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Abstract

We examine the dynamic formation and stochastic evolution of networks connecting
individuals whose payoffs from an economic or social activity depends on the network
structure in place. Over time, individuals form and sever links connecting themselves to
other individuals based on the improvement the resulting network offers them relative
to the current network. Such a process creates a sequence of networks that we call an
‘improving path’. The changes made along an improving path make the individuals, who
added or deleted the relevant link(s) at each date, better off. Such sequences of networks
can cycle, and we study conditions on underlying allocation rules that characterize cycles.

Building on an understanding of improving paths, we consider a stochastic evolu-
tionary process where in addition to intended changes in the network there is a small
probability of unintended changes or errors. Predictions can be made regarding the rela-
tive likelihood that the stochastic evolutionary process will lead to any given network at
some time. The evolutionary process selects from among the statically stable networks
and cycles. We show that in some cases, the evolutionary process selects inefficient net-
works even though efficient ones are statically stable. We apply these results to the
matching literature to show that there are contexts in which the evolutionarily stable
networks coincide with the core stable networks, and thus achieve efficiency.

JEL classification numbers: A14, D20, JOO

Key words: networks, evolution



The Evolution of Social and Economic Networks

Matthew O. Jackson Alison Watts

1 Introduction

Network structure is important in determining the outcome of many important social and
economic relationships. For example, networks play a fundamental role in determining
how information is exchanged. Such information may be as simple as an invitation to a
party, or as consequential as information about job opportunities (e.g., Boorman [1975],
Montgomery [1991], and Topa [1996]), literacy (e.g., Basu and Foster [1996]), consumer
products (e.g.,Ellison and Fudenberg [1995] and Tacobucci and Hopkins [1992]), or even
information regarding the returns to crime (e.g., Glaeser, Sacerdote, and Scheinkman
[1996]). Networks also play fundamental roles in the payoffs earned from bargaining with
an organization (e.g., Wang and Wen [1998]) and in the exchange of goods and services.
Exchange examples include trading networks and alliances (e.g., Bell [1996], Maxfield
[1997], Kirman, Oddou, and Weber [1986], Tesfatsion [1997] and [1998]), and networks
through which financial help or insurance is exchanged in developing countries (e.g., Lund
and Fafchamps [1997]). Even standard matching problems (e.g., the marriage and college
admissions problems studied by Gale and Shapley [1962] and Roth and Sotomayor [1989)])
are special situations where network relationships are important.

Despite the fundamental importance of network structures in many social and eco-
nomic settings, there is still a lack of foundational theoretical models which analyze how
networks emerge and how the decisions of individuals contribute to network formation.
In this paper, we examine the dynamic formation and stochastic evolution of networks,
taking into account the incentives that individuals have to form (or sever) links with each
other. Our aim is to develop a working model of the dynamic formation of networks, and
to examine some of the features and predictions of that model.

1.1 An Overview of the Model and Results

Our approach is to model network formation as a dynamic process in which individuals
form and sever links based on the improvement that the resulting network offers them
relative to the current network. Networks are modeled as graphs, where nodes or vertices



represent individuals and links or edges represent connections between the individuals.
Links are non-directed and thus reciprocal. A link between two individuals can be formed
only if both individuals agree to add the link, while a single individual can sever an
existing link. FEach individual receives a payoff or net benefit based on the network
configuration that is in place. This payoff can be interpreted as the utility or production
that an individual obtains from the social interaction that occurs through the network.

The primary tool that we introduce to analyze dynamic network formation is the
concept of a sequence of networks that emerge when individuals form or sever links
based on the improvement the resulting network offers relative to the current network.
Such a sequence, called an ‘improving path’, has the properties that (i) each network in
the sequence differs from the previous network by the addition or deletion of a single link,
and (ii) the addition or deletion of the link benefits the individual(s) whose consent is
necessary for the change. This myopic behavior is natural in the context of large networks
where players may have limited information about the incentives of others, and generally
provides a useful starting point for the study of the evolution of networks. Later in the
paper, in the context of matching models, we show that this methodology is adaptable to

allow for other sorts of behavior by players, such as the simultaneous change of a number
of links.

The first part of the paper is devoted to analyzing improving paths. The improving
paths emanating from any starting network must lead to either a pairwise stable network
(where no two players want to form a link, and no individual player wants to sever a
link) or a cycle (where a number of networks are repeatedly visited). We show that there
always exists either a pairwise stable network or a cycle from which there is no exit. We
give a simple trading network example to show that it is possible for cycles to exist while
pairwise stable networks fail to exist. We also characterize the conditions, on primitives
of the model, for which cycles do not exist.

