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Abstract

A population of players of players is randomly matched to play a normal
form game G. The payoffs in this game represent the fitness associated with
the various outcomes. Each individual has preferences over the outcomes in
the game and chooses an optimal action with respect to those preferences.
However. these preferences needn’t coincide with the fitness payoffs. When
evolution selects individuals on the basis of the fitness of the actions they
choose, the distribution of aggregate play must be a Nash equilibrium of
G. Weak additional assumptions on the evolutionary process imply perfect
equilibrium.
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1 Introduction

Economic models built around rational self-interested agents are rarely, if ever, ac-
curate as literal descriptions of the environments they intend to capture. Agents’
objectives may differ from those attributed to them, and even when they coincide
agents may not have the sophistication necessary to choose actions which best
achieve those objectives. The “as if” viewpoint is a defense of economic theory
based on the following argument. Typically, what is at stake in the economic
environments is important for survival as a player in that environment (for ex-
ample, profits in a market context). Therefore, regardless of the actual motives
of real-world agents, an essentially Darwinian mechanism should eventually im-
plv that their behavior is consistent with optimization (else they would not have
survived.) It should appear to an outside observer who is agnostic about the true
decision-making process “as if” it were the outcome of strategically sophisticated
interaction among optimizing agents.

Game theorists have attempted to formalize one aspect of the viewpoint using
models of evolutionary equilibrium. The agents in these models are not rational
utility-maximizers, but rather are genetically programmed to play particular ac-
tions. These agents interact with one another over time, and evolution selects
in favor of those agents whose pre-programmed actions happen to be optimal
against the (distribution of) actions of other agents. Evolutionary equilibrium,
a situation in which every surviving agent uses an optimal action, provides some
support for as if: the distribution of actions in an evolutionary equilibrium must
be a Nash equilibrium. This is true for virtually all formalizations of evolutionary
equilibrium, e.g. the ESS concept (Maynard Smith 1982) and its variants, as well
as dynamic versions such as the replicator dynamics (Taylor and Jonker 1978)
(See Weibull (1995) for a survey).

There are drawbacks. First of all, while solution concepts based on evolution-
ary ideas provide predictions which are consistent with Nash equilibrium, they
sometimes make no prediction at all (ESS can fail to exist for some games, the
replicator dynamics can fail to converge). Secondly, (and it can be argued that
these two points are closely linked) they tend to bear too much resemblance to
biological models and too little to economics. Even those who are svmpathetic to
the idea of “bounded rationality” can be skeptical that this extreme behavioral
assumption is any more convincing as a model of economic agents.

In this paper we propose an alternative approach to the as if argument. We
start by specifyving an n-player game G with action sets (A;)™,, and payoff func-
tions (m;)%,. As in the standard evolutionary framework, we interpret these
pavoff functions as representing fitness, and we imagine a population of indi-
viduals who are repeatedly randomly matched to play G. Unlike the standard



framework, agents in our world are rational decision-makers. They have pref-
erences over outcomes and they form conjectures about the behavior of other
agents. Based on these they make choices which are optimal given their prefer-
ences. In our interpretation, however, the term “rational” implies nothing more
than this. In particular, it imposes no constraint on the preferences governing
these choices (however we do assume that they satisfy the standard von Neumann-
Morgenstern axioms.)! Which preferences are represented in the population is to
be determined endogenously by the evolutionary process.

Slightly more formally, each of n populations (one for each player-role in G) is
characterized by a distribution ! over the set ©; of possible utility functions. An
individual is drawn independently from each population according to the product
probability 1 = [I} #* to choose actions in G. Selected individuals know their
own utility functions, have beliefs about their opponents’ play and choose actions
to maximize expected utility.

This interaction can be summarized as an n-player game of incomplete infor-
mation I'(x) in which the prior distribution over “type”-profiles is u, each player
observes his realized type, and chooses an action in A;.

