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Abstract

This paper presents a simple method to build tree data structures
which achieve just O(log N) visited nodes and O(D) compared digits (bits
or bytes) per search or update, where N is the number of keys and D is
the length of the keys, irrespectively of the order of the updates and
of the digital representation of the keys. The additional space required
by the method is asymptotically dismissable compared to the space of
keys and pointers, and is easily updated on line. The mcthod applies
to fixed-length base-2 keys and to variable-length string keys as well, and
permits to save space for common prefixes. The same ideas can be applied
to the sorting problem, achieving algorithms with the best properties of
quicksort/mergesort and radixsort together.

1 Introduction

There are two general frameworks to build a tree data structure with a given
set of keys. Within the first framework, we consider keys as units and perform
comparisons between them as a whole. Given two keys x and y, we are not
concerned about the particular value of their i-th bit; we are only interested
on whether x is smaller, equal, or larger than y. A direct application of this
idea produces the binary search tree (BST, for short) data structure, as well as
several variants of balanced binary search trees. We call the trees of this kind
comparison-based search trees.

In the second approach to the construction of tree data structures, we use
the internal representation of the keys to guide the searches, instead of full key
comparisons. Loosely speaking, at the i-th level of the tree, we either go left or
right depending on whether the ¢-th bit is 0 or 1, respectively. Two of the most
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important variants of trees built under this approach are probably tries [4] and
patricia tries [10]. We call the trees of this kind digit-based search trees.

The two approaches for the construction of tree data structures differ intrin-
sically, and each one has its own interesting properties and potential drawbacks.
Let N denote the number of keys in the tree, and let D denote the number of
digits (bits, for the moment) of each key. (In order to easily compare the several
kinds of trees, we do not consider variable-length keys, nor bases larger than 2,
in this introductory section.) We assume the common situation where the num-
ber of keys N is much smaller than 2P, the cardinality of the set of possible
D-bit keys, but much larger than D, the length of the keys. For example, con-
sider a set of 50000 keys with 128 bits each (we will repetitively use this example
through this section). Then we certainly have D = 128 << N = 50000 << 2128,
More formally, if we think of N as a function of D, then we assume N = 0(2D)
and D = o(N).

Let us contrast comparison-based search trees and digit-guided search trees.
On the one hand, comparison-based search trees require some care to avoid the
worst case O(N) for the average number of visited nodes per search or update
(insertion or deletion). This can be achieved by explicitly balancing the tree
(AVL-trees [1], red-black-trees [6], etc.) or by randomising it [9]. All these
strategies guarantee that the (worst-case or expected) number of visited nodes
per search or update is O(log N), irrespectively of the order of the updates.
For our example above, the difference is roughly between 50000/2 = 25000 and
just log, 50000 ~ 16 visited nodes per search or update. The second potential
drawback of comparison-based search trees appears with long keys whose digital
representation requires many bits (or bytes). Since the comparisons are between
full keys, if we have long common prefixes we may need to perform almost
D bit comparisons (or, say, almost [D/8] 8-bit byte comparisons) per node,
which amounts to ©(Dlog N) bit/byte comparisons per search or update on
the average.

The principal property of digit-guided search trees is that they only re-
quire @(D) bit comparisons per search or update, irrespectively of the digits of
the keys, of the shape of the tree, and of the location of the searched or updated
key in the tree. In terms of our example above, the difference with balanced
trees is roughly between 16 - 128 = 2048 and only 128 bit comparisons. Unfor-
tunately, for every particular digit-based search tree, there are sets of keys with
long common prefixes that induce an internal path length ©(/N - D) —much
more than the internal path length ©(N log N) of balanced BSTs. The simplest
example of this phenomenon is a set of keys with exactly one key starting with
the prefix 1, another key starting with the prefix 01, another one starting with
the prefix 001, ..., and most of the keys starting with a long common pre-
fix 0---0 and differing only in the last (approximately log, N) bits (see the trie
in Figure 1). That trie (and any patricia trie with the same set of keys) requires,
on the average, approximately D visited nodes per successful search. So, in our
example above with D = 128 and N = 50000, the difference is roughly between
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Figure 1: Trie for a bad-case set of digits for the keys.

128 and just 16 visited nodes per successful search.

This paper presents a simple strategy to achieve the best properties of both
balanced search trees and digit-guided search trees together, that is,

a) O(log N) visited nodes per search or update, irrespectively of the order of
the insertions;

b) O(D) bit comparisons per search or update for every set of digits for the
keys.

We call such strategy digital access to BSTs, where by “digital” it is meant
that each bit needs to be compared just once (or that each byte needs to be
compared at most a constant number of times).

This method will be explained in detail in later sections. But let us first
compare it against some classic data structures. Figure 2 presents a surnmary of
the main tree data structures, each one with its average cost per successful search
or deletion, the average taken over all the keys in the tree, the cost measured as
the number of visited nodes and as the number of bit comparisons. (For the sake
of clarity, the discussion about unsuccessful searches and insertions is deferred
to other sections, where we will see that digital access to binary search trees also
competes pretty well.) The average costs labeled with the word “always” do
not depend on the insertion order nor the digits of the keys. Those labeled with
“insertion order” or “digits” achieve the given cost with a worst-case insertion
order (say, increasing order), or with a worst-case digits for the keys (like, for
instance, the ones presented in Figure 1), respectively.



Data structure Visited nodes Bit comparisons
BST O(N) O(D-N)
with classic access {insertion order} {digits, insertion order}
Balanced BST O(log N) O(Dlog N)
with classic access {always} {digits}
Trie / patricia trie o(D) o(D)
{digits} {always}
Trie / patricia trie O(log N) O(D)
with random keys | {with hight probability} {always}
BST O(N) o(D)
with digital access {insertion order} {always}
Balanced BST O(log V) O(D)
with digital access {always} {always)

Figure 2: Main binary tree data structures and their worst expected successful
search cost.

The number of visited nodes for digit-guided search trees with random keys
is a double average, over all the keys in the tree, and also over all the possible
sets of digits for the keys. The average value ©(log N) could become ©(D) in a
very unlikely situation. On the other hand, the average depth of the nodes in an
explicitly balanced BST is always ©(log V), but if we choose to balance the tree
by randomising it, then that average is highly probable, but not guaranteed (in
that case we have again a double average, over all the keys in the tree, as well
as over all the possible random choices of the randomised insertion and deletion
algorithms).

It is worth emphasising the crucial difference between the highly proba-
ble ©(log N) cost of randomised BSTs and that of digit-guided search trees with
random keys. For the former we depend upon a (presumably sound) random-
number generator, while for the later we require the keys to be truly random.
In practical situations where it is not sure that the keys are random (or where
it is known that they are not), there may be no reasonable guarantees that a
search or update in a digit-guided search tree will not visit significantly more

than ©(log N) nodes.

To end this introductory section, let us briefly relate the results presented
in this paper with other works. The suffix array [8] is probably the first data
structure that combines the best of the two worlds, comparison-based and digit-
guided, to perform efficient string searches in static arrays. One major difference
of our results with respect to suffix arrays is that our method deals with dy-
namic sets of keys. The same comparison applies to the BST version of suffix
arrays, suffix binary search trees [7], which also deals with static sets of keys. It



is noteworthy that our method, when applied to BSTs, is mainly a suffix binary
search tree provided with a mechanism to update the tree (insertions and dele-
tions at the leaves of the tree, and rotations). We will see that this apparently
small improvement has a dramatic effect: it allows us to directly adapt most
balancing strategies (those that can be set in terms of rotations, insertions and
deletions at the leaves) to the digital framework. In other words, for every one
of those (classic) comparison-based algorithms, we literally achieve a new digital
algorithm which captures the best properties of the classic counterpart. Another
interesting data structure with connections to our work is the string B-tree [3],
a combination of suffix array and B-tree, the popular external memory data
structure. Finally, our results have some similarities with those in [5], though
both papers are independent. There, the authors provide a general framework
to combine string techniques with a variety of linked data structures. By con-
trast, the emphasis of our paper is set on search trees and sorting (quicksort
and mergesort).

