
Journal of Algorithms 42, 153–172 (2002)
doi:10.1006/jagm.2001.1197, available online at http://www.idealibrary.com on

General Partitioning on Random Graphs1

C. R. Subramanian

The Institute of Mathematical Sciences, C.I.T. Campus, Taramani,
Chennai, 600 113, India

E-mail: crs@imsc.ernet.in

and

C. E. Veni Madhavan

Department of Computer Science and Automation, Indian Institute of Science,
Bangalore, 560 012, India

E-mail: cevm@csa.iisc.ernet.in

Received November 29, 2000

Consider the general partitioning (GP) problem defined as follows: Partition the
vertices of a graph into k parts W1� � � � �Wk satisfying a polynomial time verifiable
property. In particular, consider properties (introduced by T. Feder, P. Hell, S. Klein,
and R. Motwani, in “Proceedings of the Annual ACM Symposium on Theory of
Computing (STOC ’99), 1999” and) specified by a pattern of requirements as to
which Wi forms a sparse or dense subgraph and which pairs Wi, Wj form a sparse
or dense or an arbitrary (no restriction) bipartite subgraph. The sparsity or den-
sity is specified by upper or lower bounds on the edge density d ∈ �0� 1�, which
is the fraction of actual edges present to the maximum number of edges allowed.
This problem is NP-hard even for some fixed patterns and includes as special cases
well-known NP-hard problems like k-coloring (each d�Wi� = 0; each d�Wi�Wj� is
arbitrary), bisection (k = 2; �W1� = �W2�; d�W1�W2� ≤ b), and also other problems
like finding a clique/independent set of specified size. We show that GP is solvable
in polynomial time almost surely over random instances with a planted partition
of desired type, for several types of pattern requirement. The algorithm is based
on the approach of growing BFS trees outlined by C. R. Subramanian (in “Pro-
ceedings of the 8th Annual European Symposium on Algorithms (ESA ’00), 2000,”
pp. 415–426).  2002 Elsevier Science

1This research was partially supported by the EU ESPRIT LTR Project 20244 (ALCOM-
IT), WP 3.3. A part of this research was done during the first author’s visit to IISc, Bangalore.

153

0196-6774/02 $35.00
 2002 Elsevier Science

All rights reserved.

154 subramanian and veni madhavan

Key Words: partitioning problems; graph coloring; bisection; max-cut; min-
k-section; random graphs; polynomial average time algorithms; probabilistic
analysis; combinatorial probability; analysis of algorithms and problem complexity;
complexity classes.

1. INTRODUCTION

Consider the general partitioning problem (GP) defined as follows: Parti-
tion the vertices of a graph into k parts W1� � � � �Wk satisfying a polynomial
time verifiable property. In particular, consider properties (introduced in [6]
and) specified by a pattern of requirements as to which Wi forms a sparse
or dense subgraph and which pairs Wi, Wj form a sparse or dense or an
arbitrary (no restriction) bipartite subgraph. The sparsity or density is spec-
ified by upper or lower bounds di on the edge density d�Wi� ∈ �0� 1�, which
is the fraction of actual edges present to the maximum number of edges
allowed. Similarly, we specify bounds on the density of edges joining differ-
ent parts. Even the special cases (fixing the pattern of requirements) of GP
are NP-hard. When each d�Wi� = 0 and each d�Wi�Wj� is arbitrary, this
specializes as the k-coloring problem. If k = 2, �W1� = �W2�, d�W1�W2� ≤ b,
this becomes the graph bisection problem. Hence, GP is a NP-hard prob-
lem even for some fixed pattern of requirements. We show that, with some
assumptions on densities, one can almost surely find such a partition, pro-
vided the input is a random graph with a planted partition of this type.
An algorithmic study of random instances of such hard problems could be
useful in practical situations. In addition, studies on the average case anal-
ysis of NP-hard problems have certain implications to cryptography (see
[11, 12]).

A random model for the GP problem can be obtained as follows: Con-
sider a graph on kn vertices obtained by initially planting a partition
�V1� � � � � Vk� of V into k parts of size n each. For i, choose each edge lying
within Vi with probability pi < di (or pi > di) if Vi is required to be sparse
(or dense). Similarly, for each i 	= j, choose each edge joining Vi and Vj
with probability pi� j < di� j or pi� j > di� j , depending on the requirement.
For a random graph drawn in this fashion, the planted partition �Vi� satis-
fies the requirements of the problem, almost surely, provided the bounds
are not “too small” and the probabilities are sufficiently away from their
respective bounds. For a concrete example, assume that edges of V1 are
chosen with probability p ≤ 0�8d′ and d′ ≥ �log n�2/

(
n
2

)
. Then, by Chernoff

bounds (see Theorem 4.3, Chapter 4 of [13]), it follows that

Pr�d�V1� > d′� ≤ e−�log n�2/48 = o�n−ω�1���

partitioning random graphs 155

We can further tighten the gap between p and d′. Similarly, we can show
that other parts (or pairs of parts) also satisfy appropriate density require-
ments with high probability.

In this paper, we consider the following simpler model in which each
edge lying within a part Vi is chosen with probability p and each crossing
edge is chosen with probability q. We denote this model by ��n� k�p� q�.
This model can be used to obtain special cases of the general model by
introducing appropriate upper or lower bounds on the edge densities of
the parts or pairs of parts. With p = 0, this becomes a random model for
k-colorable graphs. When k = 2 and p > q, this becomes a random model
for the problem of bisection.

If p and q are sufficiently apart (this will be precisely quantified later), we
show, given G ∈ ��n� k�p� q�, how to find a partition W1� � � � �Wk such that
each d�Wi� obeys the required bound on it in polynomial time. Thus, V
has been partitioned into k sparse or dense sets. In fact, the algorithm will
output a polynomial sized collection of partitions such that, with high prob-
ability, one of these is the actual partition V1� � � � � Vk. For each partition in
the collection, we check if it is of required type and output if it is so. Since
�Vi� is, almost surely, a partition of required type, the algorithm solves the
random instance. The class of distributions supported by the algorithm is
determined by the ranges of p and q. Our results also carry over to the
model in which the vertices are uniformly randomly put into one of the k
partite sets.

The algorithm is based on the BFS approach outlined by Subramanian
[15] and uses the following intuition. In such a random graph, consider any
vertex x belonging to V1 and grow the BFS tree rooted at x. We prove
that, with high probability, the following holds: The tree grows by a fac-
tor of “roughly” n�p + �k − 1�q� between successive levels till it crosses
the “threshold” of 1/�p+ �k− 1�q�. Also, in every level, the contribution
of V1 is either larger (or smaller) than that of any Vi, i > 1, by a signifi-
cant amount. We make use of this phenomenon to separate V1. Similarly,
other Vi’s are separated. This idea has been successfully applied to k-color
in polynomial average time random k-colorable graphs [15]. This approach
is conceptually simple and combinatorial in nature. We show that our algo-
rithms have very small failure probabilities which are, for a large class of
distributions, asymptotically much smaller than n−D for any fixed D.