We assume that play is described by an equilibrium of I'(x). That is, each
individual has a correct belief about the distribution of actions he will face and
chooses an action which is a best reply to this distribution (according to his own
preferences). This equilibrium determines an aggregate distribution of action-
profiles, which to an outside observer appears as the outcome of the underlying
game G.

The preferences that are “fit” are those that induce choices that are successful
relative to the objective payoffs (m;)"_;. The population distribution of prefer-
ences evolves as those that are more fit grow in representation relative to those
that are less fit. An evolutionary equilibrium is then a distribution of preferences
¢ and an equilibrium of I'(x) such that all individuals are equally successful
relative to (m;)7,

Our question is whether play in an evolutionary equilibrium will appear to
an outside observer as if it were the outcome of Nash equilibrium play by agents
whose preferences were actually given by (7).

We do not mean to advance the position that rationality implies an expected utility repre-
sentation of preferences. We assume such a representation because it simplifies the analysis and
allows us to focus on the question at hand, namely the evolution of preferences over outcomes
of strategic interaction. It is indeed interesting to explore the parallel question of whether evo-
lution should imply that behavior is consistent with expected utility maximization. This is a
question about the evolution of preferences over uncertain outcomes, hence outside the narrow
scope of this paper. Papers which have examined this question include Robson (1996b), Robson
(1996a) and To (1995).



To answer this question, we propose a stability criterion for preferences based
on the type of evolution discussed above. In the spirit of “static” concepts of evo-
lutionary stability (such as ESS), our criterion is intended to capture the effects
of mutation and natural selection, while avoiding an explicit model of the evolu-
tionary process. Under our definition, a set S of preference distributions is stable
if there is a set U of neighboring distributions such that starting anywhere within
U. evolution must result in a return to S. The neighboring distributions are in-
terpreted as the set of possible outcomes of a process of mutation. The “paths” of
the evolutionary process are modeled abstractly as selection sequences: sequences
of distributions which satisfy a standard “fitness monotonicity” property.

A set of outcomes in G is supported by stable preferences if those outcomes
can be obtained as the distributions of play within a stable set of preference dis-
tributions. We show that every game G has a non-empty set of outcomes that
are supported by stable preferences. We take this to be an important advan-
tage of the present approach over the standard models built around evolution
of strategies. which can fail to generate solutions in many games. By assuming
nothing more that monotonicity in selection sequences, we prove that outcomes
which are supported by stable preferences must correspond to Nash equilibrium
distributions of G. Thus, our model formalizes the argument in favor of the as
if viewpoint. Finally, by imposing some weak additional assumptions on selec-
tion sequences, we obtain an equilibrium refinement: only trembling-hand perfect
equilibria can be supported by stable preferences.

2 A Model

We start with an n-player normal form game G with finite action sets A;, 7 €
{1,...,n} and payoff function 7 : A — R", where A = [], A;. We view 7
as representing the “true” objective payoffs, or fitnesses. A player’s survival is
dependent upon his success in the game as evaluated by m. Let A represent the
set of probability distributions on A, i.e. the set of outcomes in GG, and E C A
those distributions arising from Nash equilibria of G

We follow the standard approach to evolutionary equilibrium selection by sup-
posing there are n populations of players, and a process which randomly selects
an individual from each population to play G. We depart from the standard ap-
proach by assuming these individuals have preferences over outcomes in G, and
choose actions optimally in response to beliefs about the play of their selected
opponents. However, these preferences are not necessarily represented by 7.

Let ©;, = [0,1]] be the set of possible von Neumann-Morgenstern payoff
functions on A. Notice that with this specification, each preference ordering



is represented by a continuum of distinct, but equivalent, payoff functions. For
example, ©; contains a continuum of affine transformations of 7. This equivalence
class of preferences will play an important role and will be denoted 7. The set of
possible n-vectors 8 of payoff functions is © = [[} ©;, and can be thought of as
the set of all games with action set A.

