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ABSTRACT

We consider a class of dynamic games in which each player’s actions are unobservable to the
other players and each player’s actions can influence a state variable that is unobservable to
the other players. We develop an algorithm that solves for the subset of sequential equilibria
in which equilibrium strategies depend on private information only through the privately
observed state.
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1. Introduction

It is natural in many economic environments to model state variables as being private
information. For example, in principal-agent settings, it is hard for the principal to monitor
the asset market activity of the agent (Fudenberg, Holmstrom, and Milgrom (1990); Cole and
Kocherlakota (1998)). In Cournot oligopolies, the firms’ quantity choices are often modelled
as unobservable (Green and Porter (1984)). Given this assumption and the durability of the
produced good, a firm’s cumulated stock of production is an unobservable state variable.

Because of this consideration, the purpose of this paper is to extend the methods of
Abreu, Pearce and Stacchetti (APS) (1986, 1990) to a class of dynamic games in which the
players have hidden states as well as hidden actions. APS consider repeated games with
hidden actions and show that the set of equilibrium payoffs for such games is the largest fixed
point of a monotone set-valued operator. They prove that the largest fixed point is the limit
of iterating this operator on a sufficiently large initial set of payoffs.

We derive a similar result for a class of dynamic games with hidden states. We focus on
Markov-private equilibria, in which an individual’s strategy is constrained to depend on his
past private information only through his current private state. Given such an equilibrium,
each individual’s payoff is a function of his true initial state. We consider the set of pairs
(v, ) that are consistent with Markov-private equilibria, where v is a vector of equilibrium
payoff functions and p is the initial common prior over vectors of individual states. We show
that this set is the largest fixed point of a monotone set-valued operator, and we demonstrate
that the largest fixed point is the limit of iterating this operator on a sufficiently large initial
set of (v, p) pairs.

The main difficulty that we face is formulating exactly what class of dynamic games



is susceptible to our approach. The key restriction turns out to be that beliefs must be
Markov: that is, if all players follow Markov-private strategies, player i’s beliefs about the
other players’ states must depend on his private information only through his current state,
both on and off the equilibrium path. (Otherwise, private information other than his state
would typically affect his best response, meaning that it is not Markov-private.) We provide
a simple procedure to check whether beliefs are Markov, and we present examples of such
games.

The restriction that beliefs be Markov still allows for a wide range of behavior on the
part of beliefs. On the equilibrium path, a player knows his own state, while others do not.

Moreover, the beliefs of the less informed players evolve in nontrivial ways.

2. A Class of Dynamic Games with Hidden States

There are N players who play an infinite horizon dynamic game. The structure of the
game is as follows. Define S; to be player i’s finite state space, and let S = II¥,S;. In period
0, Nature draws a vector sy from S according to the probability density function (p.d.f.) ),
which is common knowledge. Player ¢ observes s;g.

Each player ¢ begins period ¢ > 0 with state s;;—;. The play in period ¢, ¢ > 0,
proceeds as follows. First, player i chooses g;; from the finite set Q;. Let ¢; = (gi¢)~,. Nature
then draws a public shock z; from the finite set Z and a vector of private shocks from the set
O =I1!_,0,,, according to the joint p.d.f. m(z, 04|qs, s¢—1). Here, ¢ = (qi)~, and s; = (s:) ;.
Player i observes (z;,6;:). At the end of the period, agent i realizes payoff w;(0y, 2t, Git, Sit—1)-
The players have common discount factor 6. Player i’s state evolves according to the law of

motion s = gi(0it, 2t, Git, Sit—1)-



At this point, the class of games under consideration is very large. Players can receive
different signals about each other’s actions or states. These signals may be public or not.
The game may be repeated or dynamic.

We restrict the class of games somewhat by making a relatively standard assumption
about the probabilistic structure of the game: the support of the signals/shocks is unaffected

by the actions or states of the individuals:

For any (q, s), m(z,0|q,s) >0 for all # € © and z € Z.

This assumption is similar to the assumption made in APS (1990) about the support of the
public signal. Indeed, this kind of assumption is standard in unobservable action (i.e., moral
hazard) settings.!