Intuition. We give an informal sketch of the growth of the BFS tree.
To keep it brief, we only argue using expectations as actual values for vari-
ous random variables. For simplicity, assume that (i) k = 3, (ii) p < q and
are sufficiently apart, (iii) n�p+ 2q� = ω�1�, and (iv) 2 is the smallest pos-
itive integer l such that �n�p + 2q��l ≥ 1/�p + 2q�. Let x be a vertex in
V1 and y is any other vertex. Grow the BFS tree in G− y starting from x.

156 subramanian and veni madhavan

Let ni�l′�, i = 1� 2� l′ ≤ 2, denote the size (number of vertices) of the l′th
level of the BFS tree contributed by Vi. We have n1�1� = np and n2�1� =
n3�1� = nq and

∑
i ni�1� ≈ n�p + 2q�. Given that this happens, using

n�p+ 2q� = o�1/�p+ 2q�� and Fact 1.1, we have n1�2� ≈ n2�p2 + 2q2� and
n2�2� ≈ n3�2� ≈ n2�2pq + q2� and

∑
i ni�2� ≈ n2�p + 2q�2. As a result, y

has approximately n2�p3 + 6pq2 + 2q3� neighbors if y ∈ V1 and has approxi-
mately n2�3p2q+ 3pq2 + 3q3� neighbors if y 	∈ V1. Hence y has more neigh-
bors if y 	∈ V1 than otherwise. This helps us to correctly place y with high
confidence. Several technical issues (like using expectations as actual val-
ues) have been ignored in this sketch and these are taken care of in the
analysis.

Outline. In Sections 2 and 3, we assume that both p and q are above
some value. With this assumption, we obtain tight estimates on the struc-
ture and growth of the BFS tree in Section 2 and in Section 3, we show
how to retrieve the planted partition �V1� � � � � Vk�. In Sections 4 and 5, we
remove this assumption and do the same (although we do not provide tight
estimates). In Sections 6–11, we apply these results to show how to solve
several NP-hard partitioning problems on random instances.

1.1. Assumptions, Notions, and Tools

The following assumptions and notations are valid for the rest of the
paper.

a1 The probabilities p and q satisfy the following: p + �k − 1�q =
n−1+ε� ε ≥ X/

√
log n, for some sufficiently large positive constant X. We

use S (for sum) to denote p + �k − 1�q and D (for difference) to denote
p− q.

a2 α denotes the value
√

log n/
√

2
√

log n · α is used as a common
bound (independent of p� q) on the relative deviation of a random vari-
able from its expectation. This choice of α is tentative. Ideally, we should
make α to vary inversely with the value of S.

a3 As in [15], given p+�k− 1�q, we can find a unique positive integer
l so that we can write p+ �k− 1�q = n−1+�1/l+1�+δ where δ is a positive real
such that τ�l� ≤ δ < 1

l�l+1� + τ�l − 1� and τ�l′� �= 1√
Xl′�l′+1� for l′ ≥ 1 and

τ�0� = 0. To find the value of l exactly, partition �0� 1� into I1 ∪ I2 ∪ · · ·
where, for each l ≥ 1, Il

�= �f �l�� f �l − 1�� with f �l� = 1
l+1�1 + 1

l
√
X
� for

l ≥ 1 and f �0� = 1. Given any ε > 0, it falls into one of these subintervals
and the index of this interval is used as the value of l. This meaning of l
holds for the rest of the paper. l differs (by at most 1) from the smallest
positive value of j such that �n�p+ �k− 1�q��j = ω�1/�p+ �k− 1�q��. We
use l (with the above-stated meaning) instead of this smallest j so as to
take care of certain technical difficulties arising in the analysis.

partitioning random graphs 157

Since p+ �k− 1�q ≥ n−1+ε with ε ≥ X/
√

log n, we have l ≤ 2
√

log n/X.
Because of this, we have �1 − α�l = 1 − lα�1 − o�1�� and �1 + α�l =
1 + lα�1 + o�1��. Note that τ�l� and the upper bound on δ both become
smaller as l becomes larger. It would be useful to note the following facts
involving p� q, and l.

�nS�l−1 = S−1nlδ−1/�l+1�

= o
(α
S

)
for τ�l� ≤ δ ≤

√
X − 1√

Xl�l + 1� � (1)

�nS�l = S−1n�l+1�δ� (2)

nlSl+1 = n�l+1�δ� (3)

Notation. Often, where it is convenient, we use e1 ∈ �fl� fu�e2 as a short
notation for fle2 ≤ e1 ≤ fue2. Here, fl� fu� e1, and e2 are real-valued expres-
sions.

Fact 1�1. Let S�n� be a set of vertices of size M�n�. For any u 	∈ S�n�,
let each edge �u� s� �s ∈ S�n�� be selected independently with probability
p�n�. If M = M�n� and p = p�n� are such that Mp = o�1� as n → ∞,
then

Pr�u is adjacent to some vertex in S�n�� = Mp−M2p2�1 − o�1��/2

= Mp�1 − o�1���
Fact 1�2. For any small c > 0, there exists a value X∗ of X such that

for any ε ≥ X∗/
√

log n, the corresponding l satisfies α1/�l+1� ≤ c.

We often use the following bounds (due to Chernoff) on tail probabilities
of Poisson trials (see Chapter 4 of [13]).

Theorem 1.1. Let X1� � � � �Xn be independent Poisson trials such that,
for each i, Pr�Xi = 1� = pi, where 0 < pi < 1. Then, for X = ∑

1≤i≤n Xi,
µ = E�X� = ∑

1≤i≤n pi, and 0 < δ < 1,

Pr�X < �1 − δ�µ� < e−µδ
2/2� Pr�X > �1 + δ�µ� < e−µδ

2/3

Pr��X − µ� > δµ� < 2e−µδ
2/3�

2. STRUCTURE OF THE BFS TREE
FOR p� q ≥ �log n�2

√
log n/n

We study the structure and growth of BFS trees in G with the stated lower
bound on p and q. Recall the meaning of l given before. Let x�w ∈ V with

158 subramanian and veni madhavan

w 	= x be any two arbitrary but fixed vertices. Assume, w.l.o.g., that x ∈ V1.
Consider the BFS tree in G − w grown from x. For j ≥ 1 and 0 ≤ l′ ≤ l,
define nj�x�w� l′� to be the number of vertices in the l′th level of the tree
which are also in Vj , that is, the number of vertices in �V − w� ∩ Vj which
are at a distance of l′ from x in G−w.