The next sections are organised as follows. Section 2 covers digital searches
in BSTs, both successful and unsuccessful. Section 3 deals with digital updates
in BSTs: insertions, deletions and rotations. Section 4 shows how to extend the
fixed-length base-2 algorithms in Sections 2 and 3 to variable-length keys with
bases larger than 2. In Section 5 we will see that the same general technique can
be adapted to some of the most important sorting methods, providing excellent
cost bounds for the number of memory exchanges and bit/byte comparisons.
Section 6 ends the paper with some final comments and conclusions.

2 Digital searches in binary search trees

In this section we will see how to perform searches in binary search trees (bal-
anced or not) comparing each bit at most once. Thus, when we use this strategy
to search in any kind of balanced BST, we achieve an optimal tree data structure
regarding the number of visited nodes and bit comparisons (recall Figure 2). For
plain (not balanced) BSTs, each digital search or update requires just O(D) bit
comparisons, even under the worst-case insertion order and/or under the worst-
case digits for the keys.

In order to perform digital accesses into a given binary search tree, we provide
it with some additional information at every node, as follows. For any key y
at depth d, let [y,,y,,...,¥p] be the digital representation of y, y, being the
main digit (bit, for the moment), and let A(y) = {29, z("), ... 2(#} be the
set of ancestors of y, i.e., the set of keys in the path from the root of the
tree to the node where y is located (y excluded). Then, in the same node
with y, we store a field with the length of the longest common prefix between y
and the keys in A(y). More precisely, we store the smallest index ¢ such that

Yooy # [z(lj), .. .,zf.j)] for every 0 < j < d. We call d(y) such first position
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Figure 3: A binary search tree with fixed-length base-2 keys and the information
to perform digital accesses.

where the prefixes of all the keys in A(y) U {y} differ.

We also store together with y information to allow us to discern which of the
keys in A(y) shares the longest prefix with y. We define the predecessor of y as
the largest of the keys in A(y) that are smaller than y, and the successor of y
as the smallest of the keys in A(y) that are larger than y. Note that p/s is not
well defined when y is smaller/larger than all the keys in A(y). Hence, we have
four possible cases. First, assume that both p and s exist. If (for example) the
common prefix between p and y is longer than that between s and y, then no
other key can share a longer prefix with y; it is only possible that some keys
smaller than p share with y exactly the same prefix, but not a longer one. Thus,
it is enough to store with y a boolean is_p(y), which will be true if and only if
the predecessor of y is one of the keys with the longest common prefix with y
(otherwise the successor of y will be one of such keys).

We have left some possibilities: If y is larger than all the keys in A(y) (this
happens if y is located in the right spine of the tree excluded the root), then s
is not well defined, but y shares the longest prefix with its predecessor p (and
perhaps some other key smaller than p), and hence we set is_p(y) to true.
Similarly, if y is smaller than all the keys in A(y), then y shares the longest
prefix with its successor s, and we must set is_p(y) to false. If y is stored at the
root of the tree, then y is the only key whose set of ancestors is empty, and it
has no predecessor nor successor. In that case we set d(y) to 0 (as if y differed
in a 0-th virtual bit with a non-existent key above it), and set is_p(y) to either
true or false, since it does not matter.



Figure 3 shows an example of binary search tree (in this case unbalanced)
with two additional fields at each node with the information described above.
The keys are shown in binary notation (8 bits). At each node, the left field
stores the index d(y), and the right field stores the boolean is_p(y). The bits
between parentheses do not need to be stored explicitly (we will come back to
this point at the end of the section). Note that the shape of the tree is completely
independent of the set of digits for the keys, and hence could be any other.

Now, let us describe how to digitally search for a given key x into a binary
search tree that stores the information described above. The search follows
exactly the same path as that of a standard search, but we perform bit com-
parisons instead of full key comparisons. Let ¢ be the key stored at the root of
the current subtree during the search, and let p and s be the predecessor and
the successor of ¢, respectively (they are stored somewhere in the path up to
the root, but we do not currently know their value). Then p is also the largest
of the keys in A(c) smaller than x, and s is also the smallest of the keys in
A(c) larger than x. We say that p is the current predecessor of x and s is the
current successor of x. Let j be the index of the first bit where x and p differ,
and let k be the index of the first bit where x and s differ. Clearly, j and &
cannot be equal. To decide whether x is smaller, equal or larger than c, we use
two variables xp and xs following this search invariant: At the current stage of
the search, if j is larger than %, then we have xp = 7 and xs < k. If j is smaller
than k, then we have xp < j and xs = k. Moreover, the first max{xp, xs} bits
of x have been compared so far just once, the rest of bits not yet.

Figure 4 shows the five possible cases of a digital search when is_p(c) is true
(when is_p(c) is false we have five symmetrical cases). Since is_p(c) is true,
d(c) is the position where c and p first differ. In that figure, the position where c
and s first differ is denoted by ¢ (it is not stored anywhere, and at the current
stage of the search we only know that it is smaller than d(c)). The current value
of xp is denoted by r when it is not equal to d(c). The positions marked with
*xkkxk, N, and xxxxxx denote (perhaps empty) common subsequences of

to be compared to continue the search, since we do not have information about
them yet. By induction hypothesis, before the comparison of x against ¢, the
variables xp and xs fulfill the search invariant, which must also hold after the
comparison. To the right of every case we see the conditions for xp and xs
(denoted xp’ and xs’ after the comparison) according to the search invariant.
In the first four cases of Figure 4, the key x has a 0-bit at the ¢-th position,
and hence xs < ¢ < xp. If xp < d(c) (Case 1), then x is larger than ¢, and the
search must follow in the subtree to the right of the current node, with c as the
new current predecessor of x. To keep the search invariant true, we need to do
nothing, because xp is already the index of the first bit where x and c differ,
and the current successor of x is still s and hence xs has a correct value if the
invariant was true. When xp > d(c) (Case 2), we have x < ¢, and ¢ will be the



(Case 1) ¢ < r < d(c)
P = ¥k*x*x++QRAWF##OxxxxXX0 ... {

C = ®k*xkxORF##R#OxxX XXX ...
X = *kxkxxQfHA#MHL ...
s *kkkxk] .,

Xp=r xp' =7
xsgq} = {xs’<q}

(Case2) ¢ < d(c) < r

P = **#*xxx0R#HHAHAOxxxxxX0 ..,

X = **#xexQf#HHRAOxxxxXX1 ... {
c

s

= ®kkkxxOR##ARRL ...
= #kkkxe]

(Case 3) ¢ < d(c) < i

P = *¥kexxOR#FHAAO . .. =d(c) ’_

C = +e+xxQRARMA 17777770 .., { xp _< } {XP, < t }
X = #EERcRORBBABRLTT?T??L . .. Xs =4 ¥ =1

S = kkkkkk] .