The environment will be characterized by a product probability measure on ©
representing the current distributions of preferences in each of the n populations.?
It simplifies some arguments to assume that these distributions are non-atomic.
Let P(O) be the set of all non-atomic probability measures 4 on © such that
p=p'xp?x...xu" Denote by C(u) the support of the preference distribution
1.2 The matching process selects individuals from population 7 according to the
distribution p*, independently of the players drawn from other populations.

This interaction can be described as an n-player Bayesian game I'(x) in which
the set of possible states of the world is © and the common prior distribution
is 1. We are going to assume that aggregate play among the populations is an
equilibrium of this game. That is, we will assume that each individual, upon
being selected to play, will have correct beliefs about the distribution over his
opponents’ play and will choose an action that is a best-reply to this belief, given
his own preferences.

While it is not a part of our formal model, we view equilibrium as arising
from a process of learning which operates much faster than the evolutionary
process we seek to model. To be specific, our model will describe the evolution
of the tvpe distribution u. We suppose that whenever a new distribution v
arises as a consequence of evolutionary forces, the learning process always reaches
equilibrium with respect to I'(v) before subsequent evolution proceeds.

A pure strategy profile in T'(x) is a measurable function o : © — A specifying
an action profile in G for every possible payoff profile. Let ¥ be the set of

2Throughout the paper, the domain of the preference distribution is the Borel o-algebra of
subsets of ©

3The support of a probability measure is the smallest closed set which has measure 1. Such
a set always exists for Borel measures on subsets of R

We find it perfectly natural to assume that evolution proceeds much more slowly than
learning, but clearly our assumption is extreme. An interesting line of development for this
research would be to explicitly embed a model of learning into our evolutionary framework.
It would then be possible to ask whether our assumption is justified by a model in which the
relative rates of learning and evolution are somehow parameterized and the appropriate limit is
taken. A common result of dynamic models of equilibrium selection is that (the implications of)
extreme assumptions are not necessarily borne out by the limits of “interior” models. Papers
with such lessons include Binmore and Samuelson (1997), Binmore, Samuelson, and Vaughn
(1992). Ely (1996), Kandori, Mailath, and Rob (1993), Robson and Vega-Redondo (1996),
Sandholm and Pauzner (1997) and Young (1993).



pure strategy profiles. In our evolutionary model, we will assume that each
individual knows only his own payoff function when choosing an action, and
never randomizes. Hence ¥ = [, ¥; where 3; is the set of maps o' : ©; — A;.

Whenever p is fixed, we will view ¥ as a topological space of random variables
on the measure space (0, ) with the topology 7, of convergence in measure.’
Given a profile of strategies o € ¥, the utility of player ¢ is the random variable
0'(5()). The fitness of plaver ¢ is the random variable 7*(c(6)). The outcome
of play, denoted z,(0), is the distribution of o, which is an element of A.

In the model we have described, a player cares only about the distribution
over opponents’ actions, not the opponents’ types. We will therefore simplify
notation by defining best-replies as functions of outcomes, rather than strategy
profiles. The pure action best-reply correspondence for a given game 8 is

I

By(z) := [] argmax,. 4 6 (a,z7")

=1

and the pure strategy best-reply correspondence in I'(u) is

Gu(x) = [[ argmax, s By (0 (01, 27"))

1=1

In the above notation, E, denotes expectation with respect to the measure p,
and (0,2~ %) is the random utility to player ¢ when using strategy o against
the opponents’ distribution of play z7°.

We assume that the aggregate distribution of play can be described by an
equilibrium in T'(x). A pure-strategy equilibrium in I'(x) is a profile ¢ of pure
strategies with distribution x such that for each ¢, o* € §,(x).

Because we have restricted attention to non-atomic distributions, the results
of Milgrom and Weber (1985) and Radner and Rosenthal (1982) imply that the
restriction to pure-strategies entails no loss of generality. In particular, for any
© € O, there is at least one equilibrium of I'(x) in pure strategies, and for any
“mixed” equilibrium there is a “purification,” i.e. a pure strategy equilibrium
which is equivalent in all relevant respects.