Throughout, it is helpful to keep in mind the following simple example of the general

structure.

Example 1. Suppose there are two firms that produce the same good. Firm ¢ begins period
t with a state variable s;; 1 that affects the firm’s cost function. The initial states (s10, S20)
are drawn from the joint p.d.f. p,. The two firms simultaneously choose quantities (qi¢, gat)-
Nature then draws the price of the good from a p.d.f. m,(pt|qit, ¢2t). The price is publicly
observable. Firm ¢’s period ¢ payoff is given by p:git — ¢(git, Si+—1), where c is a cost function.
The state evolves exogenously according to the law of motion s;; = g¢;(6t, Si+—1), where
(014, 02) are drawn from a joint p.d.f. my. The cost shocks (014, 0s;) are i.i.d. over time, and

firm ¢ only observes 0;;.

'Note that because all elements of © have positive probability, the intersection over i of the o-algebras
generated by (z,6;) is the o-algebra generated by z. Hence, the only information common to all players in
period ¢ is the history of public signals (z1, ..., z).



This example is essentially the Green and Porter (1984) duopoly model modified to

include Markov cost shocks that are private information.

3. Markov Beliefs and Markov-Private Equilibria

The APS (1990) algorithm applies to games in which S; and ©; are singletons for all
1, so all shocks are public. We want to develop a similar algorithm for games in which some
of these conditions are relaxed (especially the restrictions on the state space). But there
are necessarily some limitations to our analysis. First, if we allow equilibrium strategies to
depend on a player’s entire private history. Then we have to keep track of other players’
beliefs about that history. The set of such beliefs will have an arbitrarily high dimension as
time passes. Thus, if we are to have a recursive algorithm that solves for the set of equilibrium
payoffs, we must restrict attention to equilibria in which strategies are required to depend on
some finite-dimensional summary statistic of private histories. A natural summary statistic
is the physical state itself.

Given this reasoning, we define a strategy o; for agent 7 to be a collection of functions
(04)22, such that o; maps agent i’s history (s, . ", ¢/ ') into an action choice g; for period
t. Let z* = (2,)L_; be the public history. We define a strategy o; to be Markov-private if
for all ¢, 0, maps any histories with the same values for (zt_l, Sit—1) into the same action.
Hence, in a Markov-private strategy, players can condition their actions arbitrarily on the
public history, but their actions can only depend on their private history through their current
private state.

Restricting attention to equilibria in which players use Markov-private strategies is

only sensible under relatively strong conditions on the evolution of beliefs. Suppose, for



example, that player ¢’s beliefs about the other players’ states depend arbitrarily on player
1’s private history. Then, generically, player ¢’s optimal response would depend on his entire
private history. Thus, if we want to restrict attention to equilibria in which players use
Markov-private strategies, we need to focus on games in which player ¢’s beliefs about other
players’ current states are restricted to depend on player ¢’s private history only through his
current state.

This consideration motivates the following definition. The definition uses the notation
that given an initial p.d.f. j, over S and strategies o, Pr(2%, 0", so; 11y, o) represents the implied

joint p.d.f. over realizations of (z¢,6", s¢).

DEFINITION 1. Let A be some set of p.d.f.’s with support S. Beliefs are Markov over A in a

game if for any p, in A, any collection of Markov-private strategies o, and any strategy o, :

(1) Pr(s—i,t|3i07 ztv 027 Koy O —i, U;) = Pr(s—i,t‘sita Zt; Ko, 0)7 fO?" all (Si07 Zt? 9:)

(2) The p.d.f. of s; conditional on 2*, Pr(s:|2"; pg, o), lies in A for all 2.

This definition imposes two requirements on the evolution of beliefs. The first require-
ment is that player i’s beliefs about the other players’ states (which are given by the p.d.f.
of s_;+, conditional on player i’s information) depend only on his current private state and
on the public history and that these beliefs are uninfluenced by the particular strategy that
player i has followed. The second requirement is that the probability of the players’ states,
conditional on the public history, always remains in A. It is important to note that even if
beliefs are Markov, players need not be symmetrically informed after all histories, and play-

ers’ preferences over action profiles need not be common knowledge (as is true in Fudenberg,



Holmstrom and Milgrom (1990)).