(Case4) ¢ < d(c) < i

P = ®*kxxxQ##UFHH0 ... . /

X = *kkaxxORPARAEL17T7T7770 ... { xP_g(C) } = {xP éf(-c) }
C = *ekkRkORUHHAR17777771 X 59 =

§ = **kkk%%] , .

(Case 5) ¢ < d(c)
P = FkxExk0RMUWIARO . ..
C = FxFxEx0QfARRRL .. xp < ¢ xp’ <gq
> — =
X = *¥*k*kEXIXAAXXXXXXXXXX0 ... u
S = *¥kFXEIAXXXXXXXXXXXXT ...
q < u

Figure 4: Possible cases for a digital search when is_p(c) is true,

new current successor of x. Again, the search invariant remains true without
any changes in the values of xp or xs, since the current predecessor of x is still p,
and xs < p implies xs < d(¢).

Let us consider now Cases 3 and 4. Here, xp = d(c), the first d(c) bits
of x and c are equal, and we have not tested enough bits from x to find its
first difference with ¢ (if any). Therefore, we keep cornparing bits from x and ¢
starting at the (d(c) + 1)-th position (not from the beginning of the keys), until
we reach a difference or the end of the keys. In the latter case x and c are equal,
and the search for x in the tree ends successfully. Assume that, instead, we find
a position i where ¢ has a 0-bit and x has a 1-bit (Case 3). Then x is larger
than c, and to keep the search invariant true we must update xp to equal i and
not modify xs, because the new current predecessor of x is ¢ and the current



typedef long Word;

#define D 32

typedef int Bit;

#define bit(X, I) (((X) >> (D-(I))) & 1)

typedef int Diff;

typedef int Boolean;

#define FALSE O

#define TRUE 1

typedef struct Node *Tree;

typedef struct { Word w; Tree 1, r; Diff d; Boolean is_p; } Node;
typedef enum { EMPTY, EQUAL, SMALLER, GREATER } Comp;

Figure 5: Type definitions in C.

successor of x is still s. If, on the contrary, we find a position i where c has a
1-bit and x has a 0-bit (Case 4), then x is smaller than c. In this case we can
keep the value of xp because xp = d(c) implies xp < d(c), but we must set xs
equal to i.

Finally, we have left considering Case 5. Here, x has a 1-bit at its ¢-th
position, and so x is larger than c. The position © where x and s first differ
has no relation at all with d(c), and could be smaller, equal or larger than it.
The current values of xp and xs fulfill the search invariant without any changes,
since the current successor of x is still s, and c, the new current predecessor
of x, has the same common prefix with x than p.

We have not defined yet how to start the search. Initially, no bits of x have
been compared, so it is easy to see that xp = xs = 0 are the right initial values.
We can imagine that we ‘have compared x against non-existent keys above the
root of the tree, and that the last compared bit of x has been a virtual 0-th bit.
After the first comparison, if, say, the key at the root is larger than x, then xs is
still zero but xp is updated conveniently, and we keep traversing the right spine
of the tree until we find the first key larger than x. From that moment both xp
and xs are strictly positive, since the current predecessor and successor of x are
always well defined.

Let us use the observations above to write a C function to digitally search for
a key into a binary search tree. Figure 5 presents most of the C' type definitions
that we will use for the rest of the paper. As it is shown, we assume that a
key is a fixed-length word of 32 bits. Given a word X and an index I such that
1 < I <32, the macro bit(X, I) returns the I-th bit of X. Each extracted bit
is stored in a full integer for simplicity (its value will always be either 0 or 1).
A tree is identified with a pointer to its root node, as usual. Each node has,
apart from its key w and two pointers 1 and r to the left and right children, two



Comp Compare(Word x, Tree t, Diff #xp, Diff *xs)
{ Word c; Diff i; Bit bx, bc;
if (t == NULL) return EMPTY;
if (t->is_p) { if (#xp < t->d) return GREATER;
if (#*xp > t->d) return SMALLER;
}
else { if (*xs < t->d) return SMALLER;
if (*xs > t->d) return GREATER;
}
for (¢ = t->w, i = t->d; ++i <= D; )
if ((bx = bit(x, 1)) !'= (bc = bit(c, i)))
if (bx < bec) { *xs = i; return SMALLER; }
else { #xp = i; return GREATER; }
return EQUAL;
}

Figure 6: The function Compare.

additional fields storing d(w) and is-p(w), respectively. For the sake of clarity,
we avoid including other fields with the information related to the key, or for
balancing the tree. Using an integer for the type Diff of the field d allows us to
codify any value in the range [0,2'® — 1], which would suffice for most practical
situations with longer keys. Bits and booleans are defined as the same basic
type and always store either 0 or 1, but it is preferable to distinguish them
because of their conceptual difference. The last type Comp is explained below.
Figure 6 shows the function Compare, which captures all the cases in Figure 4.
Given the searched key x, the current subtree t (a pointer to its root), and
pointers to the variables xp and xs, Compare returns the result of the comparison
of x against the key at the root of t (if any), updating conveniently xp or xs
when necessary. The four possible results are codified with the type Comp. The
easiest case happens when t is an empty tree: the function simply returns EMPTY.
We do not handle this case apart from non-trivial ones for aesthetic reasons (see
Figure 7). Assume now that the tree is not empty and that the boolean is_p(c)
for the current key c is true. Then we check if xp is smaller than d(c). If it
is, we are in Case 1 or Case 5 of Figure 4, x is greater than ¢, and we do not
need to update xp nor xs. If, otherwise, xp is larger than d(c), then we are in
Case 2, x is smaller than c, and we do not have to update any variables, either.
Finally, when xp equals d(c) we are in Case 3 or Case 4, and we search the first
position i where x and c differ, starting at the (d(c) + t)-th bit. If we find such
difference, we update xs or xp and return SMALLER or GREATER. If not, x and ¢
are equal, and we return so. When is_p(c) is false we perform similar actions.

10



Boolean R_Classic_search(Tree t, Word x)
{ if (t == NULL) return FALSE;
if (x == t->w) return TRUE;
if (x < t->W) return R_Classic_search(t->1, x);
else return R_Classic_search(t->r, x);

3

Boolean R_Search(Tree t, Word x, Diff xp, Diff xs)
{ switch (Compare(x, t, &xp, &xs))
{ case EMPTY : return FALSE;
case EQUAL : return TRUE;
case SMALLER: return R_Search(t->1, x, xp, xs);
case GREATER: return R_Search(t->r, x, xp, xs);

3

Boolean Search(Tree t, Word x)
{ return R_Search(t, x, 0, 0);
}

Figure 7: Classic and digital searches in binary search trees.

Making use of the function Compare allows us to translate most comparison-
based procedures over binary search trees into their digital counterparts. For
instance, in Figure 7 we find the recursive function R_Classic_search, imple-
menting the classic recursive search for a given key x into a given binary search
tree t. The function only returns TRUE or FALSE, depending on whether x is in
the tree or not. In that figure, there is also the recursive digital version R_Search.
As it can be seen, the digital search is not significantly more complicated than
the classic (comparison-based) search. In fact, the translation between one
and the other is trivial, and even transparent to programmers if the function
Compare is used. The function Search only performs the first call to R_Search
with the appropriate parameters {the same as those for R_Classic_search plus
two additional 0’s).

