor theadwersary
in theshareduffer configuration. Theadwersarycanforcea higherlowerboundonthe competitive
ratio of onlinealgorithmsbasednly uponlocal lookaheadelative to thatfor onlinealgorithmsthat
canuseglobal M -blocklookahead.

In Theorem3 below, we shaw for the sharedouffer configurationthatany algorithmusingonly
local lookaheadcanperformQ (D) timesasbadasthe optimal off-line algorithm. Note that this

13

is the worstpossiblecompetitive ratio for ary algorithmwhich generates normalschedule.This
is becausary algorithmwhich generates normal schedule jnitiates1/Os only on demandand
henceperformsat mostonel/O per block in the referencestring. Hence,clearly, if the lengthof
thereferencestringis N, the mostnumberof 1/0s thatthe algorithmcando is N; while the least
numberof I/Osthattheoptimalalgorithmcoulddois N/ D (fetching D blocksin eachparallell/O).
Thereforea simplealgorithmlike GREEDcaneasilymatchthebound.

The proof of the lower boundis similar to that of Theorem1; thatis, we constructa reference
string thatcanfool ary givenalgorithm .4 that usesonly local lookaheadnto performinga large
numberof 1/Os.

Theorem 3 Any algorithm using only local lookahead,in the shaed buffer configuation, hasa
competitiveratio of at leastQ(D).

Proof: Let.4 denoteanarbitraryalgorithmusingonly locallookaheadWe shallprove thetheorem
by constructingareferencesequence = (r;), 1 <1 < 3M, to servicewhich A make<2(1) 1/Os.
We shall alsogive a schedulevhich senesn with ©(A7/ D) 1/0s. A referencestring of arbitrary
lengthcanbe obtainedby repeating; asrequired.

Sequencse is constructeddependinguponthe behaior of A till the previous I/O. Thisis a
valid constructiorof thereferencestringas.4 hasno knowledgeof therelative orderof referenceof
blocksacrosdisks. By definition,local lookaheadallows the algorithmknowledgeof the orderof

referencdrom ary singledisk. Let« = 3M/D. We construct; asfollows:
1. Thefirst 3M/ D blocksof arerequestedrom disk 1.

2. Divide the next M — 3M/D referencesnto D/3 — 1 setsof 3M/D blocks. Let the ith,
1 < i < D/3, setof 3M/D blocks be requestedrom a disk d;, whered; satisfiesthe
following conditions

¢ No blockfrom disk d; hasbeenrequestedh 5 till blockr;, hasbeenrequested.

¢ If thenumberof blocksprefetchedy .4 from disk d at theinstantwhenthe reference
for block r;, hasbeenserviceds pq4, thenpy, = ming{p4}; thatis, d; is thedisk from
which theleastnumberof blockshave beenprefetchedoy A at theinstantwhenblock
rio IS referenced.

3. Thelast2M requestsareto blocksthatarestripedin a round-robinmanneracrossall disks
from which therehave beenno requests.

Duringthefirst3M /D 1/Osit is possiblefor anoff-line algorithmto prefetchthefirst A blocksof 5
asthey areall lie on differentdisks,andno disk hasmorethan3 A/ D blocks. Thenext 2M blocks
canbefetchedin 33/ D 1/Os sincethe blocksarestripedacros2 D/3 disks.Henceknowing n, we
canconstrucia schedulevhich canserviceall referencesn atmost6A// D 1/Os.

Now considetthe performancef .A while servicingy. After thefirst 3A// D references}M /D
blocksfrom eachof thedisksd , ds, . . .dp3_ arerequestedBy constructionatmostM /(D — i)
blockscould have beenprefetchedor ary d;, whenthe ith setof 3M/D blocksarerequestedrom
disk d;. Hence thetotal time takenby .4 to servicethefirst M/ referencesf 7 is atleast

Ta > 4y (% - DJ‘{Z')
> M —M(Hp_y— Hapys)
> M(1-1n3/2)
= Q(M)
whereH,, is thenth Harmonicnumber
Hencethe competitiveratio of A is at Ieast% whichis Q(D). m]

SNotethatthisimpliesthatat mostM /(D — 1) blockscouldhave beenprefetchedrom disk d; by A.

