
Journal of Algorithms 41, 330–337 (2001)
doi:10.1006/jagm.2001.1189, available online at http://www.idealibrary.com on

Fly Cheaply: On the Minimum Fuel
Consumption Problem

Timothy M. Chan

Department of Computer Science, University of Waterloo, Waterloo,
Ontario N2L 3G1, Canada

E-mail: tmchan@math.uwaterloo.ca

and

Alon Efrat

Computer Science Department, University of Arizona, Tucson, Arizona 85721
E-mail: alon@cs.arizona.edu

Received October 1, 1999

In planning a flight, stops at intermediate airports are sometimes necessary to
minimize fuel consumption, even if a direct flight is available. We investigate the
problem of finding the cheapest path from one airport to another, given a set of n
airports in !2 and a function l! !2 ×!2 → !+ representing the cost of a direct flight
between any pair. Given a source airport s, the cheapest-path map is a subdivision
of !2 where two points lie in the same region iff their cheapest paths from s use the
same sequence of intermediate airports. We show a quadratic lower bound on the
combinatorial complexity of this map for a class of cost functions. Nevertheless, we
are able to obtain subquadratic algorithms to find the cheapest path from s to all
other airports for any well-behaved cost function l: our general algorithm runs in
O$n4/3+ε% time, and a simpler, more practical variant runs in O$n3/2+ε% time, while
a special class of cost functions requires just O$n log n% time. ! 2001 Elsevier Science

1. INTRODUCTION

Assume we wish to plan a path of a flight from a starting airport s to
a destination airport t. Our plane is able to carry enough fuel, so a direct
flight from s to t is possible. However, we might find it cheaper to stop
at some airports, even if this increases the total length of our path. One

330

0196-6774/01 $35.00
! 2001 Elsevier Science
All rights reserved

minimum fuel consumption problem 331

reason to do so is that the longer we fly without a stop, the more fuel we
need to take, so the weight of the plane increases, and the cost of a mile
of flight increases. As easily observed, if these are the only parameters that
affect the cost of a flight, this cost increases superlinearly with the distance
of the flight.1 In this paper, we investigate the problem of how to plan the
most economical path (i.e., the cheapest).
We formalize the problem as follows. Let P be a set of n points in

!2, containing two special points s and t. Also given is a positive func-
tion l! !2 × !2 → !+, where l$p" q% represents the cost of the flight from
p to q for any pair p" q ∈ P . We call a sequence π = 'v0" v1" $ $ $ " vk(,
where v0" v1" $ $ $ " vk−1 ∈ P , a path from v0 to vk. The cost of π is the sum
∑k

i=1 l$vi−1" vi%. The cheapest-path problem is to find a path from s to t of
the minimum cost. We denote this cheapest path by π∗$t% and its cost by
d+t,. Note that under this formalization, our problem is a special variant
of the general single-source shortest-path problem. See, for example, [Th97]
for a short historic overview of shortest-path problems and [Mit00] for a
survey of shortest-path problems in geometric settings.
In this paper, we assume that the function l is of constant descriptive

complexity; i.e., it is total, and piecewise-algebraic, defined by a constant
number of polynomials with a constant maximum degree. Thus, for a given
point p" q ∈ !2 we can compute l$p" q% in a constant time.
Due to the aforementioned motivation, we are primarily interested in

cost functions that are monotone in the following sense: l$p" q% ≤ l$p" q′ %
iff /pq/ < /pq′ /, where /pq/ stands for the Euclidean distance between
p" q ∈ !2. This is a requirement only for the algorithm in Section 2.3.
Clearly, we can solve the cheapest-path problem in time O$n2% by com-

puting the value l$p" q% for every pair p" q ∈ P and applying Dijkstra’s
algorithm on the complete graph. In this paper we show that we can do
better.
Section 2 describes several algorithms for the cheapest-path problem. It

presents an O$n log n%-time algorithm in the special case where l$p" q% =
/pq/2r$/pq/% for some monotone increasing function r. Regarding the gen-
eral case, Section 2 presents an O$n4/3+ε%-time2 algorithm that uses the (rel-
atively complicated) dynamic data structure of Agarwal et al. [AES00]. A
more practical O$n3/2+ε%-time algorithm is also described (assuming mono-
tonicity) that uses much simpler data structures.
It turns out that the running times of the two algorithms are related to

the combinatorial complexity of a geometric construct that we will call the

1The exact cost function in this setting is a solution to a differential equation and is not
discussed here.