We end the section with a few comments about the cost, in terms of time
and space, of digital searches in BSTs. The number of visited nodes depends
on the shape of the tree. Thus, if we assume the tree to be balanced, then
the (expected) average number of visited nodes per search, either successful or
unsuccessful, is ©(log N), and could become just log, N +o(log N} depending on
the balancing method. Regarding the number of compared bits, in the case of
successful searches we compare each bit exactly once, which means D compared

11



bits per search. For unsuccessful searches, we compare as many bits as necessary
to distinguish the search key from the rest of keys in the tree, so in the worst
case we need to compare D bits. The exact expected number of compared
bits depends on the digits of the keys (or on their probability distribution),
and sometimes is quite difficult to compute. Fortunately, a digital search in a
binary search tree compares exactly the same bits as a search in a trie, which
means that we can directly use all the previous mathematical analysis for tries.
For instance, when the keys are random, it is known that the expected number
of compared bits per unsuccessful search in a trie (and hence during a digital
unsuccessful search in a BST) is just log, N + o(log N). For other probability
distributions for the digits, any cost in the range [log, N ... D] is possible.

Regarding the space required for the fields d and is_p, for the former we
need [log, D] bits, while for the latter one bit suffices. Note that this is much
less than the D bits of each key, though for simplicity we decided to store d
and is_p in a couple of full integers.

On the other hand, if we have non-random keys with long common prefixes,
then we can save space by storing any common prefix just once. The way is
simple: for every key y, we only store the suffix [yd(y)+1, ..,¥p)- The rest of
bits [y, ..., Yd(y)] are implicitly defined by the fields d and is_p and the keys in
A(y), and can be trivially computed in the way down the tree during a search.
For instance, it would be enough to store the last bit of the key 00000010
in the tree in Figure 3. Any key y stored at that node, with d(y) = 7 and
is_p(y) = TRUE has necessarily to start with the prefix 0000001 (the first six
bits are common to 00000000, the seventh bit is 1 because is_p(y) = TRUE). As
extreme examples, the key 10100101 at the root of the tree in Figure 3 has to
be stored in full, while no bits of the key 10000001 need to be stored explicitly.
It is interesting to observe that the space savings of this strategy are exactly
the same as those achieved in a trie when replacing full keys at leaves with the
suffixes that are not computable from the trie structure.

3 Digital updates in binary search trees

There are just three fundamental operations required to change the shape of a
given binary search tree: inserting a key in a new leaf of the tree, deleting a key
that is stored in a leaf, and rotating a node with its parent. Moreover, most (all,
to the best of the author’s knowledge) balancing strategies can be written in
terms of the three fundamental operations above. For instance, an insertion in
a balanced BST is usually equivalent to inserting the key in a new leaf, rotating
that node upwards as many times as necessary, and perhaps performing a few
additional rotations. During this process, some fields with information for the
balancing strategy may require to be updated, but we avoid dealing with details
that depend on the chosen balancing strategy, and focus our attention on how
digitally update a BST while keeping consistent the information to perform

12



Tree New_node(Word x, Diff xp, Diff xs)
{ Tree n = (Tree)malloc(sizeof(*n));
n->w = x; n—>1 = n->r = NULL;
if (xp > xs) { n~->d = xp; n->is_p = TRUE; }
else { n->d = xs; n~>is_p = FALSE; }
return n;

}

Tree R_Insert(Tree t, Word x, Boolean *nw, Diff xp, Diff xs)
{ switch (Kcompare(x, t, &xp, &xs))
{ case EMPTY : #nw = TRUE; return New_node(x, xp, xs);
case EQUAL : *nw = FALSE; return t;
case SMALLER: t->1 = R_Insert(t->1, x, nw, Xp, Xs); return t;
case GREATER: t->r = R_Insert(t->r, x, nw, xp, xs); return t;
}
}

Tree Insert(Tree t, Word x, Boolean *nw)
{ return R_Insert(t, x, nw, 0, 0);

)

Figure 8: Digital insertions in binary search trees.

digital accesses.

We use the following observation: for every key y in the tree, by definition
of A(y), the values of d(y) and is_p(y) do not depend at all on the information
stored beneath y. Therefore, for every update, we only have to consider the
possible effects on the fields d and is_p in the nodes directly involved and those
underneath. The first immediate consequence is the digital deletion algorithm
for a key stored in a leaf, too simple to include a C function for it in this paper:
we first digitally search for it, afterwards we just delete the node where it is
stored. No other action must be taken.

As in the case of digital searches, it is a simple matter to obtain the digital
counterpart of the classic insertion algorithm. Figure 8 includes the digital ver-
sion R_Insert of the classic insertion of a key x into a new leaf of a given tree t.
The function returns the tree after the insertion, and updates a boolean *nw
which indicates if x was a new key or not (if not, the tree is not modified). The
variables xp and xs are first used to guide the search. If x was not in the tree,
then we call the function New_node, which fills a new node with x as key, empty
subtrees as children, and the appropriate values for the fields d and is_p, which
are easily computed from the current values of xp and xs.
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Let us now consider how the contents of the fields d and is_p must be
updated after a rotation. Let y and z be the keys involved, with y < z, and
let A, B and C be the subtrees below y and z, where the keys in A are smaller
than y, those in B are larger than y and smaller than z, and those in C are larger
than z (see Figure 9). Assume that we rotate the tree o to get the tree 3. As
already mentioned, the keys above y and z cannot be affected by the rotation.
Regarding the keys in B, they have exactly the same ancestors in both trees, and
so are not affected, either. Each key x in A gains z as a new ancestor, which,
in principle, could imply updating d(x) or is_p(x). However, z cannot be the
new predecessor of x due to x < z, and z cannot be the new successor of x
due to x < y < z. Hence, no changes are needed in A. Similarly, the keys in C
lose y as ancestor, but y could neither be the predecessor nor the successor of
any of those keys, so no changes in C are required. A symmetrical reasoning for
the pass from the tree 3 to the tree o shows that we only may need to update
consistently the fields d and is_p related to the keys y and z.

Figure 9 shows the five possible situations for a rotation in terms of the
digits of y and z. In that figure, p and s denote, respectively, the predecessor
and successor of y in the tree «, and the predecessor and successor of z in the
tree 8. The predecessor and successor of z in a are y and s. The predecessor
and successor of y in § are p and z. The first positions where the pairs (p, y),
(y, 2), and (z, s) differ are denoted ¢, » and u, respectively. It is important
to observe that only Cases 2 and 4 require updating the information for digital
accesses, and that the new values for is_p(y), d(y), is_p(z), and d(z) can be
easily computed from their old values.

Figure 10 includes the C functions implementing the left and right rotations.
For instance, when rotating from o to 3, we update information if and only if
is_p(z) is true and d(y) < d(z). In that case, it suffices to interchange the
values of d(y) and d(z) {we use a macro swap for it), make is_p(z) equal to the
old value of is_p(y), and set is_p(y) to false. When rotating from 8 to o we
perform symmetrical actions.

We finish the section computing the cost of the several update operations.
As in the case of searches, the number of visited nodes during an insertion or
deletion at a leaf depends on the shape on the tree, an thus on the balancing
strategy (if the tree is balanced, it is ©(log N}). Concerning bit comparisons,
deleting a key requires comparing each of its bits once to find the key, which
means D bit comparisons per deletion if the key was in the tree, and at most D
bit comparisons if it was not. Similarly, inserting a key requires D bit compar-
isons if the key was already present, and at most D bit comparisons if the key
was new. Again, the previous analyses for the cost of tries tell us that a ran-
dom deletion of a non-present key or a random insertion of a new key requires
only log, N + o(log N) bit comparisons on the average.
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Figure 9: Possible cases for a rotation in a BST with the information to perform

digital accesses, in terms of the digits of the involved keys.