Consider the following expressions defined for each level l′ ≥ 0. These
are defined by

F1�0� = 1� F2�0� = 0

F1�l′� =
nl

′

k
�Sl′ + �k− 1�Dl′ � for l′ ≥ 1

F2�l′� =
nl

′

k
�Sl′ − Dl′ � for l′ ≥ 1�

One can verify that

F1�l′� − F2�l′� = �nD�l′ and F1�l′� + �k− 1�F2�l′� = �nS�l′ ∀ l′�
F1 captures the expected contribution of V1 to each level in the BFS tree.
Similarly, F2 captures the expected contribution of each Vj , j > 1, in the
BFS tree. We have the following lemma.

Lemma 2.1. Assume that (a1) holds and that τ�l� ≤ δ ≤
√
X−1√

Xl�l+1� . Then,

for x and w mentioned before, with probability at least 1 − e−(�α2 min�np�nq��,
for all j > 1,

n1�x�w� l� ∈ ��1 − α�l� �1 + α�l�F1�l� (4)

nj�x�w� l� ∈ ��1 − α�l� �1 + α�l�F2�l�� (5)

Proof. We prove a more general statement. We will prove that (4) and
(5) are true for each 0 ≤ l′ ≤ l. The proof is by induction on l′.

Recall that nj�x�w� l′�, shortly nj�l′�, denotes the contribution of Vj to
l′th level of the BFS tree starting at x in G − w. We have n1�0� = 1 and
nj�0� = 0 for j > 1. Thus, the quantities F1�0�� F2�0� satisfy (4) and (5)
with probability 1.

Also, by Chernoff bounds, with probability at least 1 − 2e−α
2np/3,2

�1� n1�1� ∈ ��1 − α�� �1 + α��F1�1��
Similarly, for each j > 1, with probability at least 1 − 2e−α

2nq/3,

�j� nj�1� ∈ ��1 − α�� �1 + α��F2�1��

2The requirement that p� q ≥ �log n�2
√

log n/n is to ensure that (j), j ≥ 1, hold with high
probability.

partitioning random graphs 159

Hence, with probability at least 1 − 2ke−α
2 min�np� nq�/3, (j), j = 1� � � � � k,

simultaneously hold, considering only potential edges incident on x.
Now, assume that l′ ≤ l − 1 and that the lemma is satisfied for all val-

ues ≤l′ with required probability considering only potential edges, each of
which is incident on a vertex in some level before level l′. Given that (4)
and (5) are satisfied up to level l′, we bound nj�l′ + 1� for all j ≥ 1. Con-
sider any y ∈ Vj − �x�w�, j ≥ 1, which is not yet visited by BFS. y is in
level l′ + 1 only if y is a neighbor of some vertex z in level l′. For a given z,
this occurs with probability p if z ∈ Vj and with probability q if z 	∈ Vj . Let
m1 denote nj�l′� and let m2 denote

∑
j′ 	=j nj′ �l′�. First, using the expression

for p+ �k− 1�q, we get using (1)

m1 +m2 = ∑
j≥1

nj�l′� ≤ ��1 + α�nS�l−1

= o
(α
S

)
� (6)

As a result,

Pr�y is in level l′ + 1� = 1 − �1 − p�m1�1 − q�m2

= 1 − �1 −m1p�1 − f1���1 −m2q�1 − f2��
= m1p�1 − f1� +m2q�1 − f2�

−m1pm2q�1 − f1��1 − f2��
where f1 = O�m1p�, and f2 = O�m2q� by Fact 1.1. Simplifying, we get

Pr�y is in level l′ + 1� = �m1p+m2q��1 − f3� (7)

where f3 = O�m1p+m2q�. From (6), it follows that f3 = o�α�.
Also, for each j, the number of eligible candidates in Vj for y can be seen

to be n�1 − o�α��. Let m denote the quantity min�n�m1p+m2q� � j ≥ 1�.
From (7), (6), (4), and (5) and considering only potential edges incident on
level l′, using Chernoff bounds, we can infer that the following holds: with
probability at least 1 − 2ke−α

2m/4, for each j ≥ 1:

nj�x�w� l′ + 1� ∈ �1 − α� 1 + α�n�m1p+m2q��1 − o�α��
= �1 − α� 1 + α�n

(
p · nj�l′� + q · ∑

j′ 	=j
nj′ �l′�

)
� (8)

Using the inductive hypothesis and the definition of F1�l′ + 1�� F2�l′ +
1�, we deduce that (4) and (5) hold for l′ + 1 also with probability at
least 1 − 2ke−α

2m/4. In addition, m ≥ m1 +m2 ≥ �1 − o�1���F1�l′� + �k −
1�F2�l′�� ≥ �nS�l′/2 ≥ min�np� nq�.

This proves Lemma 3.1 for all values of l′. In deriving (8), we have
ignored several multiplicative factors of the form �1 − f �n��, where f �n� =
o�α�, since all these can be absorbed by �1 ± α�.

160 subramanian and veni madhavan

This lemma is true when δ ≤
√
X−1√

Xl�l+1� . The problem with the other case

is the following: When δ ≥ 1
l�l+1� , we have �nS�l−1 = (�1/S� and hence

Fact 1.1 cannot be applied to derive (6) and (7) and to bound the sizes of
the lth level (this happens in the proof of Lemma 2.1). For this case, we
grow the BFS tree in a slightly different way at the last level.

After computing the �l − 1�th level of the BFS tree, we choose a subset
D′ by randomly and independently including each vertex in level l− 1 with
probability n−κ�l�, where κ�l� �= l�τ�l� + τ�l − 1��. For our choice of κ�l�,
with probability at least 1 − e−(�α2�nS�l−1n−κ�l��, for all j ≥ 1,

�D′ ∩ Vj� ∈ �1 − α� 1 + α�nj�x�w� l − 1�n−κ�l�

�D′ ∩ Vj� ≤ 2S−1n
− 1√

X�l+1� = o

(
α

S

)
�

(9)

Let D′′ be the set of vertices in level l which are adjacent to some vertex of
D′. Effectively, we consider the lth level to be grown by considering only
edges incident on D′.

Applying the arguments used in the proof of Lemma 2.1, one gets

Lemma 2.2. Assume that δ ≥
√
X−1√

Xl�l+1� . Then, for x and w mentioned

before, with probability at least 1 − e−(�α2 min�np�nq�n0�25��, for all j > 1,

�D′′ ∩ V1� ∈ ��1 − α�l+1� �1 + α�l+1�F1�l�n−κ�l� (10)

�D′′ ∩ Vj� ∈ ��1 − α�l+1� �1 + α�l+1�F2�l�n−κ�l�� (11)

3. RETRIEVING THE HIDDEN PARTITION

FOR p� q ≥ �log n�2
√

log n/n

From (4) and (5), we see that at level l, the contribution nj�l� of each
Vj is close to its expectation, which is either F1�l� or F2�l� depending on
whether j = 1 or not. Moreover, for p < q, F1 is larger than F2 for even
l and F2 is larger than F1 for odd l. Also, for p > q, F1 is always larger
than F2 for any l′. In any case, �n1�l� − nj�l�� is “roughly” nl�p − q�l for
each j 	= 1. We can exploit this difference to infer, with high confidence,
whether w ∈ V1 or not. The details are given below.