14

4 Distrib uted Buffer Configuration
4.1 Local Lookahead

In the distributedbuffer configurationthereis no possibility of usingfree blocksfrom someother
disk’'slocalbuffer. Intuitively thebestwe candois to prefetchfrom adisk wheneer possible This,
in fact, is the optimal algorithmin this configurationof the buffer (amongall algorithms— online
andoff-line).

Theorem 4 In the distributedbuffer configuation, GREEDis the optimal algorithm, performing
theleastnumberof parallel I/Os.

Proof : In[11] it wasprovedthatanalgorithm,P-MIN, minimizesthe numberof parallell/Os in
thedistributedbuffer configurationwhenthe referencestring canhave repetitions WhenP-MIN is
restrictedto read-onceeferencestringsit behaeslike GREED.HenceGREED:Is optimal. O

4.2 Global M-block lookahead

From Theorem4, algorithm GREED that usesonly local lookaheadjs optimalin the distributed
buffer configurationlt is notdifficult to constructareferencestringX for whichary algorithmthat
usesonly global A -block lookaheaderformsmoreparallell/OsthanGREED.We shov however
thatNOM is nearoptimal; thatis, its competitive ratiois ©(1). To determinethe competitie ratio
of NOM we shall assumawithout lossof generalitythat OPT = GREED. In the following lemma
we boundthe performancef NOM in ary phase.

Lemma 12 To servicea sequencef |X| = M requestsinom < TopT + M/D.

Proof : Let NOM(d, n) (respectiely OPT(d, n)) be the numberof blocksfrom disk d thatare
in its buffer immediatelyafter NOM (respectrely OPT) hasreferencedh blocksin . Definea
potentialfunction ®(n) = maxs{OPT(d,n) — NOM(d,n)}. Let Txom(n) andTopr(n) bethe
numberof I/Os doneby NOM andOPTrespectiely to servicen references.

Notethatsince|X| = M, all blocksin thereferencestringarein NOM'’s lookaheadwvindow.
Hence,on every I/O NOM will prefetcha block from disk d, if thereis a free block in the local
buffer andthereis someunkufferedblock from thatdisk.

Usingthe aborve definitions,we shallfirst prove inductively, that

Txowm(n) < Topr(n) + ®(0) — @(n) 1)

Thehypothesiss truefor n = 0 sinceby definition Topt (0) = Tnom(0) = 0. Let equationl be
valid for n = k; thatis, Tnom (k) < Topt (k) + ®(0) — ®(k). While servicingthe next reference,
NOM and OPT performat mostone parallell/O andconsequently®(k + 1) — ®(k)| < 1. Now

four casesarepossibldor n = k + 1, dependingpnhow OPTandNOM servicethek + 1threquest:

¢ Neither OPT nor NOM do an I/O: ®(k + 1) = ®(k) as the referencedblock must
have beenin the both OPT's and NOM’s buffer. Also, Tnom(k + 1) = Tnom(k) and
Topt(k+ 1) = Topr (k).

¢ Both OPTandNOM do an1/O: The potentialcannotincreasevhenNOM performsanI/O;
henced(k + 1) = ®(k) or®(k + 1) = ®(k) — 1. Also, Tvom(k + 1) = Tnom(k) + 1 and
Topr(k+ 1) = Topr(k) + 1.