#define swap(A, B) { Diff t = A; A=B; B =1t; }

Tree Rotate_left(Tree t)
{ Tree r = t->r;
if ((r->is_p) && (t->d < r->d))

{ swap(t->d, r->d); r->is_p = t->is_p; t->is_p = FALSE; }
t->r = r->1; r->1 = t;
return r;
}
Tree Rotate_right(Tree t)
{ Tree 1 = t->1;
if (('1->is_p) && (t->d < 1->d))
{ swap(t->d, 1->d); 1->is_p = t->is_p; t->is_p = TRUE; }

t->1 = 1->r; 1->r = t;
return 1;

}

Figure 10: The Rotate_left and Rotate right functions.

Regarding rotations, they are usually performed before or after an insertion
or deletion. The number of visited nodes is proportional to the number of ro-
tations, and is constant (either in the worst case or on the average) for typical
balancing strategies. No bits from the involved keys are compared during a ro-
tation. When common prefixes are stored just once to save storage space, then
all the cases in Figure 9 except Case 3 require moving the common subsequences
of bits marked with #####3#, plus the final bit that distinguishes the involved
keys, from the old parent to the new parent. This could have ©(D) cost in the
worst case, so for every application we should decide if the space savings com-
pensate the time overhead for rotations. For instance, if the keys are random,
then on the one hand the common prefixes are very short, and on the other
hand digital insertions require just ©(log N) visited nodes and ©(log N) com-
pared digits with balanced BSTs, which would grow to ©(D) because rotations
(or equivalents) are needed to balance the tree. In such a situation we should
probably decide to store the keys in full.

4 Extensions to larger bases
In this section we consider variable-length keys in a base R (the radix) larger

than 2. Without loss of generality, we think of a key as a C string, that is, an
array of characters finished with *\0’, which is a character smaller than any
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Figure 11: A binary search tree with string keys and the information to perform
digital accesses.

other. If we assume that each character is stored in a 8-bit byte, then we have
R = 28 = 256 possible values for the digits of the keys. Figure 11 shows a BST
storing a set of English words, together with the information to perform digital
accesses (again, one integer and one bit with the same meaning that in previous
sections). The character *\0’ at the end of every key is not shown explicitly.

There are several important differences with base-2 keys that are worth
mentioning. When two base-2 keys x < y differ at the i-th digit, we know for
sure that the i-th bit of x is 0, and that the i-th bit of y is 1. By contrast,
knowing that two base- R keys with R > 2 differ at the i-th digit does not provide
enough information about the value of their i-th digits. As a consequence, for
every key y in the tree we have to explicitly store at least its suffix [Yd(y)a s
since the digit Yd(y) now is not computable from is_p(y). In Figure 11 we can
see the redundant prefix of every key, which always ends at the (Yd(y — 1)-th
position. Notice that the appropriate value for the field 4 at the root 01! the tree
now is not 0 but 1.

A second difference with base-2 keys is that a base-R key can differ at
the same digit with its predecessor and its successor. For instance, the key
“archive' in Figure 11 differs at the fourth digit with both "arc'" and "arcs".
In such a situation we set is_p(y) to either true or false, since our algorithms
will work properly for both values.

Finally, a digital search with base-R keys requires comparing some digits
more than once. For instance, if we digitally search for the key "home' in the tree
in Figure 11, then its first and second characters h’ and "o’ are only compared
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at the root of the tree, while its third character m’ has to be compared at the
root, but also at the node storing the key "hopefully". No digit comparisons
are needed at the nodes storing the words "artist", "artistic", and "“hope".

The search invariant for base-R keys is thus slightly different than that of
base-2 keys. Let x be the search key, c the key stored at the root of the current
subtree, and p and s the predecessor and the successor of ¢, respectively. Let j
be the index of the first digit where x and p differ, and & the index of the first
digit where x and s differ. Then the search invariant is the following: When j
is larger than k we have xp = j and xs < k, when j is smaller than k we have
xp < j and xs = k, and when j and k are equal we have xp = xs = j. At every
moment only the first max{xp,xs} digits of x have been compared (perhaps
more than once, see the end of the section), the rest of digits not yet.

When c differs first with its successor than with its predecessor (for the
opposite situation we have symmetrical cases) the possible cases of a digital
search with base- R keys resemble those in Figure 4, if we think of 0’s and 1’s as
any pair of digits such that the first is smaller than the second. For instance,
Case 1 corresponds to the situation p, = ¢q = x¢ < 54, P, = ¢ < Xy, and
Pd(c) < Cd(c)- The rest of cases also have their immediate equivalent in terms
of base-R digits. Regarding how to perform digital accesses, Cases 1, 2 and 5
have to be handled exactly as in the binary search. Cases 3 and 4 are slightly
different, since we have Pd(c) < €d(c) and Pd(c) < Xd(c), but now this does not
imply that cg(c) and xq(c) are equal. Therefore, we have to start comparing
digits from the d(c)-th position, rather than from the (d(c) + 1)-th position.

Base-R keys present two additional cases that have to be considered. The
first one is similar to Case 5 but with ¢ = u, which implies x; < s,. Here,
Xp = xs = ¢, since we have p, = ¢¢ < xg. In this situation we can deduce
that x is larger than ¢ without any digit comparisons. Moreover, no updates
are needed for xp nor xs.

The second additional case is completely new, namely the case where ¢ differs
at the same digit ¢ with p and s. If xp = xs = ¢, then we do not have enough
information to compare x against ¢, so we will start comparing digits from the
d(c)-th position. If xp > xs = g or xs > xp = ¢, then we know that x is smaller
than ¢ or that x is greater than ¢, respectively, without comparing any digits,
and without updating xp nor xs.

In Figure 12 we can see the new C definitions for keys that are strings.
Now the digits of the keys are not bits but bytes (characters). Since the keys
are variable-length, we assume that dynamic memory is available, and define
a key to be a pointer to the first of its characters. In Figure 12 we also find
the Compare function for strings, which has two main differences with that in
Figure 6. First, the length of the keys is variable, so at the end of each iteration
of the for we must check whether the keys have reached their end. Second, we
cannot start comparing bytes at the t->d + 1 position, as discussed previously,
but rather at the t->d position.
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typedef char* String;

typedef char Byte;

#define byte(X, I) (X[I-1])

typedef struct { String s; Tree 1, r; Diff d; Boolean is_p; } Node;

Comp Compare(String x, Tree t, Diff #xp, Diff *xs)
{ string c; Diff i; Byte bx, bc;
if (t == NULL) return EMPTY;
if (t->is_p) { if (*xp < t->d) return GREATER;
if (*xp > t->d) return SMALLER;
}
else { if (*xs < t->d) return SMALLER;
if (*xs > t->d) return GREATER;
}
for (¢ = t->s, 1 = t=->d; ; i++)
{ if ((bx = byte(x, i)) != (bc = byte(c, i)))
if (bx < be) { *xs = i; return SMALLER; }
else { *xp = i; return GREATER; }
if (bx == ’\0’) return EQUAL;
}

Figure 12: New C types and the Compare function for strings.

Regarding rotations and how to keep consistent the information to perform
digital accesses with base-R keys, it is easy to see that the new cases where y
or z (or both) differs at the same position with its predecessor and its successor
can be handled exactly like the cases in Figure 9 (thinking of 0’s and 1’s as
any pair of different digits). Therefore, the Rotate left and Rotate right
functions in Figure 10 work correctly without any changes.