We conclude this section with the following useful lemma.

>Convergence in measure is the appropriate topology for our purposes because strategies
are interpreted as aggregate action profiles. Thus, two strategies are “close” only if they are
point-wise close for a large fraction of the population.

6Thus, I'(1) has private values. An interesting extension is the case in which matched
individuals obtain additional information about one another’s’ preferences. This would capture
a world in which traits such as kindness, self-interest, and ruthlessness are (perhaps imperfectly)
perceptible.



Lemma 1 1. For every 8 € ©, and x € A, there is a &g > 0 such that
|2 — z|] < dp = By(Z) C By(z).

2. If 1y < po, then 8, C By,
3. 3, is upper hemi-continuous.

Proof: The first point follows immediately from the continuity of the utility
functions . The second is due to the fact that for any given opposing distribution
x, two best-replies can differ on a set of measure zero, but nowhere else.

To prove the third, it suffices to show that for every € > 0, there existsa ¢ > 0
such that if || — z|| < § and o0 € §,(Z) then pu({0: 0(f) € By(z)}) > 1 — €. Let
X be a subset of © of y-measure at least 1 — ¢ and let § = infy dy where dy is as
defined in the first part of this Lemma. Then if || — z|| < ¢, and if 0 € 3,-(Z)
then p*({0: o(0) € Bo(x)}) > p(X) > (1 —¢). u

3 Mutation and Selection

The central question of this paper is whether evolutionary forces, acting on the
preferences in the population, will bring about distributions y such that equilib-
rium play ¢ € £(p) is in E, i.e. corresponds to a Nash equilibrium of the true
game. In our analysis of this question, we do not develop an explicit model of the
evolutionary process. Instead. we follow in the spirit of “static” notions of evolu-
tionary stability such as ESS Maynard Smith (1982) (see also Weibull (1995) Chp
2 for a survey of this approach.) That is, we propose criteria which characterize
“stable” sets of preference distributions, and argue that these criteria capture the
important features of unmodeled evolution.

Our criterion for evolutionary stability of preferences has the usual two compo-
nents: natural selection, the process by which unsuccessful types are replaced by
successful types. and mutation, the process by which previously unrepresented
tvpes can cnter the population. Roughly, an outcome x € A is supported by
stable preferences if the preferences which support the outcome are stable un-
der natural selection. and robust to mutation. We discuss these features in the
present section.

Our representation of mutations is a generalization of the representation found
in traditional concepts of evolutionary stability. ESS, for example, tests the
stability of an outcome by ensuring its robustness against small perturbations
of the population strategy profile. Essentially this amounts to verifying that
evolutionary forces will restore the original profile starting from any profile in
some arbitrarily small neighborhood. The implicit idea is that playvers’ strategies
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are subject to mutation. but we can be sure that the aggregate profile cannot
move far before forces of natural selection come to dominate.

In our model, evolutionary forces operate on the distribution of preferences
in the population. We therefore need to characterize the types of preference dis-
tributions which can come about as a consequence of mutation, starting from an
arbitrary initial distribution pu. There are two criteria for a definition of neigh-
borhoods of post-mutation distributions. The first is that they be sufficiently
rich so as to allow all combinations of tvpes to enter the population. The second
is that theyv be “bounded,” capturing the idea that mutation operates slowly.

A notion of closeness which meets these criteria is the following.

Definition 1 A neighborhood of a type distribution u € P(©) is a set U of full-
support distributions such that for some ¢ > 0, ||p —v|| < ¢ forallv € U. If S
is a set of priors, then a neighborhood of S is the union of neighborhoods of the
elements of S.

Individuals in the population choose actions which are optimal relative to their
preferences. However. the objective successfulness of an action is determined by
the true pavoff function 7. A process of natural selection operates on the types in
the population, favoring those types which are most “fit” relative to the current
environment. Formally, we assume that the distribution p evolves according to
the relative successfulness, evaluated according to 7, of the equilibrium actions
being used by individuals of various types.