¢ NOM doesan|/O but OPT doesnot: In this casery 1, from disk d, musthave beenin the
OPT's buffer while no block from thatdiskis in NOM’s buffer. Hence® (k) > 1. Also in

15

this 1/0, NOM will prefetcha block from adisk & # d if thereareary unbufferedblocks
from thatdisk. Onthe otherhandOPT consumed block from the buffer of disk d. Hence
(I)(k + 1) = <I>(k‘) - 1. A|SO,T1\'OM(]<7 + 1) = TNOM(k) +1 andTopT(]i' + 1) = TOPT(k)-

¢ OPTdoesan!/O but NOM doesnot: SinceOPT performedanl/O, ®(k + 1) = ®(k) + 1 or
<I)(k’ =+ 1) = (b(k) A|SO,TNOM(k + 1) = TNOM(k) andTopT(k’ =+ 1) = TOPT(k) + 1.

In all casesInom(k + 1) < Topt(k + 1) + ®(0) — ®(k + 1). Henceequationl holdsfor n
k 4+ 1. Also, by definition TNOM(M) = Tnom and TOPT(M) = TopT. ThereforeTNOM
TopT + (I)(O) — q)(M), proving thatTxowm < TopT + %

OIA

Finally a boundon the competitize ratio of NOM in the distributedbuffer configurations given
by the following theorem. The proof mainly consistsof shaving thatin one of two contiguous
phase©OPTdoesatleast} /2D 1/Os.

Theorem5 NOM hasa competitiveratio of ©(1), in thedistributedbuffer configuation.

Proof: Considettwo disjointconsecutie phaseghase(i) andphase(i+ 1) of thereferencestring
2.

First, if OPT doesmorethan M /2D 1/Osin atleastone of the two phasegshenwe have,from
Lemmal2,thatTxom/Topt for thetwo phasess O(1).

Assumefor the sakeof contradictionthat OPT doeslessthan M/ /2D 1/Osin bothphasesThis
implies thatlessthan M blockswerefetchedin phase(i) andphase(i + 1). But atotal of 2/
blocksareconsumedn the sametwo phases Sinceat most M/ blockscould have beenpresenin
thebuffer atthestartof phase(i) we have acontradiction.

The correspondindpwer boundfollows from Theoremb. |

Finally, we shav thatin the distributedbuffer configuration,global M -block lookaheads not
aspowerful aslocal lookahead. This is primarily dueto the fact that global lookaheaddoesnot
necessarilgive informationto prefetchon diskswhich have spacdn thelocal buffers. This causes
disksto idle in spiteof having free spacein their local buffers. However the overall performanceas
not hit much,asshavn by Theoremtheo:NOM-dist+kifer.

Let .4 denoteary parallel prefetchingalgorithmwith global A -block lookahead. We shov
belon how to constructa nemesiseferencestringn of length2 A . A longerreferencestringcanbe
obtainedby repeating; anarbitrarynumberof times.

Definition 8 Thereferencestringy is madeup of 2 phaseghase(1) andphase(2).

o Inphase(l), thefirst2A// D blocks(ry), where0 < k < 2M /D, arefrom disk1. Therestof
the M (D — 2)/D blocks)ry), where2M /D < k < M, arestripedin around-robinfashion
acrossll disksexceptl and2.

e In phase(2), thefirst 2M /D blocks(ry), whereM < k < M + 2M /D, arestripedacross
all disksexcept2. Thenext 2M/ D blocks(ry), whereM +2M /D < k < M +4M/D, are
from disk 2. Therestof theblocks(rs), whereM + 4M/D < k < 2M, arestripedacross
all disksexceptdisk 2.

Figure5 illustratesthe setof requestsnadein the nemesistringrn describedcabove when M =
15 andD = 5.

Theorem 6 Thekexistarefeencestring,of arbitrary length,for which thenumberof I/Osrequired
by anyalgorithmusingonly global M -block lookaheads greaterthanthe numberof I/Os doneby
the optimaloff-line algorithm.