The second part of the paper uses improving paths as the foundation for an evolution-
ary analysis, where in addition to intended changes in the network, unintended mutations
or errors are introduced. Such unintended changes may be due to exogenous forces acting
on the network, or simply miscalculations or errors on the part of an individual making an
assessment or taking an action. Such a process can be described as a Markov chain and
well-developed results concerning limiting behavior of Markov processes can be applied
(Freidlin and Wentzell [1984], Kandori, Mailath, and Rob [1993] and Young [1993]). This
stochastic process ultimately leads to specific predictions concerning the relative amounts
of time that will be spent in various networks. The stochastic evolutionary results in-
corporate the concept of improving paths, as the dynamic process naturally moves along
improving paths between mutations. Thus the process naturally gravitates to pairwise
stable networks and cycles, but periodically is bumped away by mutation. The intuition
for which networks are visited most often comes from the idea of resistance (based on
that of Freidlin and Wentzell [1984]). In the network context, resistance keeps track of
how many mutations are needed to get from some given network to an improving path
leading to another network. Very roughly, networks that are harder to get away from



and easier to get back to, in terms of resistance, are favored by the evolutionary process
(although this favoritism depends on the full configuration of resistance among different
networks). We apply these ideas to several examples to study the set of evolutionarily
stable networks. For instance, Proposition 8 says that even in contexts where a unique
(Pareto) efficient network is pairwise stable, it may not be evolutionarily stable. Thus
the system may spend no measurable amount of time in an efficient network, even if that
network is pairwise (statically) stable.

In the last section of the paper, we apply the stochastic evolutionary model to match-
ing problems, such as the Gale-Shapley marriage problem and the college admissions
(hospital-intern) problem (see Roth and Sotomayor [1989]). Such matching problems
fit nicely into a network setting, and previous studies of such matching problems have
concentrated on static notions of stability and on centralized procedures and algorithms.
The methodology outlined above can be used to analyze which matchings one expects to
arise endogenously, in the absence of some coordinating procedure. Theorem 10 shows
that, in these problems, the set of evolutionarily stable networks coincides with the set
of (static) core stable networks, which are necessarily Pareto efficient. Examples show
how this relationship depends on the definition of improving path that is applied.

1.2 The Closely Related Literature

The papers most closely related to this one are Jackson and Wolinsky [1996], Dutta and
Mutuswami [1997], and Watts [1997]. The model and the notion of pairwise stability that
underlies the analysis conducted here is from Jackson and Wolinsky [1996]. Their focus
was on developing a model for the study of (static) stability of networks and using this
model to understand the relationship between stability and efficiency of networks. Dutta
and Mutuswami [1997] looked at this relationship in further detail. As the Jackson and
Wolinsky (and Dutta and Mutuswami) analyses are static, they leave open the question
of which stable networks will form (if any, as they do not consider cycles). Watts [1997]
analyzes the formation of networks in a dynamic framework. Watts [1997] extends the
Jackson and Wolinsky [1996] model to a dynamic process, but limits attention to the
specific context of the ‘connections model’ discussed by Jackson and Wolinsky and a
particular deterministic dynamic. Thus, the new contributions here are in terms of
both the network models that are admitted and the analysis of improving paths, cycles,
mutation and the evolutionary process.

There are other papers that provide theoretical models of network formation in strate-
gic contexts. Aumann and Myerson [1988] were the first to take an explicit look at
network formation in a strategic context where individuals had discretion over their con-
nections; these connections defined a communication structure that was applied to a
cooperative game. Slikker and van den Nouweland [1997] have extended the Aumann
and Myerson [1988] model to a one-stage model of link formation and payoff division.
However, the analysis in those papers is devoted to issues in cooperative game theory
such as the characterization of value allocations (see also, Myerson [1977]). Recent work



by Bala and Goyal [1996] is closer in motivation to our paper, as they are also interested
in network formation in a dynamic framework. However, their approach differs signifi-
cantly from ours both in modeling and results. Bala and Goyal [1996] examine directed
communication networks (similar to a directed version of the connections model with no
deterioration of communication), in a repeated game with a focus on learning, and find
that learning leads to efficiency.

Finally, recent work on evolution and learning in game theory studies how individuals
play games when social structure is important in determining who interacts with whom
(see for example, Ellison [1993], Ellison and Fudenberg [1995], and Young [1998]). This
work concentrates on understanding the implication that social or network structure has
on play in games, whereas the current paper concentrates on understanding the evolution
of the network structure. Ultimately, these two literatures can be brought together, as
the approach outlined above can be applied to endogenize the social structure in game
theoretic interaction models.

The remainder of the paper is organized as follows. In Section 2 we provide the
definitions comprising the basic model. In Section 3 we analyze improving paths, cycles,
and conditions under which cycles do not exist. Section 4 contains the evolutionary
analysis and dynamic stability results, including a discussion of dynamic stability and
efficiency. In Section 5 we apply the evolutionary process to matching models.