Consider a random graph G ∈ ��n� k�p� q� with p� q satisfying the stated
lower bound and also the assumption (A1) stated below. We show how to
retrieve the hidden partition �V1� � � � � Vk� by growing BFS trees.

(A1) We assume that p� q� α satisfy

�q− p� ≥ 2α1/�l+1��p+ �k− 1�q��

partitioning random graphs 161

(A2) Initially, we assume that τ�l� ≤ δ ≤
√
X−1√

Xl�l+1� .

BFSPart(G = �V�E��. Recall the definition of l given in Section 1. Com-
pute a set C�x� for each vertex x ∈ V . If �C�x� � x ∈ V � forms a partition
of V , output this partition. C�x� is computed as follows. For each y 	= x,
grow the BFS tree from x (in the subgraph induced by V − �y�) to the lth
level and compute n�x� y�, the number of y’s neighbors in the lth level.3 If
p > q or l is odd, arrange the vertices in V − x in decreasing order of their
n�x� y� values. Otherwise (p < q and l is even), arrange these in increasing
order. Set C�x� to be the union of �x� and the first n − 1 vertices in this
order. (We can further check if the output partition satisfies the required
density bounds. This depends on the problem requirements.)

The success of the algorithm is explained as follows: Assume, w.l.o.g.,
that the picked vertex x is from V1 and consider any y ∈ V1 − x and any
z ∈ V − V1. As explained before, for p < q, vertices from V1 will be present
in a larger (or smaller) proportion in the last level l, compared to those
from Vj for any j > 1 depending on whether l is even or odd. In the case of
p > q, V1 always has a larger contribution. Because of this, y will have more
(or less) neighbors in the last level than z. Thus, the first n− 1 vertices in
the order would, almost surely, be V1 − x and hence C�x� = V1. In what
follows, we give a formal proof of this argument. Assume, w.l.o.g., that
x ∈ V1. Consider the following expressions defined for all l′ ≥ 0.

E1�l′� = F1�l′ + 1�/n� E2�l′� = F2�l′ + 1�/n�
E1�l� captures the expectation of n�x� y� for any y ∈ V1 and E2�l� captures
the expectation of n�x� z� for any z 	∈ V1. The correctness of our algorithm
is based on the following theorem.

Theorem 3.1. The following hold with probability at least 1−
e−(�α2 min�np�nq�nlSl+1��: for any y ∈ V1, y 	= x, and any z ∈ Vj� j > 1,

n�x� y� ∈ (�1 − α�l+1� �1 + α�l+1) E1�l� (12)

n�x� z� ∈ (�1 − α�l+1� �1 + α�l+1) E2�l� (13)

n�x� z� − n�x� y� = (�nl�q− p�l+1� forp < q and even l (14)

n�x� y� − n�x� z� = (�nl�q− p�l+1� for p < q and odd l (15)

n�x� y� − n�x� z� = (�nl�p− q�l+1� for p > q� (16)

3This seems to require that the algorithm know the value of p+ �k− 1�q. If this is known,
then it outputs a single partition, which is almost surely the hidden one. Otherwise, since
l = O�√log n�, we repeat the algorithm for i = 1� � � � � O�√log n� assuming that l = i during
the ith iteration. In this case, we output a O�√log n�-sized collection of partitions. Almost
surely, one of these is the hidden partition.

162 subramanian and veni madhavan

Proof. From (3) and the lower bounds on p� q, it follows that it is suffi-
cient to prove for any fixed x� y, and z. Fix these parameters. Let w denote
any of y and z and fix w also. Consider the BFS tree in G − w grown
from x. Recall that nj�x�w� l′� denotes the number of vertices in the l′th
level of the tree which are also in Vj . Assume Lemma 2.1 and consider
w = y ∈ V1 − x. Consider the lth level of the BFS tree grown from x in
G− y. There are

∑
j′≥1 nj′ �x� y� l� vertices in this level. Given that Lemma

2.1 holds for w = y, we have (by Chernoff’s bounds) with probability at
least 1 − e−(�α2nlSl+1�,

n�x� y� ∈ ��1 − α�� �1 + α��
(
n1�x� y� l�p+ q · ∑

j′>1

nj′ �x� y� l�
)
� (17)

Now consider w = z ∈ Vj for some j > 1. As before, given that Lemma 2.1
holds for w = z, we have with similar probability,

n�x� z� ∈ ��1 − α�� �1 + α��
(
nj�x� z� l�p+ q · ∑

j′ 	=j
nj′ �x� z� l�

)
� (18)

For each of the cases w = y and w = z, the events of Lemma 2.1 and
the corresponding inequality ((17) or (18)) are independent since w is not
included in the graph considered in Lemma 2.1. Hence, (17) and (18) both
hold with probability at least 1 − e−(�α2 min�np�nq�nlSl+1��. Applying (4) and (5)
to each of (17) and (18) and using the definition of E1�l�� E2�l�, we get
(12) and (13).

Using (12) and (13), we prove only (14) and leave the proofs of (15) and
(16) since they are similar to the proof of (14). We have, using �1 + α�l+1 −
�1 − α�l+1 = 2�l + 1�α�1 + o�1��,

n�x� z� − n�x� y� ≥ �1 − α�l+1E2�l� − �1 + α�l+1E1�l�
≥ �1 − α�l+1nl�q− p�l+1 − 2�l + 1�αE1�l��1 + o�1��
≥ �1 − α�l+1nl�q− p�l+1

− 2�l + 1�αnl�p+ �k− 1�q�l+1/k� (19)

Using (A1), it follows that the second term of (19) is smaller by a multi-
plicative factor of k compared with the first term. Hence (14) follows. This
completes the proof of Theorem 2.1.

Thus, we see that BFSPart outputs the partition �V1� � � � � Vk) in polyno-
mial time with probability at least 1 − e−(�α2 min�np�nq�nlSl+1��.

When (A2) is not true (that is, δ ≥
√
X−1√

Xl�l+1�), we slightly modify BFS-
Part as follows. Instead of growing the BFS tree as usual, we grow it as
explained at the end of Section 2 and compute the set D′′. Define n�x� y�

partitioning random graphs 163

to be the number of neighbors that y has in D′′. One can derive an ana-
logue of Theorem 3.1 in this case, just as the analogue of Lemma 2.1 was
derived. This helps us in obtaining the hidden partition with required fail-
ure probability.