16

5 11

4 10

3 9

2 12 13| 14 14 8| 15

1 9] 10 11 41 7] 5] 12] 13
0 6] 7] 8 0] 6] 1] 21 3
1 2 3 4 5 Disk 1 2 3 4 5

phase(1) phase(2)

Figure5: Exampleof phase(1) andphase(2) of n for M = 15 andD =5

Proof : We shall showv that the referencestring definedabove is suchthat 74 /Topr > 1.
Lemmal3shawvsthatto servicethestringn A makesatleast4 M 1/0s. Onthe otherhandwe shav
in Lemmal4 thatthe samesequencés scheduledy OPT (or GREED)in 3M + M/D 1/0Os. O

From the constructionit may be notedthat no block from disk 2, belongingto phase(2) is
revealedto algorithm.A until it serviceshefirst 24/ D blocksin phase(1). Duetothisit is unable
to exploit the parallelismacrossblocksfrom disks1 and2. The following lemmaformalizesthis
intuition.

Lemma 13 Algorithm, A incursatleastTs > 4M /D 1/Osto servicen.

Proof: Asthefirst 2M/D blocksin phase(1) arerequestedrom disk 1, .A incursatleast2M /D
I/Os to servicethe first 21/ D requestsof phase(1). Now till requestry,p_1 is serviced,the
lookaheadvindow doesnot extend pastrequestras 217/ p—1. Henceno block of phase(2) from
disk 2 is prefetchedill requestr,y/p is serviced Hencea total of atleast2 M/ D I/Os s required
by A to servicerequestsr;), where2M /D < k < 2M. Thereforeatotal of atleast4}// D |/Osis
incurredby A to servicen. m|

Fromtheabore proofit canbe seerthata greedyschedulevhich fetchedthefirst A7/ D blocks
of phase(2) from disk 2, cansare M /D 1/0Os. Formally we shav in the following lemmathat
GREED needonly 3M /D 1/Osto servicer.

Lemma 14 Theoptimalalgorithm(GREED)incurs3M + M/ D I/Osto servicer.

Proof: To servicerequestsn phase(1), OPTincurs2M /D 1/Os. As no block is requestedrom
disk 2 in phase(1), M/D blocks can be prefetchedfrom disk 2 for phase(2). Hencethe total
numberof I/Osthatneedto bedonein phase(2) is M/ D; thereforeghetotalnumberof I/Osincurred
by GREEDis 3M/D. O

5 Probabilistic Setting

In this sectionwe considetthe parallelprefetchingandbuffer managementroblemin probabilistic
settingsIn previoussectionsve consideredervingarbitraryworst-caseeferencestringson parallel
disk systemsA naturalquestiorthatariseds oneregardingthe performancef parallelprefetching
algorithmswhentheblocksin thereferencestringsoriginatefrom randomlychoserdisks,or rather
whenthe referencestring canbe saidto be generatedy a stochasti@dwersary In this sectionwe
presentresultsthat indicateimproved performancedor the parallel prefetchingalgorithmsin this
setting,comparedo theworst-casesettingsconsiderecarliet

The superiorperformancen probabilisticsettingscanbe saidto motivatethe explicit random-
ized layoutapproackemployedfor multiple datastreamingn [1, 10]. The sameboundsthat hold

17

for performancewith respectto a stochasticadwersaryhold for worst-caseexpectedperformance
with respecto randomizatiorinternalto thealgorithm.

Whentheread-onceeferencestringis suchthateachblock may originateindependentlyrom
ary disk with uniform probability, the analysisusesresultsproved for the classicurn occupancy
problem[4]. A complicationariseswhile consideringruns or videosthat are striped, with each
streamstartingon a randomlychosendisk: this complicationis relatedto the lossof probabilistic
independencevith respectto the disksfrom which successie blocksof the referencestring may
originate.While meging stripedruns(streamingstripedvideos)suchthatthefirst block of eachrun
(video)wasplacedon anindependentlyhosenuniformly randomdisk, thereexists a dependengc
amongthedisksfrom which contiguousblocksof theresultingreferencestringoriginate.In [1], the
authordormulatedandanalyzedhe dependentoccupancyroblemandproved boundsdenticalto
theones(upto lower orderterms)for the classicoccupang problem[4].