2Throughout this paper, ε stands for an arbitrarily small positive constant; the constants of
proportionality in bounds may depend on ε.

332 chan and efrat

cheapest-path map: given point set P , cost function l, and source point s,
the map " is defined as the planar subdivision where two points q" q′ ∈ !2

are assigned to the same region iff the cheapest paths π∗$q% and π∗$q′%
share the same sequence of intermediate points of P . The map " can
be expressed as the planar projection of the lower envelope of the func-
tions 0fi$q% = d+pi, + l$pi" q%/pi ∈ P1; thus it follows from a theorem of
Halperin and Sharir [HS94] that the complexity of " is O$n2+ε%. How-
ever, since the functions discussed above are of restricted type, one might
wonder if it is possible to show that the actual complexity of " is smaller.
Section 3 shows that the answer is negative: for a natural class of mono-
tone cost functions l, the complexity of " can indeed be %$n2%. This lower
bound indicates the difficulty in improving the analysis of both of our sub-
quadratic algorithms in the general case.

2. ALGORITHMS FOR THE CHEAPEST-PATH PROBLEM

2.1. Superquadratic Cost Functions

In this section, we present a simple and efficient algorithm for a
superquadratic cost function, i.e., l$p" q% =/ pq/2r$/pq/%, where r! !+ → !+

is a monotone increasing function (computable in constant time).

Theorem 2.1. For l superquadratic, the cheapest-path problem can be
solved in time O$n log n%.

Proof. The Delaunay triangulation of the point set P is known to con-
tain the Gabriel graph [GO97], defined as the graph G of all edges $p" q%
such that the disk with diameter pq contains no points of P in its interior
$p" q ∈ P%. We claim that the edges of any cheapest path must belong to G.
Consequently, as the Delaunay triangulation has linear size, we can solve
the cheapest-path problem by computing the triangulation in O$n log n%
time [GO97] and applying Dijkstra’s algorithm on the triangulation (under
cost function l) in O$n log n% time.

To verify the claim, consider an edge $p" q% not in G. The open disk with
diameter pq contains some other point, say v ∈ P . Thus /pv/2 + /vq/2 <
/pq/2, implying that

l$p" v%+ l$v" q% =/ pv/2r$/pv/%+ /vq/2r$/vq/%

≤ /pv/2r$/pq/%+ /vq/2r$/pq/%

< /pq/2r$/pq/% = l$p" q%$

So $p" q% cannot be an edge of any cheapest path, since the subpath 'p" v" q(
costs less.

minimum fuel consumption problem 333

2.2. General Cost Functions

In this section, we present an O$n4/3+ε%-time algorithm for general cost
functions (of constant descriptive complexity). The idea is to speed up
Dijkstra’s algorithm using geometric data structures.
Instead of the common form of Dijkstra’s algorithm, the following alter-

native form (for example, see [Baa88]) turns out to be more illuminating.
This simple procedure computes the cost d+t, of the cheapest path π∗$t%.
A standard modification can output π∗$t% as well.

d+s, = 02 d+v, = ∞ ∀v 5= s2 S = 0s12 T = P\0s1.
While t /∈ S Do
Begin
Choose a pair $u" v% ∈ S × T that minimizes d+u,+ l$u" v%.
Set d+v, = d+u,+ l$u" v%.
Insert v to S and delete v from T .