Our goal is to incorporate as much of the consequences of such dynamics
as possible without restricting attention to any specific process. To do this. we
construct sequences of distributions, called selection sequences which can be con-
sidered abstract “paths” of the evolutionary process. Each step of the sequence
is assumed to satisfv a standard “payoff monotonicity” property (see Weibull

(1995)).

Definition 2 A pair of distributions (g1, 12) s a selection step relative to o
if o € (), po < 1y and for each i € {1,...,n} and for every X, Y C ©;, such
that (X)) (YY) > 0,

> -
7 b _ ,n_i o /“LQ(‘X)
w (7 (0)1X) B E, (z*(0)lY) = n(X)

pa(Y)

E ()

IAN B IV

Evolution will be assumed to continue until a distribution and equilibrium
are reached that are invariant, i.e. any selection step is trivial.



Definition 3 A distribution p is stable with respect to outcome v € A if there
is some equilibrium o € E(u), whose distribution is x and such that there exist
constants ¢; such that (o) = ¢; p-almost surely for every i € {1,...,n}.

The notation §(p) will represent the set of outcomes with respect to which p
is stable. If S is a set of distributions, then §(S) is the set U,esd(p). Say that
the set S is stable with respect to the set of outcomes O if §(u) # 0 for each
e Sandif6(S)=0.

In general, stability with respect to outcome z implies nothing about x. How-
ever. as long as the support of the type distribution intersects 7, the class of
preferences which are equivalent to the true preferences, stability implies that x
1s a Nash equilibrium.

Proposition 1 Suppose @ N C(u) # O and z is the distribution of some equi-
librium o € E(u). Then p is stable with respect to = if and only if x is a Nash
equilibrium of G

To reach a stable preference distribution, selection may have to operate for
more than a finite number of steps. We define a selection sequence to be any
infinite sequence of distributions which satisfy the payoff-monotonicity property.

Definition 4 A sequence of pairs {(ux,0k)} is a selection sequence if for
every k, (. le+1) 15 a selection step relative to oy.

Sav that a selection sequence {(u,0x)} converges if there is a distribution
u* such that g — p* in norm. Because we have assumed little more than pay-
off monotonicity in selection sequences, there is no guarantee that a limit point
of a selection sequence may itself be stable. In other words, it is possible that
the selection will continue to occur once the limit is reached. We could impose
assumptions which rule out such ill-behaved selection sequences (for example,
focusing on a particular class of dynamic processes which satisfy a continuity
assumption). Instead, in the interest of maintaining as much generality as pos-
sible, we will simply focus on the stable limit points, implicitly assuming that
selection continues to occur following convergence to an unstable limit point. *
Let £(u) be the set of stable limit points of selection sequences starting with p.
We will later show (Proposition 4) that £(u) is non-empty under quite general
circumstances.

"One may still be concerned that the limit point x* might be stable with respect to some
z, vet play along the sequence never approaches x. Proposition 4 shows that mild assumptions
guarantee that p* is stable with respect to at least one accumulation point of the sequence of
play.



4 Stability

In this section we introduce the first of two stability definitions. We say that
a set of outcomes O is supported by stable preferences if there is a set S of
preference distributions which are stable with respect to that set of outcomes.
and a neighborhood U of S from which selection must return to S. Without
imposing any further restrictions on selection sequences we show that every game
has a set of outcomes that is supported by stable preferences and every such set
is contained in the set of Nash equilibria.

Definition 5 A set O C A of outcomes is supported by stable preferences if it is
a minimal non-empty closed set with the following property. There exists a subset
S C P(O) which is stable with respect to O and a neighborhood U of S such that
0+ L(v)C S forallvel.

We begin with an existence result.

Theorem 1 FEvery game has at least one set of outcomes that is supported by
stable preferences.

The proof of this theorem relies on some properties of selection sequences
which we now establish.

Proposition 2 Suppose po(7) > 0. Then every selection sequence beginning
with py converges to a limit distribution p* satisfying p*(7) > 0.