2 A Model of Networks

The model of social and economic networks that we consider is based on that of Jackson
and Wolinsky [1996], henceforth referred to as JW. The following definitions outline the
model and a few examples.

2.1 Players

Let N = {1,...,n} be the finite set of players. Depending on the application, a player
may be a single individual, a firm, a country, or some other autonomous unit.

2.2 Networks and Graphs

The network relations among the players are represented by graphs whose nodes or ver-
tices represent the players and whose links (edges or arcs) capture the pairwise relations.
We focus on non-directed networks where links are reciprocal. The complete graph, de-
noted g%, is the set of all subsets of N of size 2. The set of all possible networks or graphs
on N is {glg C g™}. Let ij denote the subset of N containing 7 and j and is referred
to as the link ij. The interpretation is that if 5 € ¢, then nodes ¢ and j are directly
connected, while if 7§ ¢ ¢, then nodes 7 and j are not directly connected.
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Let g + 5 denote the network obtained by adding link 75 to the existing network g
and let g — 7j denote the network obtained by deleting link 45 from the existing network

g (ie.,g+ij=¢gU{ij} and g —ij = {Z—gj})

Let N(g) = {i|3js.t.ij € g} be the set of players involved in at least one link and
n(g) be the cardinality of N(g).

If ¢ =g+ijor g =g—ij, then we say that g and ¢' are adjacent.

2.3 Standard Architectures
There are several network configurations that we will refer to frequently.

A network g C gV is a star if g # ¢ and there exists i € N such that if j& € g, then
either j =i or k = ¢. Individual ¢ is the center of the star.

A network g C ¢V is a circle if there exists a sequence of players i, ...,ix, with a
player appearing at most once, such that g = {igiy, i10s,...,ixi0}-

A network g C ¢V is a line if there exists a sequence of players ig,...,ix, with a
player appearing at most once, such that g = {igiy, i109, ..., ix_10K }-

2.4 Paths and Components

A path in g connecting iy and i, is a set of distinct nodes {iy,1s,...,i,} C N(g) such
that {ilig, igig, Ceey in—lin} Cg.

A nonempty graph ¢’ C g is a component of g, if for all i € N(¢') and j € N(¢'),
i # j, there exists a path in ¢’ connecting ¢ and j, and for any i € N(¢') and j € N(g),
ij € g implies ij € ¢'.

2.5 Value Functions and Strong Efficiency

The value of a network is represented by v : {glg C ¢V} — IR. So, v(g) represents
the total utility or production of the graph. The set of all such functions is V. In
some applications the value will be an aggregate of individual utilities or productions,

v(g) = ¥ ui(g), where u; : {glg C ¢V} — RR.

A graph g C gV is strongly efficient if v(g) > v(g') for all ¢’ C ¢g.



2.6 Allocation Rules and Pareto Efficiency

An allocation rule Y : {glg C ¢"} x V' — IRY describes how the value associated with
each network is distributed to the individual players. Y;(g,v) may be thought of as the
payoff to player ¢ from graph ¢ under the value function v. For simplicity, if v is fixed,
we will simply write Y;(g).

The allocation rule may represent several things. When considering a purely social
network, the allocation rule may represent the utility that each individual receives from
the network and this utility might not be transferable. When considering an exchange
or production network, the allocation rule may represent either the trades or production
accruing to each individual, the outcome of a bargaining process, or some exogenous
redistribution.

2.7 Pairwise Stability

The following concept describes networks for which no player would benefit by severing
an existing link, and no two players would benefit by forming a new link.

A network ¢ is pairwise stable with respect to v and Y if
1. for all ij € g, Yi(g,v) > Yi(g —ij;v) and Yj(g,v) > Y;(g — ij;v), and
2. for all ij & g, if Yi(g,v) < Yi(g +ij;v) then Y;(g,v) > Y;(g + ij;v).

When a network ¢ is not pairwise stable it is said to be defeated by ¢ if either
¢ = g+ij and (2) is violated for ij, or if ¢’ = g — ij and (1) is violated for ij.

There are variations on the notion of pairwise stability, discussed in JW and also in
the appendix here. Dutta and Mutuswami [1997] discuss alternative approaches that
capture coalitional deviations.

2.8 Examples

There are two examples of settings from JW that we will refer to frequently in illustrating
definitions and results.

2.9 Connections Model

The symmetric connections model from JW is described as follows. Players form links
with each other in order to exchange information. If player ¢ is connected to player j, by
a path of ¢ links, then player i receives a payoff of §¢ from his indirect connection with



player 7. We assume 0 < § < 1, and so the payoff dt decreases as the path connecting
players ¢ and j increases; thus information that travels a long distance becomes diluted
and is less valuable than information obtained from a closer neighbor. Each direct link
17 results in a cost ¢ to both ¢ and j. This cost can be interpreted as the time a player
must spend with another player in order to maintain a direct link.