Because of the stationary structure of the game, Definition 1 can be verified by simply
checking whether it holds over a single period. In particular, let A be a set of p.d.f.’s with
support S, and suppose that u lies in A. Suppose that a = (a;)Y,, where ; : S; — Q; is an

arbitrary strategy. For any (a, i), we can define the p.d.f. ¢(.;a, u) as follows:

¢(Za 0,s;a, N) = 71'(2, 9|a<8)7 S)M(S)

over Z x © x S. Then, it is easy to see that beliefs are Markov over A if and only if for any

strategy «, any p in A, and any o}, ¢ satisfies the following:

(3) Forall z, u'(z) € A

where (/' (2)(s') = ¢(9(0,2,q(s), s) = &'|212, )

(4) ¢<gj(9j>Z7Qj(Sj)7Sj) = 8;' for J 7£ i|z>0i> Si;a*hagnu)

= ¢(9;(05,2,q(s5),55)|2, 53; 0, ) for all (65, ;).

(The notation ¢(g(0, z,q(s),s) = §'|z; a, u) stands for “the probability of the updated state
vector g(6, z,q(s), s) equalling ', conditional on the public signal’s equalling z.”) On the
one hand, these are simply the one-period analogs of the conditions in Definition 1, so they
must be satisfied in any game in which beliefs are Markov over A. On the other hand, the
conditional probabilities in Definition 1 can be constructed by doing a series of one-period
Bayesian updates; hence, (3) and (4) imply (1) and (2).

A key feature of games in which beliefs are Markov over A is that it is easy to keep



track of players’ beliefs over each other’s states. Let A = {(«u,...,an)|a; : S; — @;}. Then,
associated with any game in which beliefs are Markov over A, we can define a belief updating

function T : A x A x Z — A by:

W= T(az2)

where (/' (s') = ¢(s' = g(0, 2, a(s), s)|2; , )

where ¢ is defined as above. The function T tells us how beliefs over s evolve according to
realizations of the public signal z;.

At this point, it is helpful to return to the duopoly example and think about when
beliefs are Markov in that context. First, suppose that my(61,60s) = g, (61)ma,(02), so that
cost shocks are independent. Define A = {1 (s1,52)|to(s1,82) = pro1(S1)pho2(S2)}, so that
initial states are guaranteed to be independent. Then, beliefs are Markov over A. The laws
of motion of the two firms’ states are entirely independent of each other; thus, the price is
the only signal that firm 7 receives about firm j’s state, and that information is public. In
contrast, if mg(61, 02) does not exhibit independence, then, in general, beliefs are not Markov.

Having defined the concept of Markov beliefs, we can now describe our notion of

equilibrium.

DEFINITION 2. Consider any game in which beliefs are Markov over A and p, lies in A.
A Markov-Private Equilibrium (MPE) is a collection of Markov-private strategies such
that player i’s strategy prescribes a weakly optimal action at every information set, given

that at any information set, player i’s beliefs about the other agents’ states are described by

Prt(S—i,t|Zt, Sit; 0, [lg)-



Note that if S; is a singleton for all ¢, MPE are equivalent to perfect public equilibria
as defined by Fudenberg and Tirole (1991).

For repeated games with public signals and unobservable actions, APS (1990) demon-
strate that there is a recursive representation for the set of equilibrium payoffs. In our setting,
given the possibility of hidden states, there is no such recursive representation for the set of
equilibrium payoffs. In making action choices in a given period, a player has to know how
his continuation payoff depends on his updated state. With hidden states there is a recursive
representation for the set of equilibrium payoft functions.

This discussion makes clear that we have to express payoffs in terms of equilibrium
payoff functions. Specifically, let ¢* be an MPE. We define the equilibrium payoff function

v; to be

v,  S—10,1]

vi(si) = max Ui(03; 8i, po: 075)

where U; is the period zero payoff derived by agent ¢, given an arbitrary strategy o;, his
current state s;, the initial prior over states, and the strategies of the other agents. Hence,
the equilibrium payoft function v; describes the agent’s maximal utility in period 0 for each
initial state s;, given that all other agents play their equilibrium strategies.