The failure probability of the random bits used by the algorithm not serv-
ing its purpose can be made as small as e−ω�n� by repeating the experiment
(with new and independent random bits for each execution) n times. Hence,
we estimate failure probability with respect to randomness over the input;
randomness of the algorithm is not taken into account. In this case, we
output the collection of partitions obtained during each trial of the experi-
ment.

Remark 3.1. 1. The lower bound on �q − p� given in (A1) is only ten-
tative and we have not tried to optimize it. But, this can be brought down
even further. In other words, we can allow p and q to become even closer
than is suggested in (A1). We have used a uniform value of α (for all p
and q) to keep the proof simpler. This restricts our range of α since it is
required that α2 min�np� nq� ≥ �log n�2 in the proof of Lemma 1. If p and
q differ by a constant multiplicative factor and nS is “sufficiently large,”
then we can bring down α even further. Consequently, �q − p� can also be
reduced even further.

2. The algorithm only outputs (almost surely) either �V1� � � � � Vk� or
a collection of partitions containing �V1� � � � � Vk�, but it does not certify that
any of these is the hidden one. In fact, no such certificate exists.

4. STRUCTURE OF THE BFS TREE, min�p� q� ≥ 0

If p = min�p� q� and p becomes very small, we cannot tightly bound
n1�1� (using Chernoff bounds) with high confidence since the expectation
itself becomes very small. Similarly, if q = min�p� q� and q becomes very
small, nj�1� �j > 1� cannot be tightly estimated. One exception is when
min�p� q� = 0. In that case, one knows that the respective value is exactly 0.

Hence, when there is no lower bound on min�p� q�, we do not try to give
tight estimates on each Vi’s contribution. Rather, we only tightly estimate
the total size of each level and also show that at every level, V1 contributes
significantly more (or less) than any Vj� j > 1. This is sufficient for our pur-
poses. Fix three arbitrary distinct vertices x�w1� w2. For the sake of keeping
the analysis simpler, we grow the BFS tree from x after removing w1 and
w2 from G. Let nj�x�w1� w2� l

′�, shortly nj�l′�, denote Vj ’s contribution to
the l′th level in the BFS tree grown in G − �w1� w2� starting from x. We
have the following modified version of Lemma 2.1.

164 subramanian and veni madhavan

Lemma 4.1. Assume that τ�l� ≤ δ ≤
√
X−1√

Xl�l+1� . Then, for x, w1� w2 men-

tioned before, with probability at least 1 − e−(�α2 max�np�nq��, for all j > 1,∑
j′≥1

nj′ �l� ∈
(�1−α�l��1+α�l)�nS�l (20)

n1�l�−nj�l�≥�1−α�l�nD�l−2lα�1+α�l�nS�l for p>q (21)

�−1�l�n1�l�−nj�l��≥�1−α�l�n�D��l−2lα�1+α�l�nS�l for p<q� (22)

Proof. As in the proof of Lemma 2.1, we use induction to prove (20),
(21), and (22) for each l′ ≤ l. When l′ = 0, they are seen to hold with
probability 1. Assume that the inequalities are true for all values ≤l′ where
l′ ≤ l− 1 with required probability considering only potential edges incident
on vertices in levels before l′. For each j ≥ 1, let m1�j� = nj�l′� and let
m2�j� =

∑
j′ 	=j nj′ �l′�. As shown before, for any y ∈ Vj − �x�w1� w2�, j ≥ 1,

which is not yet visited by BFS,

Pr�y is in level l′ + 1� = �pm1�j� + qm2�j���1 − f3��
where f3 = O�m1p+m2q��

where f3 = o�α�. The analysis now splits into two cases.

Case p > q. Let m denote n�pm1�1� + qm2�1��. Then, with probability
at least 1 − �k + 2�e−α2m/3, considering only potential edges incident on
level l′,

n1�l′ + 1� ≥ �1 − α�n�pm1�1� + qm2�1�� (23)

n1�l′ + 1� + nj�l′ + 1� ≤ �1 + α�n�pm1�1� + qm2�1�
+pm1�j� + qm2�j��� j > 1 (24)

∑
j≥1

nj�l′ + 1� ∈ ��1 − α�� �1 + α��n
(∑

j≥1

pm1�j� + qm2�j�
)
� (25)

Subtracting (24) from twice (23), we get, for any j > 1,

n1�l′ + 1� − nj�l′ + 1� ≥ �1 − α�n�n1�l′� − nj�l′���p− q�

− 2αn
(∑

j′≥1

pm1�j′� + qm2�j′�
)
�

Using the inductive hypothesis that (21) and (20) are true for l′ and
applying it to the previous inequality, we deduce that (21) and (20) are
true for l′ + 1. Also, for l′ > 0, m ≥ m1�1� + m2�1� ≥ �1 − o�1��nS ≥
max�np� nq�/2. For l′ = 0, m ≥ np = max�np� nq�. This establishes that
(21) and (20) are true for all l′ ≥ 0.

partitioning random graphs 165

Case p < q. Let m denote min�n�pm1�j� + qm2�j�� � j > 1�. Then,
with probability at least 1 − 2ke−α

2m/3, considering only potential edges
incident on level l′, for any j > 1,

nj�l′ + 1� ∈ ��1 − α�� �1 + α��n�pm1�j� + qm2�j��� j > 1 (26)

∑
j≥1

nj�l′ + 1� ∈ ��1 − α�� �1 + α��n
(∑

j≥1

pm1�j� + qm2�j�
)
� (27)

Each of the above represents two inequalities corresponding to usage of ≤
and ≥. Denote by �j−� that inequality represented by (26) which is marked
by j and ≥. Similarly, �j+� is marked by j and ≤. (27+) and (27−) are
similarly defined. Consider any j > 1. If l′ is even, considering the inequality
denoted by �j−� +∑

j′>1�j′−� − (27+), we get

nj�l′ + 1� − n1�l′ + 1� ≥ �1 − α�n�n1�l′� − nj�l′���q− p�

− 2αn
(∑

j′≥1

pm1�j′� + qm2�j′�
)
�

Using the inductive hypothesis that (22) and (20) are true for l′ (l′ is even
and l′ + 1 is odd) and applying it to the previous inequality, we deduce that
(22) and (20) are also true for l′ + 1. In addition, for l′ > 0, m ≥ m1�1� +
m2�1� ≥ �1 − o�1��nS ≥ max�np� nq�/2. For l′ = 0, m ≥ nq = max�np� nq�.

Similarly, if l′ is odd, by considering the inequality denoted by (27−) −
�j+� −∑

j′>1�j′+� we can establish (22) and (20) for l′ + 1. This completes
the proof of the lemma.