Proof: Let {(u,0r)} be a selection sequence beginning with ug. For every k
and every equilibrium of ['(y4), the types in 7 play actions that maximize 7.
Therefore, by the definition of a selection step, the sequence p(7) is weakly
increasing. Since ux(7) € (0, 1] the sequence must converge, implying that

(7
fe—1(7)
To show that p, converges, we will show that it converges in norm, i.e. that

lptx — px—1]] — 0. For this it is sufficient to show |{(ux — px—1)"|| = 0. Let X be
the support of (ur — px_1)". By the definition of a selection step

X
__/M < 2z
Mk;1()&)

[

Zk = —1

=

10



implving

(e = -0l = (X)) = g1 (X)
< (2 = Dpeer (X)
S Zk — 1
and we have shown that the right-hand side converges to zero. [ ]

Proposition 3 Suppose po(7) > 0. Then there exists a selection sequence begin-
ning with po whose limit is stable.

Proof: This is a consequence of Proposition 4 which will be proven in Section
d. |

Proof of Theorem 1 Let G be a game with payoff function 7. Every Nash
equilibrium of G can be supported as an equilibrium of I'(d;) where d; is any prior
concentrated on 7. By Proposition 1, these distributions are stable. Therefore
the set S of priors p that are stable with respect to the set £ and for which
1(7) > 0 is non-empty. Furthermore, for every neighboring prior v v(7) > 0 and
Propositions 3 and 1 imply £(rv) # @ and £ C S.

Thus the closed set E satisfies the criteria in the definition, and by the usual
Zorn’s lemma argument (for example, see Kohlberg and Mertens (1986, Proposi-
tion 1) and Kalai and Samet (1984, Theorem 1)) there is a minimal closed subset
of E which does as well. [

Only Nash equilibria can be stable.
Theorem 2 A set O is supported by stable preferences only if O C E.

Proof: Let O be a set of outcomes that is supported by stable preferences. Then
there is a set S of priors which are stable with respect to O and a neighborhood
U, of cach y1 € S such that for every v € Uy,

L) C S (1)

Every such neighborhood contains av € F = {0 : (%) > 0}. By Propositions
2 and 3 we have 0 # L(v) C F. Therefore F NS # 0.

Proposition 1 implies 6(F N S) C E, and by definition §(F N S) C O. Let
Q = ENO. Q is closed because both E and O are, and because F' NS # 0,
Proposition 1 implies Q # 0.

Suppose 6(F N S) = Q. Then @ satisfies the criteria for supported by stable
preferences using the neighborhood U,epnsVy of F NS,

11



On the contrary, if z € Q \ 6(F N S), then there is a p € S\ F which is
stable with respect to x. Let ¢ be any distribution concentrated on 7. Since x
is a Nash equilibrium, all actions with positive probability are best-replies under
7 so that any strategy which has distribution x in T'(¢) is an equilibrium of I'(¢)
(such strategies exist because distributions are assumed atomless).

Lemma 2 implies that for any s € (0, 1), the probability

vi=(1—s)u+ st

has an equilibrium v whose distribution is z. For s small enough v is inside U,,.
Let U, be a neighborhood of v contained in U, with radius no greater than s.
Thus @ # L(U,) C L(U,) C SN F by Lemma 3 and by (1).

Thus. SN F together with all distributions constructed in this manner consti-
tute a stable set of priors that support (). Finally, since O is supported by stable
preferences it is minimal, hence O = Q) C E. [ |

5 Perfect Equilibrium

In the previous section we established that under very general conditions, out-
comes which are supported by stable preferences must be Nash equilibria. In this
section we show that mild additional assumptions ensure that only trembling-
hand perfect equilibria can be supported by stable preferences.

We first impose some weak regularity conditions on selection sequences. The
first condition. which we call bounded death rates ensures that selection does
not stop “too early.” In particular, the rate at which successful types grow is
asvmptotically bounded below. The second condition, finite death rates prevents
tvpes from becoming completely extinct in one step. A feature of this assumption
which plays an important role in this section is that types for whom a given
strategy is dominant can never be completely eliminated.