End

The key is to realize that the above really reduces the cheapest-path prob-
lem to a dynamic bichromatic closest-pair problem if we define our distance
function δ! S × T → !+ to be

δ$u" v% = d+u,+ l$u" v%$

(Think of each u ∈ S as having an additive weight d+u,.) In this dynamic
problem, we want to maintain a pair $u" v% ∈ S × T minimizing δ$u" v%,
subject to insertions and deletions on the two sets S and T .
A general technique of Eppstein [Epp95], which we state as a lemma

below, handles precisely this task and further reduces the problem to
dynamic nearest neighbors: (i) build a data structure to find q ∈ T mini-
mizing δ$p" q% for a given p, subject to insertions and deletions on T , and
(ii) build a data structure to find p ∈ S minimizing δ$p" q% for a given q,
subject to insertions and deletions on S.

Lemma 2.2. For any distance function δ, if the dynamic nearest-neighbor
problem can be solved with O$T $n%% amortized query, insertion, and deletion
time, then the dynamic bichromatic closest-pair problem can be solved with
O$T $n% log n% amortized insertion time and O$T $n% log2 n% amortized deletion
time.

In our instance, data structure (i) can be obtained by considering the lower
envelope of the bivariate functions 0gi$p% = l$p" qi%/qi ∈ T1, and data struc-
ture (ii) can be obtained by considering the lower envelope of the bivariate
functions 0fi$q% = d+pi, + l$pi" q%/pi ∈ S1. Both dynamic data structures
can be devised from the work of Agarwal et al. [AES00], which, with the
appropriate query/update time tradeoff, achieves T $n% = O$n1/3+ε%.

334 chan and efrat

Thus, each iteration of Dijkstra’s algorithm is doable in amortized time
O$n1/3+ε%, and the overall time for the algorithm is O$n4/3+ε%.

Theorem 2.3. For any cost function l of constant descriptive complexity,
the cheapest-path problem can be solved in time O$n4/3+ε%.

2.3. General Cost Functions: A More Practical Algorithm

The preceding general algorithm is mainly of theoretical interest, because
the dynamic data structures used are quite complicated. In this section,
we present a more practical alternative. Though it is asymptotically slower
and runs in time O$n3/2+ε%, the description is more self-contained, avoids
Agarwal et al.’s structures [AES00] as well as Eppstein’s technique [Epp95],
and exploits the monotonicity property mentioned in the Introduction to
simplify parts of the data structures.
First, we introduce a notation: let δ$S"T % represent the minimum δ$u" v%

over all u ∈ S and v ∈ T . Recall that in Section 2.2, we have reduced the
cheapest-path problem to maintaining δ$S"T % subject to insertions to S and
deletions from T . We now present a direct data structure for this dynamic
problem, consisting of the following (where a and b are parameters to be
set later):

1. A large subset S0 ⊆ S such that /S\S0/ ≤ n/a.
2. A partition of T into b groups T1" $ $ $ "Tb, each of size at most

n/b. We keep a standard (Euclidean) Voronoi diagram for each point set
Tj , preprocessed for planar point location.

3. A priority queue Q containing these values:

(a) δ$0p1"Tj% for each p ∈ S\S0 and each j ∈ 01" $ $ $ " b1;
(b) δ$S0" 0q1% for each q ∈ T .

It is clear that the minimum of Q is the desired value δ$S"T %.
How do we delete a point q from T? First we locate the group Tj con-

taining q. To delete q from Tj , we have to reconstruct the Voronoi diagram
of Tj in O$$n/b% log n% time. We need to delete δ$S0" 0q1% from the queue
Q. We also need to update the value δ$0p1"Tj% for each p ∈ S\S0. These
at most n/a values can be computed in O$$n/a% log n% time by point loca-
tion queries [GO97] on the Voronoi diagram of Tj , because the nearest
neighbor to p under distance function δ is also the nearest neighbor to p
under the Euclidean metric if l is monotone.
How do we insert a point p to S? We insert δ$0p1"Tj% into the queue