When δ ≥
√
X−1√

Xl�l+1� , as explained in Section 2, we grow the lth level from
a random subset D′ of the �l − 1�th level, with each element of level l − 1
included in D′ with probability n−κ�l�, where κ�l� is defined before. The
remaining arguments are similar and are left.

5. RETRIEVING THE HIDDEN PARTITION, min�p� q� ≥ 0

Suppose that the assumptions (A1) and (A2) hold true. Then, as shown
in Lemma 4.1, at level l, the contribution of V1 is significantly more (or
less) than that of any Vj , j > 1, depending on whether p < q (or otherwise)
and whether l is odd or even. We apply this phenomenon to find the hid-
den partition as follows. The algorithm is slightly different from BFSPart()
described before. It is given below.

BFSPartMod�G = �V�E��. Compute a set C�x� for each x ∈ V . If
�C�x� � x ∈ V � forms a partition of V , output this partition. C�x� is com-
puted as follows. For any two vertices y� z both distinct from x, grow the

166 subramanian and veni madhavan

BFS tree from x (in the subgraph induced by V −�y� z�) to the lth level for
some suitable l which depends only on p� q� k and set R�y� z� = +1� 0�−1
according to whether the number of neighbors y has in the lth level is,
respectively, greater than, equal to, or lesser than the number of neighbors
z has in the lth level. If p > q or l is odd, set D�x� �= �w 	= x � R�w�w′� = 1
for at least �k − 1�n vertices w′�. Otherwise (p < q and l is even), set
D�x� �= �w 	= x � R�w�w′� = −1 for at least �k− 1�n vertices w′�. If D�x�
has exactly n− 1 vertices, then set C�x� to be D�x�⋃�x�.

The reason the algorithm succeeds is as follows: if x ∈ V1, then, based
only on p� q, and the parity of l, for any y ∈ V1 − x and any z ∈ V − V1, y
will have more (or less) neighbors than z in the lth level of the BFS tree
grown from x in G − �y� z�. Hence, C�x� will be exactly V1. This is true
for any x and thus we get the hidden partition. The following theorem is a
formal statement of this.

Given G and three vertices x� y, and z, define ny�x� z� as the number
of neighbors that y has in the lth level of the BFS tree grown from x in
G− �y� z�. Similarly, nz�x� y� is defined. Assume, w.l.o.g., that x ∈ V1. We
have the following

Theorem 5.1. With probability at least 1 − e−(�α2 min�max�np�nq��nlSl+1��, for
any y ∈ V1, y 	= x, and any z ∈ Vj� j > 1,

ny�x� z� − nz�x� y� > 0 for p > q (28)

ny�x� z� − nz�x� y� > 0 for p < q� odd l (29)

nz�x� y� − ny�x� z� > 0 for p < q� even l� (30)

Proof. This is proved by applying arguments similar to those employed
in the proof of Lemma 4.1.

As before, when (A2) does not hold, we employ randomness to get the
hidden partition.

Summary. 1. Either the hidden partition of G (if p + �k − 1�q is
known) or a collection containing the hidden partition can be obtained in
polynomial time almost surely for both p < q and p > q. The failure prob-
ability (with or without randomization) is o�n−ω�1��. This can be verified
from the statement of Theorem 5.1 by using (3).

2. If randomization is employed, the failure probability of this ran-
domization not serving its purpose can be made as small as e−ω�n� by repeat-
ing the algorithm n times.

Remarks. 3. The lower bound on �p− q� given in (A1) can be made even
smaller by making α to depend on p and q, instead of using a uniform value

partitioning random graphs 167

as has been done so far. In fact, α = �log n�/
√

min�max�np� nq�� nlSl+1�
can be used in the proofs. Also, it can be seen that the given lower bound
on �p − q� is o�p + �k − 1�q� provided that p + �k − 1�q = n−1+ε for
some ε = ω�1/√log n�. If nlSl+1 turns out to be “very small” compared to
max�np� nq�, one can lower α to values close to α = �log n��max�np� nq��−1/3

by employing randomization. In this case, we randomly choose a o�α/S�-sized
subset E of the lth level and grow the �l + 1�th level from E and compute the
number of neighbors y or z has in this level. This is similar to what we do when
(A2) does not hold. We skip these details. Note that the algorithm remains the
same and various choices of α are only to ensure that the analysis works for a
wide range of distributions.

4. The case of p = 0� q > 0 is the k-coloring problem studied in [15],
which introduces the BFS approach and also shows how to achieve a trade-
off in running time vs. failure probability.

5. The algorithmic results of Sections 4 and 5 imply those of Sections 2
and 3. Still, we treated the case p� q ≥ �log n�2

√
log n/n separately to show

that the sizes of various levels of the BFS tree can be tightly estimated.

In the following, we apply the results of Sections 2 through 5 to solve
several NP-hard problems on random instances.

6. PARTITIONING INTO SPARSE PARTS

Suppose our problem �P0� is, given H and d′, to partition the vertices of
H into k sparse parts with each part having edge density atmost d′. Fixing
d′ = 0, this specializes to the k-coloring problem. The latter problem is
NP-hard (even if G is known to have a k-coloring in which all parts have
equal sizes, see the arguments at the end of this section).

A random model for �P0� is ��n� k�p� q� with the additional restriction
that p ≤ κd′ for some positive constant κ less than 1. Assume that d′ ≥
�log n�3/n. For such a random graph, almost surely, the hidden partition
satisfies d�Vi� ≤ d′ for each i, as shown in Section 1.

We can assume that q ≥ d′�1 − 1/�log n��. Otherwise,

Pr�∃ S ⊆ V� �S� = n� d�S� > d′� ≤
(
kn

n

)
e−(��log n�−2·n�log n�3�

= o�e−(�n�log n����

Thus, any partition into k subsets of size n each will suffice. Hence, we
assume that q ≥ d′�1 − 1/�log n��. This implies that q − p = (�q� and
hence, for sufficiently large X, by Fact 1.2, (A1) is satisfied.

168 subramanian and veni madhavan

Now apply BFSModPart and get a collection of partitions. If, for some
partition �C�x� � x ∈ V � in the collection, each C�x� satisfies d�C�x�� ≤ d′,
then output this partition. From Section 5, we see that, almost surely, the
collection contains the hidden partition and hence we output a partition of
the required type.

The variation of �P0� in which parts of the output partition are required
to be of equal size, denoted by �P0 =�, is also NP-hard since its special
case of finding a k-coloring of a given G with equal-sized color classes is
NP-hard. By finding the hidden partition �V1� � � � � Vk�, we solve problem
�P0 =� also over random instances.