As a final modification of this section, we pay more attention to the sequence
of plav along an evolutionary path. Suppose u* is the limit of a selection sequence
{(px. o)} within some stable set of distributions. We restrict the equilibria of
1 to those which are approximated asymptotically by the sequence of equilibria
or. In doing so, we are implicitly assuming a sort of continuity in the evolution
of equilibrium play. We do not use u* as support for some outcome z for which
7 is not an accumulation point of the distribution of play along the sequence.

Given a sclection sequence {(pk,0x)}, let xx be the distribution of play in
period k. and let Wy = {8 : 0x(0) ¢ B.(xx)}. This is the set of types which are
not maximizing fitness in period k.

12



Definition 6 A selection sequence {(ux,0x)} has bounded death rates if

W
limn sup P 0VE)

—= <1
koo He(We)

Definition 7 A selection sequence {(ux,0x)} has finite death rates if pp <
[re1 for every k.

These assumptions are weak and are satisfied for example by the replicator
dvnamics. The following characterizes the behavior of such selection sequences.

Proposition 4 Assume ug(7) > 0. If {{uk, 0x)} is a selection sequence beginning
with pg with finite and bounded death rates, then there exists a stable pu* such that
Uy — i Moreover, every accumulation point of xy is a perfect equilibrium of G
which is the distribution of some equilibrium of I'(u*).

Proof: For everv k we have

pi(T) (W5 1)
pe— (7)) pr— (WE_D)

Subtracting 1 from both sides

p(T) — pe1 (7) pe(WE_1) = e (WE_))
pik 1 (70) a1 (WE_))

Now

(W) = e (WVEZ) = (W) — e (Wie—)

e (Wi1) .
U ity e e

Under the assumption of bounded death rates, there exists ¢ > 0 and k
such that for all £ > k. the right-hand side is greater than (1 — )ux—_1 (Wi_1).
Therefore, for all such k.

() — Mj—l(ff) S (1- E)Mk—l(v’k—l) >0
-1 () 1 — 1 (Wio)

Taking limits as k goes to infinity, Proposition 2 implies that j; — p*, hence
the left-hand side converges to 0. We therefore conclude

13



Jim pe(Wy) =0

Now let z be an accumulation point of the sequence xj of play, and consider
a subsequence {(u, 01)} of {(uk, ox) }whose play is converging to z.

We have shown that u,(W;) — 0. Thus, for every ¢ > 0 there exists a {(¢)
such that { > I(¢) implies ;(W}) < e. Furthermore, the assumption of finite
death rates implies z; is completely mixed for every [.® In other words, z, is a
z-perfect equilibrium distribution for every | > I(g).

We can thus choose any sequence £, — 0, and the corresponding sequence
..y is a sequence of z,-perfect equilibria. Therefore z is a perfect equilibrium
outcome of G. We wish to show that there is an equilibrium of I'(1*) whose
distribution is z.

The upper hemi-continuity of 5,- implies that for every neighborhood U of
3,-(x) there is a [ such that { > [ implies §,-(z;) C U. Now p* < py follows
from norm convergence, hence by Lemma 1 we have (8, C 3,-, and therefore
or € 3., () C U. Thus all 7,--accumulation points of o, are in 3,-(z). Let o*
be any one of them. Convergence in mean implies convergence convergence in
distribution. hence x must be the distribution of o*. We conclude that ¢* is an
equilibrium of I'(x*) with distribution z. [ |

.T[(

This result motivates an alternative definition of support by stable preferences.
Under the previous definition, the stable set of outcomes must include all stable
equilibria of elements of the stable set of preferences. Under this alternative
definition, we include only those equilibria that are accumulation points of play
along the selection sequence. Proposition 4 makes it clear that such a requirement
will imply a refinement of Definition 5.