Q for each j ∈ 01" $ $ $ " b1. These b values can be computed in O$b log n%
time, again by point location queries on the Voronoi diagram of the Tj ’s.
In addition, we perform a “re-evaluation phase” to reset S0 after every

n/a insertion, so that at any time, /S\S0/ ≤ n/a. How is this re-evaluation

minimum fuel consumption problem 335

done? We empty the queue Q and insert δ$S0" 0q1% for each q ∈ T .
Since δ$S" 0q1% = min0δ$S0" 0q1%" δ$S\S0" 0q1%1, it suffices to compute
δ$S\S0" 0q1% for each q ∈ T . These n values can be found in O$n log n%
time by point location queries on the planar projection of the lower
envelope of the bivariate functions 0fi$q% = d+pi, + l$pi" q%/pi ∈ S\S01.
This three-dimensional lower envelope of n/a functions has complex-
ity O$$n/a%2+ε%, as shown by Halperin and Sharir [HS94], and can be
constructed and preprocessed in time O$$n/a%2+ε%, for example, by the
algorithm of Agarwal et al. [ASS96]. Finally, we set S0 = S.
Thus, the cost of a deletion is O$$n/a + n/b% log n%, and the cost of an

insertion is O$b log n%. This ignores the cost of the re-evaluation phases,
which is O$$n/a%2+ε + n log n% for every n/a insertion. Choosing a = b =
7
√
n9, we obtain an O$n1/2+ε% amortized update time and an O$n3/2+ε%-time

algorithm.

Remark 2.4. The observant reader will recognize, in the algorithms of
Sections 2.2 and 2.3, the use of lower envelopes of the bivariate functions
0fi$q%1, which correspond precisely to cheapest-path maps as defined in
the Introduction. It is possible to obtain a faster version of either algorithm
if the complexity of such a map is subquadratic. Unfortunately, the next
section shows that the complexity can be quadratic.

3. CHEAPEST-PATH MAPS CAN BE COMPLICATED

In this section, we prove that the worst-case complexity of the cheapest-
path map ", as defined in the Introduction, is %$n2% for a simple class of
superquadratic cost functions: l$p" q% =/ pq/α, with α > 2.

Theorem 3.1. For l$p" q% =/ pq/α, where α > 2 is a constant, there exists
a set of O$n% points in the plane such that the cheapest-path map has %$n2%
faces.

Proof. Choose a sufficiently large parameter A (depending on n) so that

$A2 + 1/4%α/2 −Aα > 2nα" (1)

since the limit of the left-hand side is infinite as A → ∞ for α > 2. Also it
is possible to choose a sufficiently small parameter 0 < δ< 1 (depending
on n and A) so that

$A+ nδ%α −Aα < 1" (2)

since the left-hand side converges to 0 as δ → 0.

336 chan and efrat

Our construction is simple:

P =
{

$0" 0%" $0" 1%" $0" 2%" $ $ $ " $0"n%"

$A" 0%" $A+ δ" 0%" $A+ 2δ" 0%" $ $ $ " $A+ nδ" 0%
}

"

with s = $0" 0%.
To lower-bound the size of the resulting cheapest-path map ", we first

introduce some terminology and some observations. We say that a path
'v0" v1" $ $ $ " vk(exits through vk−1. The argument used in the proof of
Theorem 2.1 implies that a cheapest path π∗$q% can only exit through a
point p with the property that the disk with diameter pq is free of points
of P . In the definition of ", two points q" q′ ∈ !2 are assigned the same
region iff their cheapest paths π∗$q% and π∗$q′% exit through the same
point of P .
Thus, let #i be the region of points q ∈ !2 such that π∗$q% exits through

the point $A+ iδ" 0% ∈ P , for a given i ∈ 01" $ $ $ "n− 11. We claim that

1. $A+ iδ" j + 1/2% ∈ #i for all j ∈ 01" $ $ $ "n− 11.
2. $x" j% /∈ #i for all x ∈ ! and j ∈ 02" $ $ $ "n− 11.

Consequently, each region #i must have %$n% different connected compo-
nents, so " must have %$n2% components, and the theorem follows.