The hardness of finding a k-coloring with equal-sized color classes can
be shown this way. Given an arbitrary G on n vertices, let G′ be the graph
obtained from G by adding �k − 1�n new vertices which have no edges
incident on them. Then, G has a k-coloring if and only if G′ has a k-coloring
with equal-sized classes. In addition, this equivalence is constructive in the
sense that one can obtain a solution of one problem from a solution of the
other problem. This hardness persists even if the input is known to have
such a k-coloring with equal sizes for all classes.

7. DENSE k-CUT

Let �P1� denote the problem of partitioning the vertices of a graph into
k parts with each inter-part cut �Vi� Vj� having edge density at least ρ. We
refer to �P1� as the dense k-cut problem. It is not known if �P1� is NP-
hard even though we suspect it to be so. A random model for �P1� is
��n� k�p� q� with the additional restriction that ρ ≤ κq for some positive
constant κ less than 1. For ρ ≥ �log n�3/n, a random graph drawn from this
model almost surely satisfies d�Vi� Vj� ≥ ρ for each i 	= j.

We can assume that p ≤ ρ�1 + 1/�log n��. Otherwise, the problem
becomes trivial since any partition of V into k parts of size n each will
work. To see this, let � denote the event that ∃ S1� S2 ⊆ V � �S1�� �S2� =
n� S1 ∩ S2 = �� d�S1� S2� < ρ. Then,

Pr��� ≤
(
kn

n

)(
kn− n

n

)
e−(��log n�−2·n�log n�3� = o�e−(�n�log n����

This implies that q − p = (�q� and hence, for sufficiently large X, by
Fact 1.2, (A1) is satisfied. As in Section 6, we apply BFSModPart and get
a collection. If, for some partition �C�x� � x ∈ V � in the collection, each
interpart edge density is at least ρ, we output this partition. From Section 5,
we see that, almost surely, the collection contains the hidden partition which
is a desired partition.

partitioning random graphs 169

8. MAX-k-CUT AND MAX-k-SECTION

Let �P2� denote the problem of partitioning the vertices of a graph into
k parts with maximum total cut size (number of edges joining vertices in
different parts). This is the unweighted (unit edge weights) of the max-
k-cut problem and is also known as the maximum k-colorable subgraph
problem. When the parts of the output partition are also required to be of
equal size, we denote it by �P2 =�. This is the unweighted max-k-section
problem. The decision versions of �P2� and �P2 =� are both NP-complete
since recoginizing k-colorable graphs is reducible to them.

Given an instance G (on n vertices) of �P2�, we construct an instance G′

of �P2 =� on kn vertices as explained in Section 6. Then, from a solution
of G, we get a solution of G′ of equal weight and vice versa. This shows
that �P2� is reducible to �P2 =�.

The mapping G �→ G′ shows that both �P2� and �P2 =� are NP-hard
even if the input instance is known to have an optimal solution in which
all part sizes are the same. In addition, �P2� and �P2 =� are both APX-
complete [14]. Hence, for both problems, it is very likely that there is some
δ > 0 such that no polynomial algorithm can approximate the optimal solu-
tion within a multiplicative factor of 1 − δ. For random instances, however,
an optimal solution can be found almost surely.

A random model for both problems is ��n� k�p� q� with p and q satisfy-
ing (A1). One can also show that, almost surely, �V1� � � � � Vk� is an optimal
solution (for both problems). Also, for any δ > 0, almost surely the total cut
size of �V1� � � � � Vk� lies between v

�= (
k
2

)
n2�1 − δ�q and v∗ �= (

k
2

)
n2�1 + δ�q.

Given G ∈ ��n� k�p� q� and δ > 0, we grow the BFS trees and obtain
a collection as explained in Section 5 and from this output any partition
having the maximum cut size. Almost surely, the collection obtained by
the BFS approach contains the hidden partition because (A1) is satisfied.
This means that we can approximate the optimal solution arbitrarily closely,
almost surely, giving us the kind of approximate solution we are looking for.

9. PARTITIONING INTO DENSE PARTS

Suppose our problem �Q0� is to partition the vertices of a given graph
H into k dense parts with each part having edge density at least d′′. When
d′′ = 1, this is the problem of partitioning V into k cliques which is equiv-
alent to the k-coloring problem on the complement graph. Hence, �Q0�
is NP-hard even if G is known to have such a partition in which all parts
have equal sizes. A random model for this is ��n� k�p� q� with the addi-
tional restriction that d′′ ≤ κp for some positive constant κ less than 1.
For d′′ ≥ �log n�3/n, for such a random graph, almost surely, the hidden

170 subramanian and veni madhavan

partition satisfies d�Vi� ≥ d′′ for each i. To obtain partition into dense
parts, we use arguments essentially similar to those given in Section 6. We
briefly sketch them for the sake of completeness.

When q ≥ d′′�1 + 1/�log n��, any partition into k subsets of size n each
will suffice. Hence, we assume that q ≤ d′′�1 + 1/�log n��. This implies that
p − q = (�p� and hence, for sufficiently large X, (A1) is satisfied. As
before, apply BFSModPart and obtain a collection. If, for some partition
�C�x� � x ∈ V � in the collection, each C�x� satisfies d�C�x�� ≥ d′′, then
output this partition. From Section 5, we see that, almost surely, this would
output a partition into dense parts.

10. SPARSE k-CUT

Let �Q1� denote the problem of partitioning the vertices of a graph into
k parts with each interpart cut �Vi� Vj� having edge density at most ρ. We
refer to this as the sparse k-cut problem. The NP-completeness status of
this problem is not known yet. A random model for �Q1� is ��n� k�p� q�
with the additional restriction that q ≤ κρ for some positive constant κ less
than 1. For ρ ≥ �log n�3/n, a random graph drawn from this model almost
surely satisfies d�Vi� Vj� ≤ ρ for each i 	= j.

By arguments similar to those given in Section 7, we can assume that
p ≥ ρ�1 − 1/�log n��. Otherwise, any partition of V into k parts of size
n each will work. This implies that p − q = (�p� and hence, for suffi-
ciently large X, (A3) is satisfied. As in Section 7, we apply BFSModPart
and obtain a partition with each interpart edge density at most ρ and output
this partition.

11. MIN-k-SECTION

Let �Q2� denote the problem of partitioning the vertices of a graph into
k non-empty parts with minimum total cut size (number of edges joining
vertices in different parts). This is a special case (unit edge weights) of
the so-called min-k-cut problem. The latter problem (and hence �Q2�) is
polynomial time solvable for fixed k [8] and for k = 2; this is the well-
known min-cut problem.