Let us analyse the cost, in terms of time and space, of our method applied
to base-R keys with D digits (we assume fixed-length keys for clarity). As
happened with fixed-length base-2 keys, the number of visited nodes depends
on the balancing strategy, so we can assume it to be O(log N) if desired.

The number of compared digits is not so easy to compute, since some digits
may be compared more than once. However, we can provide a good upper
bound based on the following fact: for each comparison between different digits
we move down in the tree, while for each comparison between equal digits we
move to the right in the search key. Hence, the number of digit comparisons
is always bounded by above by the number of visited nodes plus the length of
the prefix that has been inspected. Note that this sum is only an upper bound
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Figure 13: The ternary search tree associated to the BST in Figure 11.

because some steps down the tree may be made without comparing any digits
at all (recall the example of the search for the word "home" in Figure 11). As
a consequence, the number of compared digits per successful search, successful
deletion, or unsuccessful insertion is between about D/R and about D/R +
O(log N), that is, roughly D/R for any set of digits for the keys. The number
of compared digits per unsuccessful search, unsuccessful deletion, or successful
insertion strongly depends on the digits of the keys. For instance, when the
digits are random, it is known that the length of the expected common prefix
is about logg N = In N/In R. Hence, any balancing strategy for BSTs which
achieves about log, NV visited nodes per search, together with our method, would
require at most about log, N + logg N = (1 + 1/log, R) log, N expected digit
comparisons. The actual factor could be smaller depending on the balancing
strategy, but the related mathematical analysis goes far beyond the scope of
this paper.

On the other hand, let us define the (unique) ternary search tree [2] asso-
ciated to a given BST as the ternary search tree built by inserting the keys in
the BST in any of the orders implicitly defined by the BST (say, left-preorder).
(Figure 13 shows the ternary search tree —TST, for short— associated to the
BST in Figure 11.) Then, it is not difficult to see that the digit comparisons of

20



our method are exactly those that would be made in the associated TST. By
contrast, every TST has in general several associated BSTs (for instance, from
the TST in Figure 13 we cannot deduce if "artist" has been inserted before or
after "hopefully"). Since the shape of a TST depends not only on the digits
of the keys but on the insertion order of the keys as well, we could argue that
the method in this paper captures the best properties of TSTs without suffering
from those two potential sources of unbalancing.

Finally, the space of the fields d and is_p is ©(log D) per node. This is
asymptotically dismissable even when we store pointers to keys instead of full
keys at the nodes, because each pointer needs at least O(log N) space. The
space savings achieved by our method when we store each common prefix just
once are exactly the same as those of any TST with the same set of keys.

5 Digital Sorting

Here, we use the ideas of previous sections to digitally sort a set of N base-R
keys (R > 2) of length D always moving around ©(/N log N) keys (or pointers
to keys), and comparing at most D - N + o(D - N) digits, which reduces to just
O(N log N) digit comparisons with random keys. Thus, the sorting algorithms
of this section achieve together the best properties of comparison-based sort
(quicksort or mergesort) and digit-guided sort (radixsort). We will see that both
algorithms, quicksort and mergesort, can be adapted to the digital framework
of this paper because we can view their execution as an implicit binary search
tree.

Figure 14 shows the well-known quicksort algorithm. Given a couple of
integers 1 and r, Quicksort sorts the (global, for the sake of clarity) array of
words K between the 1-th and the r-th positions, by first partitioning the array
with respect to one of its elements, called the pivot. The partition rearranges
the array into three parts, from left to right: a subarray with keys smaller or
equal than the pivot, the pivot itself, and a subarray with keys greater or equal
than the pivot. After that, it is enough to recursively sort both subarrays to
get the whole array sorted.

In Figure 14 we also find the function Classic Partition, which partitions
the array K in the interval [1,...,r] with respect to K[r]. (If the array is not
random for sure, then it would be safer to choose the pivot at random.) Since
we allow for repeated keys, we use one of the easiest approaches to deal with
them, namely stopping the left-to-right search not only with keys greater than
the pivot, but also with keys equal to the pivot (and the syminetric strategy
for the right-to-left search). The only noticeable feature in contrast to other
partitioning algorithms in the literature is that Classic Partition compares
exactly once each element, excluded the pivot itself, against the pivot. This
modification greatly simplifies the translation of classic partitioning to digital
partitioning, since it guarantees that there is an implicit BST related to the
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Word K[MAX];

#tdefine exch_classic(A, B) { Word t = K[A]; K[A] = K[B]; K[B] = ¢t; }

int Classic_partition(int 1, int r)
{int i = 1-1, j = r;
for (;;)
{ while (++i < j) if (K([i] >= K[r]) break;
while (--j > i) if (K[j] <= K[r]) break;
if (i >= j) break; else exch_classic(i, j);
}
exch_classic(i, r); return i;

}

void Quicksort(int 1, int r)
{ int 1i;
if (r <= 1) return;
i = Partition(1, r);
Quicksort(l, i-1);
Quicksort(i+1, r);-

}

Figure 14: Classic quicksort for fixed-length base-2 keys.

sorting process. The macro exch_classic simply exchanges the values of the
array K in the positions A and B. We use a macro to isolate one of the two pieces
that have to be modified to get the digital version. The only other change is
obviously the comparison between keys.

In Figure 15 we can see the digital counterpart (fixed length base-2 keys
version) of the partitioning algorithm. The function Quicksort is not shown
because it is exactly that in Figure 14. Apart from the array of keys K, we
have two additional arrays P and S with the same dimensions. They store,
respectively, the equivalent for every key of the variables xp and xs for the
digital access to BSTs. These values (which should be initialised to 0) are used
to compare the keys at each stage against the pivot, which behaves like their
current parent (predecessor or successor) in the associated BST. Now, when
exchanging two keys, we also have to exchange their corresponding values in P
and S, as shown in the macro exch_.digital. Like in previous sections, we could
have used one boolean and one integer per key, instead of two integers, but now
space considerations are less important. Since the auxiliary arrays P and S are
only needed to sort the array of keys K, after sorting we can return the memory
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Word K[MAX];
Diff P[MAX], S[MAX];

#define exch_digital(A, B) { Word t; Diff u; \
t = K[A]; K[A) = K[Bl; K[B] = ¢; \
u = P(A]; P[A] = P[B]; P[B] = u; \
u = S[A); S[A] = s[B]; S[B] = u; }

Comp Compare(int k, int r, Boolean left)
{ Diff i; Bit bk, br;
if (P[r] > slrl) { if (P[k] < P[r]) return GREATER;
if (P[k] > P[r]) return SMALLER;
i = Plrl;

else { if (S[k] < S[r]) return SMALLER;
if (S[k] > S[r]) return GREATER;
i = slr];
}
while (++i <= B)
if ((bk = bit(K[k], i)) !'= (br = bit(K[rl, i)))
if (bk < br) { S[k] = i; return SMALLER; }
else { P[k] = i; return GREATER; }
if (left) P[k] = i; else S[k] = i; return EQUAL;
}

int Digital_partition(int 1, int r)
{ int i =1-1, j = r;
for (;;)
{ while (++i < j) if (Compare(i, r, TRUE) != SMALLER) break;
while (--j > i) if (Compare(j, r, FALSE) '!'= GREATER) break;
if (i >= j) break; else exch_digital(i, j);
}
exch_digital(i, r); return i;

}

Figure 15: Digital partition for fixed-length base-2 keys.
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space of P and S to the system.