Below we statethetheoremgpertainingto our modelsfor parallelprefetchinghatmaybe proved
usingtheseresults.Theorenm8 for the sharedouffer configuratioris from [8].

Theorem 7 To servicestodasticallygeneatedread-oncaefeencestringsof length N, NOM in-
curs the minimumexpectednumberof 1/0Os, namely© (N /D), in both the shaed and distributed
buffer configuationsworkingwith a buffer of sizeQ2(D log D).

Theorem 8 To servicestodasticallygeneatedread-oncerefeencestringsof length N, GREED
incurstheminimumexpectechumberof 1/Os, namely® (N / D). In the caseof thedistributedbuffer
configuation, it requites a buffer of sizeQ (D log D) to attain this I/O bound. In the caseof the
shaed buffer configuation, it requiresa buffer of sizeQ(D?) to attain that1/O bound.

6 Practical Implementationsof Lookahead

In this section,we describehetechnique®f forecastingandflushingwhich makepossiblea prac-
tical implementatiorof localandgloballookahead.

6.1 Implementing Local Lookahead

As we mentionedn section2, in caseof applicationsuchasexternalmeiging, multimediastream-
ing, etc., the datastreamsare typically stripedacrossthe paralleldisk system;sometimeseven
randomizedstripingis employedasin [1, 10]. In this section,we discusshow to usea forecasting
datastructurg1] to implementiocal lookaheadinderthesecircumstances.

In the applicationsof interest,eachstreammight be a sortedrun of recordsthatis expectedto
bemegedor acompressedequencef framesor someothermultimediadataunitsthatis expected
to be playedback. Intuitively, eachrecordin the sortedrun andeachframein the video stream
have a certainnaturaltime-stamgsignifying whenthatrecordwill be consumedthatis, megedor
transmittedor display

For instancejn externalmegingthekey valueof arecordprovidesanaturaltime-stampsinceit
determinesvhentherecordis consumedSimilarly, thetime-stampf ablock of videois determined
by thecompressiomf theprecedingrames.

Thusat ary point of time during the parallel processingdf multiple streamsf data,the next
block that shouldbe prefetchedrom ary disk is the block with the smallesttime-stampfrom the
setof blocksresidenton thatdisk, consideringall streamshaving blockson thatdisk. Therefore,
implementinglocal lookaheadnvolvesimplementinga simple, efficient mechanisnto keeptrack
of theblock with the smallestime-stampon eachdisk at all times.

In orderto implementocal lookaheadyve follow the approactof implantingin eachdisk block
of the streamthe valueof thetime-stampof the next block of thatstreamthatresideson the same

18

disk. This information can easily be implantedin eachblock of eachstripe of eachstreamwith
ngyligible increasein occupieddisk space. We refer the readerto [1] for detailsregardingthe
maintenancend use of the forecastingdata structureduring the streamingand estimatesof the
mawginal memoryrequirement®f suchanapproach.

6.2 Implementing Global Lookahead

The previous subsectiormakespossiblean implementatiorof local lookaheadandthusthe algo-
rithm GREED.In this subsectionywe shav how to combinelocal lookaheadwith the simpletech-
nigue of flushing[1] to effectively implementglobal A -block lookaheadand an algorithm that
performsatleastaswell asNOM. Thedescriptionin [1] providesthedetailsof thealgorithm,which
we briefly sketchhere.