To verify the first claim, we note that by the empty-disk property, the
cheapest path π∗$A + iδ" j + 1/2% can exit through three possible points
of P! $0" j%" $0" j + 1%, or $A + iδ" 0%. In the first two cases, the cost of
the cheapest path would clearly exceed $A2 + 1/4%α/2. However, the path
'$0" 0%" $A" 0%" $A+ δ" 0%" $ $ $ " $A+ iδ" 0%" $A+ iδ" j + 1/2%(costs only

Aα + iδα + $j + 1/2%α < Aα + 2nα < $A2 + 1/4%α/2"

by (1). So $A+ iδ" j + 1/2% ∈ #i.
To verify the second claim, we may assume that A < x < A + nδ,

because otherwise, the empty-disk property would prevent the cheapest
path π∗$x" j% from exiting through $A + iδ" 0%. Any path from $0" 0% to
$x" j% that exits through $A + iδ" 0% has a cost exceeding Aα + jα. How-
ever, the path '$0" 0%" $0" 1%" $ $ $ " $0" j%" $x" j%(costs only

j + xα < j + $A+ nδ%α < j +Aα + 1 < Aα + jα"

by (2). So $x" j% /∈ #i and the proof is complete.

Remark 3.2. The above result is a bit surprising. We have a point set that
induces a cheapest-path tree which is non-self-intersecting and of linear
size, but if we extend this to a cheapest-path map for the whole plane,
we get a map of quadratic complexity. Despite this lower bound, we have
an O$n log n%-time algorithm for the cost function under consideration by
Section 2.1.

minimum fuel consumption problem 337

Remark 3.3. Given parameter α and a planar point set P = 0p1" $ $ $ "pn1
with weights w1" $ $ $ "wn, consider the Voronoi diagram under the distance
function δ$pi" q% =/ piq/α +wi. The above result implies a quadratic worst-
case lower bound on the size of this diagram for α > 2 by setting wi =
d+pi,. In contrast, the cases α = 1 (an additively weighted Voronoi diagram)
and α = 2 (a power diagram) are known to have linear complexity [GO97].
We are not aware of any combinatorial results when 1 < α< 2.

ACKNOWLEDGMENTS

The authors thank Pankaj Agarwal, Sariel Har-Peled, Matya Katz, and Micha Sharir for
helpful discussions concerning the problems studied in this paper and related problems.

REFERENCES

[AES00] P. K. Agarwal, A. Efrat, and M. Sharir, Vertical decomposition of shallow levels
in 3-dimensional arrangements and its applications, SIAM J. Comput. 29 (2000),
912–953.

[ASS96] P. K. Agarwal, O. Schwarzkopf, and M. Sharir, The overlay of lower envelopes and
its applications, Discrete Comput. Geom. 15 (1996), 1–13.

[Baa88] S. Baase, “Computer Algorithms: Introduction to Design and Analysis,” 2nd ed.,
Addison–Wesley, Reading, MA, 1988.

[Epp95] D. Eppstein, Dynamic Euclidean minimum spanning trees and extrema of binary
functions, Discrete Comput. Geom. 13 (1995), 111–122.

[GO97] J. E. Goodman and J. O’Rourke, Eds., “Handbook of Discrete and Computational
Geometry,” CRC Press, Boca Raton, FL, 1997.

[HS94] D. Halperin and M. Sharir, New bounds for lower envelopes in three dimen-
sions, with applications to visibility in terrains, Discrete Comput. Geom. 12 (1994),
313–326.

[Mit00] J. Mitchell, Geometric shortest paths and network optimization, “Handbook
of Computational Geometry” (J.-R. Sack and J. Urrutia, Eds.), Elsevier,
Amsterdam/New York, 2000.

[Th97] M. Thorup, Undirected single source shortest path in linear time, in “Proceedings
of the 38th Annual IEEE Symposium Found. Computer Science (FOCS), 1997,”
pp. 12–21.