The function Compare mimics that in Figure 6, with two exceptions. First,
the EMPTY case makes no sense now. Second, we must inform the function if we
are scanning the left or the right side of the array. Note that, since equal keys
are now permitted, it is necessary to know whether a key equal to the pivot K[r]
will be placed with the keys smaller than the pivot or with the keys greater than
the pivot. For instance, if we are scanning the left side of the array and we find
a key K[k] equal to the pivot, then that key will be placed to the right of the
pivot, which will be the current predecessor of the key, and consequently P [k]
is updated.

It is easy to compute the cost of digital quicksort for fixed-length base-2 keys.
On the one hand, the expected number of movements of keys in the array is the
same as that of classic quicksort, so it is ©(/NV log N) with random permutations
of different keys, and even smaller with repeated keys. Note that this cost could
be guaranteed in the worst case or with extremely high probability, by selecting
the median of the array as pivot or by taking samples, respectively. On the
other hand, the compared bits are exactly those in the process of inserting the
keys into a trie. Hence, the number of compared bits depends on the digits of
the keys, and can vary from about N log, N with random keys to about N - D
in the worst case. Note that, with a bad-case set of digits for the keys, radixsort
compares about N - D bits as well, but moves around ©(N - D) keys.

Let us now consider the cost of digital quicksort for strings. (It is easily
obtained combining the base-2 keys digital quicksort above and the string digital
mergesort given below.) The number of pointers (not full keys) moved around is
again O(/N log N) with random permutations of different strings. The number
of times each character is compared strongly depends on the digits of the keys,
and on the shape of the BST related to the quicksort execution. If that BST
is well balanced (which can be achieved with high probability or for sure),
then the number of digit comparisons is about N - D for a bad-case set of
digits for N keys of length D (each digit compared once plus a few additional
comparisons). The number of digit comparisons for random keys is O(N log N)
—see the comparison of our method against ternary search trees in the final
section of this paper.

Let us now adapt mergesort to digitally sort a set of string keys. Figure 16
shows the classic version of mergesort, which sorts the array K by first sorting
its left and right halves, and then merging themn. This is the mission of the
function Classic.merge, which scans K starting at the 1-th and m-th positions,
always copying the smallest of the two current keys in the auxiliary array auxXk,
until one of the subarrays reaches its end. From that moment, the remaining of
the non-empty subarray is copied in auxK. Finally, the content of auxK is copied
back to K.

As we did for quicksort, we have used global arrays for clarity, and macros to
emphasise the differences with the digital version. The macro copy_inc_classic
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String K[MAX], auxK[MAX];

#define copy_inc_classic(A, B) { auxK[A++]

= K[B++]; }
#define copy_back_inc_classic(A, B) { K[A++] =

auxK[B++]; }

void Classic_merge(int 1, int m, int r)
{inta=1, b=m, ¢c = 0;
while ((a < m) && (b < r))
if (strcmp(K[al, K[b]) <= 0) { copy_inc_classic(c, a); }
else { copy_inc_classic(c, b); }

while (a < m) copy_inc_classic(c, a);
while (b < r) copy_inc_classic(c, b);
a=1; c = 0;

while (a < r) copy_back_inc_classic(a, c);

3

void Mergesort(int 1, int r)
{ if (r <= 1) return;
Mergesort(l, (l+r)/2);
Mergesort((l+r)/2+1, r);
Merge(l, (l+r)/2+1i, r+t);
}

Figure 16: Classic mergesort for string keys.

just copies one element from the array K into the auxiliary array auxK, and
increments the indices. The macro copy_back_inc_classic does the opposite.
The condition stremp(K[al, K[b]) <= 0 is conceptually equivalent to a < b,
and is evaluated comparing the digits of the keys from the beginning. However,
the redundant comparisons of digits can be avoided if we imagine each of the
two sorted subarrays as a sorted list, which is just a particular case of binary
search tree, where the keys have been inserted in increasing order (the smallest
key at the root, and so on).

In Figure 17 we find the digital version of the merging algorithm in Fig-
ure 16 (the function Mergesort is exactly the same). Compared to the string
algorithms in Section 4 and to the digital version of quicksort, there are a cou-
ple of observations in order. First, each key has current predecessor but no
current successor, which means that only the additional arrays P (initialised
to 1) and auxP are needed. Second, when two keys K[a] and K[b] are equal,
we copy K[a] in auxK (to achieve a stable version of mergesort), which means
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String K[MAX], auxK[MAX];
Diff P[MAX], auxP[MAX];

#define copy_inc_digital(A, B) { auxK[A] = K[B]; \

auxP[A++] = P[B++]; }

#define copy_back_inc_digital(A, B) { K[A] = auxkK[B]; \

Comp Compare(int

PLA++] = auxP[B++]; }

a, int b)

{ Diff i; Byte ba, bb;
if (P[al] < P[b]) return GREATER;
if (P[a] > P[b]) return SMALLER;

for (i = P[bl;
{ if ((ba =
if (ba

if (ba ==
}
}

;oi++)

byte(K[al, i)) !'= (bb = byte(K[b], i)))

< bb) { P[b] = i; return SMALLER; }
else { P[al = i; return GREATER; 1}
’\0’) { P[b] = i; return EQUAL; }

void Digital_merge(int 1, int m, int r)

{inta=1, b=
while ((a < m)

m, ¢ = 0;
&& (b < 1))

if (Compare(a, b) !'= GREATER) { copy_inc_digital(c, a); }

while (a

a=1; c 0;

else { copy_inc_digital(c, b); }

m) copy_inc_digital(c, a);

<
while (b < r) copy_inc_digital(c, b);
<

while (a

r) copy_back_inc_digital(a, c);

Figure 17: Digital merge for string keys.
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that K[a] always becomes the new current predecessor of K[b]. Therefore, no
boolean is needed for the equality case.

Let us analyse the cost of digital mergesort for string keys. Clearly, the
number of pointer copies is always about Nlog, N, or about 2N log, N if we
count each movement back from the auxiliary array. Concerning the number of
digit comparisons, it depends on the digits of the keys, as usual. But the worst
case now can be much larger than that of quicksort, because the associated BST
has the poorest possible balance, with an average depth of its keys about N/2.
In principle, this could amount to about N/2 + D digit comparisons per key
(assuming keys of length D), that is, to about N2/2 digit comparisons. However,
we can use the following observation to get a better upper bound: every one
of the D digits of each key can be compared at most R times before moving
to the right in the key. Therefore, at most NV - D - R digit comparisons can be
made, which is R times larger than the upper bound for quicksort (too much
for large bases). Note that, anyway, this is asymptotically smaller than the
worst-case number of digit comparisons of classic mergesort with strings, which
is about D - Nlog, N. A tight upper bound for the number of compared digits
with random keys is more difficult to compute with precision, but we certainly
know that it is ©(/NV log N}, because the common prefixes have O(log N) digits
on average, and each of these digits can be compared at most R times.

Finally, let us compute the cost of the digital mergesort algorithm for fixed-
length base-2 keys, which is also easily obtained by combining the algorithms
in this section. The number of keys moved around is again about N log, IV or
2N log, N. Fortunately, the compared digits with R = 2 do not depend on the
shape of the related BST, and are always those in the insertion of the keys into a
trie. Hence, as it happened with quicksort, the number of compared bits varies
from about N logy N with random keys to about N - D in the worst case.