At ary time ¢ during the computation)et M; denotethe setof blocksin the buffer andlet S;
denoteD blocks, eachone beingthe block with the smallesttime-stampon onedisk. It may be
verifiedthatthe following algorithmincursno more parallell/O operationghandoesNOM andis
optimal:

Wheneer |[M;| < M — D, wereadin all D blocksof thesetS;. When|M;| > M — D, we
flush (emptythebuffer) andreadasrequiredsoasto ensurehatthe M blockswith the M smallest
time-stamp#n thesetM; U S; arein the bufferimmediatelyafter completiorof thereadopeiation ®

The flush operationby itself doesnotinvolve ary I/O. Hencethe forecastingdatastructureand
thetechniqueof flushingyield a simple,efficientimplementatiorof global M -block lookaheador
read-onceonsumptiorsequences.

7 Conclusions

In this paperwe presentech competitive analysisframavork for online parallel prefetchingalgo-
rithms servingan importantclassof referencestringson parallel disk systems. Our prefetching
algorithmsarebasedon novel andpracticallyrealizableforms of boundedookahead We consid-
eredavarietyof scenariogndpresentedipperandlowerboundsfor variantsof theonline problem
thatencompasmary practicalsituations.Besidegheoreticallyanalyzingthe problemsat hand,we
alsodiscusshow to usesimpletechniquesuchasforecastingandflushingin orderto implement
thevariousformsof lookaheadsovital for prefetching.

6A simpledynamicdatastructureto maintainthe orderof consumptiorof memoryresidentblocks may be usedalong
with theforecastingdatastructurg1] to carryouttheseoperations.

19

References

[1]

(2]

(3]

[4]

[5]

[6]

[7]

(8]

9]

[10]

[11]

[12]

[13]

R.D. Barw, E. F. Grove, andJ. S Vitter. Simple RandomizedMergesorton Parallel Disks.
Parallel Computing23(4):601-631Junel997.

L. A. Belady A Studyof Replacemenilgorithmsfor Virtual Storage IBM Systemdournal,
5:78-1011966.

P.M. ChenE.K. Lee,G.A. GibsonR.H. Katz,andD. A. PattersonRAID: High Performance
ReliableSecondanstorage ACM ComputingSurve's 26(2):145-1851994.

N. L. Johnsonand S. Kotz. Urn Modelsand Their Application: an Appmoacd to Modern
DiscreteProbability Theory Wiley, New York, 1977.

M. Kallahalla. CompetitivePrefetdiing and Buffer Managemenfor Parallel /0 Systems.
Mastersthesis,Rice University May 1997.

T. Kimbrel andA. R. Karlin. NearOptimal Parallel PrefetchingandCaching.Iln 37th Annual
Symposiunon Foundationsof ComputerScienceOctoberl 996.

D. E. Knuth. TheArt of ComputerProgramming,\ol. 3: Sortingand Seaching. Addison-
Wesle/ PublishingCo.,1973.

V. S. Pai, A. A. Sclaffer, and P. J. Varman. Markov Analysis of Multiple-Disk prefetch-
ing Stratgiesfor ExternalMerging. Theoetical ComputerScience128(1-2):211-239June
1994.

D. D. SleatorandR. R. Tarjan. AmoritzedEfficieng of List UpdateandPagingRules.Com-
municationf the ACM, 28(2):202—208February1985.

R. Tewari, D. M. Dias,R. Mukherjee,andH. M. Vin. High Availability in ClusteredMultime-
diaSeners. In Proceeding®f the 12th InternationalConfeenceon Data Engineering pages
645654 February1996.

P. J.VarmanandR. M. Verma. Tight Boundsfor Prefetchingand Buffer Managemen#lgo-
rithmsfor Parallell/O Systemsln Proceeding®f 1996Symposiuron Foundation®f Softwae
TedhnologyandTheoetical ComputetScienceLNCS 1180,SpringeiVerlag,Decembed 996.

J. S. Vitter andE. A. M. Shriver. Optimal Algorithms for Parallel Memory I: Two-Level
Memories.In Algorithmica 12(2-3):110-1471994.

W. ZhengandPer-,&ke Larson.A Memory-Adaptve Sort(MARSORT) for Databas&ystems.
CASCON'96November1996.

20