The following point is worth keeping in mind. As APS (1990) emphasize, when S;
is a singleton for all 7, the set of Markov-private equilibrium payoffs is equivalent to the set

of pure strategy sequential equilibrium payoffs (indeed, it is equivalent to the set of pure



strategy Nash equilibrium payoffs). This equivalence does not carry over to our setting with
hidden states. Once S; has multiple elements, then the set of Markov-private equilibrium

payoffs may be smaller than the set of pure strategy sequential equilibrium payoffs.

4. Algorithm

Consider a game in which beliefs are Markov over A, where A is a closed set of pdf’s
with support S. Denote the game’s belief updating rule by 7. Let F; be the set of functions
from S; into [0, 1]. This is the set of possible payoff functions for player i. Let T’ = ITY_; F}, x A.
Then, an element (v, u) € I' is a specification of a payoff function for each agent and a pdf p
over S.

Let v* be the subset of I, with the property that (v, ) lies in +* if and only if v is
a vector of payoff functions for a Markov-private equilibrium, given that player states are
initially drawn from the pdf p. Our goal is to solve for v*, which we assume is non-empty.

In what follows, we define B to be a function from the set of all subsets of I' into
itself. Conceptually, B(7) consists of payoff function vector-belief pairs that are consistent
with some Markov-private equilibrium, given that v contains all possible continuation payoff
function vector-belief pairs. This is, of course, analogous to the B operator in APS (1990).

Mathematically, let v C T'. Then, (v, ) € B(y) if for all 4, there exists ¢ that maps

S; into Q;, and for all z in Z, there exists (v/, )(2) in 7 such that

(B) W) =T(q,=?)

and for all s; in .S;

6)  vi(si) :( Z )[Ui(9i>Z,Qf(Si)aSi) + 6v;(2)(9i(0s, 2, 47 (54), 51))| (2, 0q" (5), 8) (53] 84)



ui(0:, 2, Giy Si)+
(1) qi(si) € arg max ) (2, 01q%:(5-0), Gir $)p(5-i] 5:).-
(s—4,2,0) 5@,2(2)(9@(91, Z, 4y, Sz))

The first condition (5) describes the evolution of beliefs on and off the equilibrium path.
The second (promise-keeping) condition describes the payoff to agent i, depending on his
initial state and assuming that next period’s payoff function is v'(z) and that next period’s
state is given by ¢;(0;, z, ¢;(s:), s;). The final (incentive) condition requires the continuation
equilibrium action to be weakly optimal, given any initial state.

It is straightforward to prove the following lemma.

LEMMA 1. If 7 is closed, B(7) is closed.

Proof. Let (v, u™)%_; be a convergent sequence of elements of B(y) with limit (v>°, u>).
We need to prove that (v*°,u>) € B(7y). For each m and for all z, there exists ¢ and
(V™ (2),u™(2)) € v such that (v, u™, ¢™ v™(z), u™(z)) satisfies (5)—(7).

The sequence (v™, u™, ¢, v™(2), 1" (z)) has a convergent subsequence, so let’s assume
without loss of generality that the sequence itself converges to (v°°, u>, ¢, v>(2), u°(2)).
Because 7 is closed, (v>'(z), u°(2)) € .

Now, we need only verify that (v, u*>, ¢, v°(z), > (2)) satisfies (5)—(7). To see
this, note that since @; is discrete, there exists M such that ¢™(s) = ¢*(s) for all s in S
and all m > M and the right-hand sides of (5)—(7) are continuous in p. This completes the
proof. &

The main proposition for dynamic games is the following:

PROPOSITION 1. Let vy =T, and let v; = B(v;_;), 1 < j < oc. Then, if v* denotes the set

10



of (v, ) such that v is the payoff function vector for some Markov-private equilibrium when
wnitial states are drawn according to u, the following conditions hold:

(i.) B(v") ="

(id.) v C v € Vi1

*

(i1.) Define v, so that v, = N32,7;. Then, v, = 7"

Proof. We prove the three parts of the proposition in order.