For the remainder, unless otherwise noted, we will restrict attention to selec-
tion sequences with bounded, finite death rates. We now define a limit point of
a selection sequence {(u,0%)} to be a pair (u*,0%) € P(O) x ¥ where p* is the
norm limit of py and o* is a 7,- accumulation point of 0. In general, while there
can be only one limit of p, there may be multiple accumulation points of oy,
hence a selection sequence can have more than one limit. Let £*(u0) denote the
set of limits of selection sequences starting with py.

Some additional notation will come in handy. An refinement is a correspon-
dence p: S — ¥ whose domain is a subset S of P(0), satisfying p(u) C £(u).

We will say that a pair (u, o) is stable with respect to outcome z if o is an
equilibrium of I'(x) with distribution z and there is a fitness profile ¢ = (¢;)7L,

8The easiest way to see this is to note that any full-support distribution must put positive
mass on the set of types for whom action a is strongly dominant, for every a.
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such that m(c) = ¢ p-almost surely. Represent by d(u,0) the set of outcomes
with respect to which (p,0) is stable. Say that a refinement p is stable with
respect to the set of outcomes O C A if §(p) # @ for each ¢ € graphp and
Upégraphp‘s(p‘) = 0.

Definition 8 A set O C A of outcomes is supported by stable preferences if it
is a minimal non-empty closed set with the following property. There exists a
S C P(O©) and a refinement on S which is stable with respect to O and if for each
1 € S there is a neighborhood U of p such that § # L*(v) C graphp for each
velU,v#u.

With Proposition 4 in hand, we can mimic the proofs of Theorems 1 and 2 to
establish the following.

Theorem 3 Every game G has a set of outcomes that is supported by stable
preferences. A set of outcomes is supported by stable preferencesonly if it consists
of perfect equilibrium distributions of G.

6 Conclusion

We conclude with a summary of the advantages of our approach to evolutionary
equilibrium foundations.

One of the main goals of evolutionary game theory has been to provide a
foundation for Nash equilibrium and perhaps argue in favor of some of its re-
finements. Models based on evolution of strategies such as ESS and and related
dvnamic models have been partially successful. Generally speaking, outcomes
that satisfy these types of evolutionary stability criteria must be Nash equilibria,
and in many cases must satisfy refinements incorporating backward and forward
induction ideas. A major drawback of this approach, however, has been that
evolutionarily stable strategies often fail to exist.

We have based our solution concept on a model of strategic interaction among
rational agents whose preferences are subject to evolutionary forces. We find
this an appealing alternative prima facie as a model of economic behavior. The
results of this paper show that the model has further advantages. First, every
game has at least one outcome that is supported by stable preferences (Theorem
1.) Additionally, we preserve the standard “only if Nash” result (Theorem 2)
and show support for a traditional equilibrium refinement (Theorem 5). These
results are obtained by imposing a minimum of structure on the model of natural
selection.



Finally, our model suggests a natural solution to one of the fundamental con-
ceptual difficulties of equilibrium theory: the interpretation of mixed strategies.
In our model, individuals never randomize. Mixed outcomes only appear random
to an observer outside the model who has no information about the exact prefer-
ences of the individuals playing G. Our model thus demonstrates how evolution
of preferences leads to purification of mixed equilibria.
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A Omitted Proofs

Lemma 2 Suppose u, v are distributions each of which has an equilibrium whose
distribution is x. Then for any s € (0,1), the distribution sy + (1 — s)v has an
equilibrium whose distribution is x.

Proof: Let o and ~ be the equilibria of p and v respectively. Consider the
behavior strategy ® 6(6) = so(#) + (1 — s)y(0). This is an equilibrium of I'(sp +
(1 — s)v) in behavior strategies because each type is randomizing over best-
replics. Clearly its distribution is z. Milgrom and Weber (1985) prove that any
such equilibrium has a purification, i.e. a pure strategy equilibrium with the same
distribution. [ ]

9A behavior strategy is a map & : © — A specifying a mixed-strategy distribution for each
type.
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