When the parts are also required to be of equal size in �Q2�, we denote
this problem by �Q2 =�. This is the unweighted version of the min-k-section
(min-k-cut with equal sized parts) problem. Any partition into parts of
equal size is referred to as a k-section. Even the special case of �Q2 =�
(when k = 2), known as the minimum bisection problem, is NP-hard.

partitioning random graphs 171

These problems are difficult to approximate even within a reasonable addi-
tive error. Precisely, for any fixed δ > 0, it is NP-hard to produce (in
polynomial time) a bisection whose size is at most the optimal value plus
O�n2−δ� [3].

However, interesting results have been obtained for this problem (mostly,
for bisection) over random instances [1, 2, 4, 5, 7, 10] with a planted bisec-
tion. In a random graph, every bisection has the same expected width and
hence there is not much information which helps us in separating optimal
bisections from the rest. Thus, average case results are based on models in
which a bisection of small width is planted (arbitrarily or randomly) in a
random graph. The random graph is chosen so that the planted bisection
is almost surely the unique optimal bisection.

A random model for this problem is ��n� k�p� q� with p and q with
p > q. If p and q are sufficiently far apart, the hidden partition is the unique
optimal k-section. In our model, we assume that p and q satisfy (A1).

References [1, 7] both proposed bisection algorithms which work for a
quite large class of distributions, but these are quite complex, using the
ellipsoid method or semidefinite programming tools. References [4, 10]
proposed much simpler algorithms that work for a smaller class of dis-
tributions. The algorithm of [10] finds the unique optimal bisection almost
surely if p − q = 4�n−1/6+ε� for any fixed ε > 0. This also implies that
we need to have p ≥ n−1/6. Recently, [4] presented a simple combinatorial
algorithm for bisection and showed that this algorithm succeeds as long as
p− q ≥ n−0�5+δ for some constant δ > 0. This implies that we need to have
p ≥ n−0�5+δ. This also works for the min-k-section problem.

One can show that, for the assumed range of p� q, �Vi� is an optimal
k-section. Also, for any δ > 0, almost surely the width of �V1� � � � � Vk� lies
between

(
k
2

)
n2�1 − δ�q and

(
k
2

)
n2�1 + δ�q. Given that G ∈ ��n� k�p� q� and

δ > 0, we grow the BFS trees and obtain a collection of k-sections, and
from this we output any k-section having minimum width. Almost surely,
the collection obtained by the BFS approach contains the hidden partition
because (A1) is satisfied. This means that we can approximate the optimal
solution arbitrarily closely, almost surely.

In its simplicity, the BFS approach is comparable to those of [4, 10], but
it works for a large class of distributions almost comparable to those of [1].

12. CONCLUSIONS

The BFS trees grown in a random graph (with a planted partition) pos-
sess several nice structural properties which can be exploited to retrieve
the planted partition. These lead to algorithms for solving exactly several
NP-hard partitioning problems over random instances. It would be of inter-

172 subramanian and veni madhavan

est to see if there are some more hard partitioning problems which can be
solved in this way over random instances. Throughout, we assumed that k
is arbitrary but fixed. But, one can see that our results hold true even if k
is allowed to grow slowly with n. However, the value of p + �k − 1�q will
have to be higher and hence its range becomes smaller.

REFERENCES

1. R. B. Boppana, Eigenvalues and graph bisection: An average-case analysis, in “Proceed-
ings of the 28th Annual IEEE Symposium on Foundations of Computer Science (FOCS
’87), 1987,” pp. 280–285.

2. T. N. Bui, S. Chaudhuri, F. T. Leighton, and M. Sipser, Graph bisection algorithms with
good average case behavior, Combinatorica 7, No. 2 (1987), 171–191.

3. T. N. Bui and C. Jones, Finding good approximate vertex and edge partitions is NP-hard,
Inform. Proc. Lett. 42 (1992), 153–159.

4. A. Condon and R. M. Karp, Algorithms for graph bisection on the planted bisection
model, in “Proceedings of RANDOM ’99 Workshop, 1999.”

5. M. E. Dyer and A. M. Frieze, The solution of some random NP-hard problems in poly-
nomial expected time, J. Algorithms 10 (1989), 451–489.

6. T. Feder, P. Hell, S. Klein, and R. Motwani, Complexity of graph partition problems,
in “Proceedings of the Annual ACM Symposium on Theory of Computing (STOC ’99),
1999.”

7. U. Feige and J. Kilian, Heuristics for finding large independent sets, with applications to
coloring semi-random graphs, in “Proceedings of the 39th Annual IEEE Symposium on
Foundations of Computer Science (FOCS ’98), 1998,” pp. 674–683.

8. O. Goldschmidt and D. S. Hochbaum, Polynomial algorithm for the k-cut problem, in
“Proceedings of the 29th Annual IEEE Symposium on Foundations of Computer Science
(FOCS ’88), 1988,” pp. 444–451.

9. M. R. Garey and D. S. Johnson, “Computers and Intractability: A Guide to the Theory
of NP-Completeness,” Freeman, San Francisco, 1978.

10. M. Jerrum and G. B. Sorkin, Simulated annealing for graph bisection, in “Proceedings
of the 34th Annual IEEE Symposium on Foundations of Computer Science (FOCS ’93),
1993,” pp. 94–103.

11. A. Juels and M. Peinado, Hiding cliques for cryptographic security, in “Proceedings of
the 9th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA ’98), 1998,”
pp. 678–684.

12. L. Kučera, A generalized encryption scheme based on random graphs, in “Graph The-
oretic Concepts in Computer Science, WG ’91,” Lecture Notes in Computer Science,
Vol. 570, pp. 180–186, Springer-Verlag, Berlin/New York, 1991.

13. R. Motwani and P. Raghavan, “Randomized Algorithms,” Cambridge Univ. Press,
Cambridge, UK, 1995.

14. C. H. Papadimitriou and M. Yannakakis, Optimization, approximation and complexity
classes, J. Comput. System Sci. 43, 425–440.

15. C. R. Subramanian, Coloring sparse random graphs in polynomial average time, in
“Proceedings of the 8th Annual European Symposium on Algorithms (ESA ’00), 2000,”
pp. 415–426.

	1.INTRODUCTION
	2.STRUCTURE OF THE BFS TREE FOR p, q \geq (\log n)2^{\sqrt{\log n}}/ng n /n
	3.RETRIEVING THE HIDDEN PARTITION FOR p, q \geq (\log n)2^{\sqrt{\log n}}/n
	4.STRUCTURE OF THE BFS TREE,min (p, q) \geq 0
	5.RETRIEVING THE HIDDEN PARTITION, min(p, q) \geq 0
	6.PARTITIONING INTO SPARSE PARTS
	7.DENSE k -CUT
	8.MAX-k -CUT AND MAX-k -SECTION
	9.PARTITIONING INTO DENSE PARTS
	10.SPARSE k -CUT
	11.MIN-k -SECTION
	12.CONCLUSIONS
	REFERENCES