(i.) B(v*) = ~*: First, we prove that v* C B(v*). Consider an MPE with an equilib-
rium payoff function vector v and initial beliefs p. In the first period, along the equilibrium
path, agents have strategies (¢} (s;))Y,. Conditional on Nature’s draw of z, agents then play
an MPE continuation equilibrium beginning in period two. Each continuation MPE has an
associated equilibrium payoff function vector v'(z). The equations defining B require ¢ (s;)
to be the equilibrium action choice for agent i. Moreover, the equations defining B require
v;(s;) to be the maximal utility agent i can get if he starts with arbitrary state s; and given
that the other agents play the MPE equilibrium strategies. It follows that (v, p) € B(y*). It
is obvious that v* O B(+*), which completes the proof.

(ii.) v* € v; € v;_1: It is obvious that if 4/ C v, then B(y') € B(y). Since 75 = T
and v, = B(7y,) C T, 75 C 74, which implies that v5 C ,, and so forth. Since v* C 7, this
implies that v* = B(y*) C 7,, which implies that v* C ~,, and so forth.

(iii.) v, = 7" It is obvious from (ii) that v* C ~_,. Now we need to prove that
v* D 7Yoo We prove this in three parts:

Part 1: If B(y) = v, then v C ~*. This is obvious from the definition of ~*.

Part 2: B(7,) € 74 This follows from v; 2 v, for all j, which means that ~,,; 2

11



B(v,,) for all j, which proves the result.

Part 3: B(7.,) 2 7o This is somewhat more difficult. Take any (v,u) € v, for
all j. This implies that (v,u) € B(y;) for all j. So for all j and for all z, there exists
¢/ and (v''(z),1'(2)) € ~; such that [v, i, , ¢, v"(2), W' (2)] satisfies (5)—(7). Since we can
always choose a convergent subsequence, assume, without loss of generality, that this sequence
converges, and let the limit be [v, u, ¢*, v>(2), u°'(z)]. Because 7y, is the intersection of
closed sets, 7, is closed, and so (v°(z), u>'(z)) is in 7., for all z. To complete the proof,
we need only verify that [v, i, ¢, v>(2), u>'(z)| satisfies (5)—(7). But this follows from the
same logic as in the proof of Lemma 1. R

Hence, we can solve for v* by iterating the backwards operator B. Having solved for
¥, it is then straightforward to actually construct the set of all MPE for a given game (given
that y, lies in A). Let p, be the initial p.d.f. over states, and pick an arbitrary element of
~* with the belief component 1. This element of v* implies some vector of action functions
(45, .-, qxn)- It also implies, for each realization of z, a p.d.f. 1/(z) and a vector of continuation
equilibrium payoff functions v'(z). Given (u/,v"), we can construct the second period action
functions, and so on.

The above discussion assumes that the horizon of the game is infinite. However, it
should be clear how to extend the analysis to 7 period games, 7 finite. In the last period 7,
for any initial p.d.f. over states p, we can calculate the set of Nash equilibria. Given any
possible Nash equilibrium, it is straightforward to calculate the vector of equilibrium payoff
functions. This gives us a set v, of vectors of equilibrium payoft functions and p.d.f.’s. Now
iterate on this initial set using the backwards operator described above. The iterated set

B7!(v,) equals the set of equilibrium payoff functions in period t.

12



5. Concluding Comments

Self-generation has proved to be a useful method of characterizing the set of possible
equilibrium outcomes in repeated games (see, for example, APS 1986) and in dynamic games
(see, for example, Atkeson 1991). This paper provides a way to extend the concept of self-
generation to a rich collection of dynamic games in which both actions and states are hidden.
We conjecture that the other results obtained by APS 1990 (the bang-bang characterizations
of equilibrium payoffs and monotonicity in the discount factor) are also obtainable for this
class of games.

Following Spear and Srivastava’s (1987) work, a large number of papers have exploited
the basic APS idea of using utility as a summary statistic in solving dynamic mechanism
design problems. Similarly, it should be straightforward to extend the basic approach of this
paper to dynamic mechanism design problems in which the agent’s actions or current private
information influences an unobservable state variable (see Fernandes and Phelan (1998) for

some work along these lines).
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