6 Final Remarks and Conclusions

We have seen a simple method to build tree data structures which achieve just
O(log N) visited nodes and O(D) compared bits/bytes per search or update,
irrespectively of the order of the updates and of the digital representation of the
keys. In short, we have seen that the idea is to provide every key y in the tree
with a boolean and an integer, which enable to know which of the keys above y
shares the longest common prefix with y, and how long is that prefix. This
additional information allows us to search for any given key comparing each bit
once, or each byte at most a constant number of times. It is also very simple
to update this information after a deletion or insertion in a leaf, or after a rota-
tion. This implies that most balancing strategies for trees can be adapted to the
digital framework presented in this paper, thus adding to their best structural
(comparison-based) properties the chance to digitally access their information.
Moreover, the translation is straightforward if we use some already built func-
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tions like the ones in Figures 6, 10 or 12, for instance. We have also seen that
these ideas can be applied to the sorting problem, achieving algorithms with
the best properties of both comparison-based sorting (quicksort or mergesort),
and digit-guided sorting (radixsort). All the algorithm in this paper have been
written as intuitively as possible, in order to emphasise the translation between
classic and digital counterparts. Therefore, improved versions could be devel-
oped at the price of losing clarity.

To provide a broad perspective, we end the paper comparing digital access
to balanced BSTs against some of the main data structures for the abstract
data type “symbol table”, as presented in [11]: classic access to balanced BSTs,
tries, patricia tries, R-ary tries, TSTs, and hashing.

The comparison against classic access to balanced BSTs is easy: for the price
of [log, D] + 1 additional bits per node, we have the same cost per operation
regarding the number of visited nodes, but less bit/byte comparisons in general.
When the keys have long common prefixes, digital access saves much time and
can also save much storage space. Moreover, since a BSTs with the information
to perform digital accesses is still a BST, we have always the choice between
classic search and digital search.

The comparison of digital access to balanced BSTs against tries and patricia
tries is not so straightforward. First of all, the latter require access to individual
bits of the keys, while the former has the flexibility to deal with accesses to
bits or bytes. Moreover, tries and patricia tries do not adapt well to practical
applications where the keys are strings whose characters are not used uniformly,
or where the keys have an underlying format. And more important of all, with
non-random keys the number of visited nodes per search in a trie or patricia
trie can be much larger than ©(log V), and could rise up to about D and about
D/2, respectively.

On the other hand, tries (and also TSTs, which are discussed helow) allow to
easily search for keys following some digital patterns, like keys differing in a cer-
tain number of digits with another key, or keys with some positions unspecified,
etcetera. Although not covered by this paper, it is likely that for every pattern
search algorithm for tries or TSTs there exists a (not so direct) counterpart for
our method, because it also captures the digital properties of the keys (in other
words, we always have an implicit trie or TST stored).

Other properties are worth being discussed. When the keys are truly random
and bit access is available, tries achieve log, N + o(log V) visited nodes per
search more easily than the method in this paper. On the other hand, our
method does not use extra nodes with null links (a trie with random keys has
about N/In2 ~ 1.44N nodes on the average), and uses only one kind of node,
in contrast to the two kinds used normally in tries (otherwise tries waste too
space). Furthermore, tries with keys like those in Figure | require ©(D - N)
nodes to be stored. The space saved by storing every cominon prefix just once
is exactly the same for tries and the method in this paper.

28



Patricia tries also achieve logy NV + o(log N) visited nodes per search under
random keys, provided that bit access is available. Search misses in a patricia
trie are faster when the keys in the tree have long common prefixes and we search
for a missing key that can be identified as such inspecting a few bits at the end
of the key. Compared to patricia tries, our method requires just one additional
boolean per node (recall that patricia tries also store an integer, which codifies
the next position in the key to be checked). It is arguable whether patricia tries
are simpler (for instance, inserting or removing a key into or from a patricia
trie requires two searches). In contrast to our method, patricia tries cannot
save space from common prefixes. Finally, a successful search in a patricia
trie requires comparing the significant bits in the longest common prefix of the
key with the rest of keys, plus a final full key comparison (D bits). Usually,
this i1s just slightly more than the D bits of our method, but could become
1.5D+o0(D) on the average for bizarre keys like those in Figure 1. It is important
to observe that, if the keys are random and accessing bits is significantly slower
than accessing bytes (say, eight bit comparisons are much slower than one 8-bit
byte comparison), then patricia tries are faster than our method with K = 2,
because the final full key comparison of patricia tries can be performed as [ D/8]
byte comparisons, while our method inspects bits one by one. However, in such
a situation we would choose to digitally access the tree not comparing bits
but bytes. As discussed in previous sections, the number of byte comparisons
per successful search would be bounded between about D/8 and about D/8 +
O(log N), that is, would always be D/8 + o(D), but for our method this cost
holds irrespectively of the distribution of digits for the keys.

The prime virtue of TSTs is their simplicity. However, our method outper-
forms TSTs in several aspects. To begin, TSTs cannot be used with R = 2.
Moreover, TSTs need three links per digit in the worst case, while our method
requires always two links per key. TSTs probably need only N + o(/N) nodes
with random keys if each suffix is stored in just one node, avoiding one-way
branching at the end of the keys, but this implies using two kinds of nodes. The
number of visited nodes (or digit comparisons) in a successful search in a TST is
always between D and ©(D - R), and is likely be, on the average, slightly higher
than D for random keys. But note that with non-random keys could be much
larger. Search misses in a TST are likely to require more digit comparisons
in some situations. For instance, the expected common prefix with random
keys has about logg N = In N/In R digits, and at each of these digits a TST
behaves more or less like a random BST over R keys. Altogether, this could
amount to about 2InR-InN/In R=2InN = (2In2)log, N digit comparisons
per unsuccessful random search. By contrast, recall that our method applied
to any balancing strategy wich achieves average depth log, N requires at most
(1 4+ 1/log, R) log, NV digit comparisons per unsuccessful random search. Note
that 1 + 1/log, R is smaller than 2In2 when R > 21/(2'"2=1) ~ ¢ Anyway, for
any TST there is at least one associated BST which implicitly stores the same
TST, so the digit comparisons can always be exactly the same for both data
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structures. The space savings from common prefixes are identical for TSTs and
our method, if we choose to do so.

Regarding R-ary tries, they achieve about logg V visited nodes per unsuc-
cessful search when the keys are random, which for large R is much smaller than
the asymptotic upper bounds log, N and (1 + 1/ log, R)log, N for the number
of visited nodes and digit comparisons of our method. On the other hand, R-ary
tries suffer from a severe waste of space: R/In R N links under random keys
(which could become about R- D/2- N in the worst case), in front of 2/V links,
irrespectively of the digits of the keys, of the method in this paper. Moreover,
our method uses only one type of node, in contrast to the two types normally
used to save space with R-ary tries.

Finally, hashing has “constant” search and update time, which in fact is at
least proportional to D (the hashing function must be computed from all the
digits). Recall that the method presented in this paper has cost at most ©(D),
which sometimes is just O(log V). (To be completely rigorous, that cost is at
least ©((log N)?), since we traverse ©(log N) pointers and each one has length
at least ©(log N).) The hashing function may be difficult to build for formatted
keys. BSTs are dynamic, while some variants of hashing require estimations
of the number of keys to be stored. Explicitly balanced trees have worst-case
guarantees, in contrast to hashing. Last but not least, in a BST the keys are
implicitly sorted, which also implies that rank operations are straightforward.
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