Formally, the payoff player i receives from network g is equal to u;(g) = ¥, 609 —
> jujeg € Where t(ij) is the number of links in the shortest path between i and j (set-
ting ¢(ij) = oo if there is no path between i and j). Here the value of network g is
v(g) = Yien ui(g), and Y;(v,g) = u;(g). The incentives in forming links come from the
consideration of direct costs and benefit, as well as the benefits of indirect connections.

2.10 Co-Author Model

The co-author model of JW is described as follows. Each player is a researcher who
spends time writing papers. If two players are connected, then they are working on a
paper together. The amount of time researcher i spends on a given project is inversely
related to the number of projects, n;, that he is involved in. Formally, player i’s payoff
is represented as

Uilg) = 2. F+i+ 1 ]
jijcg n; n; n;n;
for n; > 0. For n; = 0, set u;(g) = 0. Again, v(g9) = Yien ui(g), and Yi(v, g) = u;(g).
Here, the interesting tradeoffs from connection come from the benefit of gains from a co-
author’s time (1/n;), at the expense of diluting the synergy (interaction) term 1/(n;ny)
with other co-authors.

3 Improving Paths and Cycles

Our focus in this paper is on the dynamic formation of networks. Before proceeding
to study an evolutionary process, let us first focus on the paths that might be followed
as a network evolves. To avoid confusion, we emphasize that below the idea of a path
represents changes from one network to another, rather than a path along links within a
given network.

3.1 Improving Paths

An improving path is a sequence of networks that can emerge when individuals form or
sever links based on the improvement the resulting network offers relative to the current
network. Each network in the sequence differs by one link from the previous one. If a
link is added, then the two players involved must both agree to its addition, with at least



one of the two strictly benefiting from the addition of the link. If a link is deleted, then
it must be that at least one of the two players involved in the link strictly benefits from
its deletion.

Formally, an improving path from a network ¢ to a network ¢’ is a finite sequence of
graphs ¢, ..., gk with g = g and gx = ¢’ such that for any k£ € {1,..., K — 1} either:

1. grs1 = gr — tj for some ij such that Y;(gr —ij) > Yi(gk), or

2. gr+1 = g + i for some 35 such that Yi(gx + ij) > Yi(gx) and Y;(gx +2j) > Y;(gx)-

Thus an improving path is a sequence of networks that might be observed in a dynamic
process where players are myopically adding and deleting links. Let us say a few words
about this myopic behavior, as it will also play a role in the evolutionary analysis that
follows. It is possible that under myopic behavior a player deletes a link making him
or herself better off, but then this leads another player to delete another link which in
turn leaves the first player worse off relative to the starting position. If the first player
foresaw this, he or she might choose not to sever the link to begin with. This sort of
consideration is not taken into account in our analysis, and may be important when there
are relatively small numbers of forward-looking players who are well-informed about the
value of the network and the motivations of others. However, in larger networks and
networks where players’ information might be local and limited, or in networks where
players significantly discount the future, myopic behavior is a more natural assumption,
and a reasonable starting point for our analysis.

In addition to the assumption of myopic behavior, there are other assumptions, in
the definition of improving path, which can be varied. For example, the definition can
be adapted to allow for the simultaneous addition or deletion of several links at a time.
We consider this possibility of simultaneous actions when we discuss matching problems
in Section 5. We also discuss other definitions of improving path in the appendix; these
other definitions provide specific restrictions on the order in which actions can be taken.

The improving paths emanating from any starting network lead either to a pairwise
stable network or to a cycle (where a number of networks are repeatedly visited in some
sequence). In fact, one can define pairwise stability by simply saying that a network is
pairwise stable if there are no improving paths emanating from it.

3.2 Symmetric Connections Example

Consider the symmetric connections model with 4 players. The set of improving paths
depend on the relative size of ¢ and §. If §2 < § — ¢, then links are very cheap and
players have an incentive to add every link and never to delete a link. Here, from any
network that is not the fully connected network there exists an improving path leading
to any larger network (i.e., network whose links are a superset of the given network). If
0 < § — ¢ < 62, then players are willing to add links to a player with whom they are not



already connected (directly or indirectly), but are not willing to add (and are willing to
delete) a link with someone who is also indirectly connected to them by an indirect path
of length 2. (Whether or not the same holds for indirect connections of length 3 depends
on the comparison of ¢ to §—4°.) In this case, there are many improving paths leaving the
empty network, some of which lead to the efficient network (a star; see JW Proposition
1), but others which lead to lines, and in some cases circles. If ¢ > 0, then there are no
improving paths emanating from the empty network. Provided ¢ is not too large, there
are other pairwise stable networks, but none of which have any “loose ends” (players
with just one link connecting them to the network). For some intermediate networks, for
instance a line connecting all 4 players, there exist improving paths which lead back to
the empty network, but also improving paths leading to a circle. (For more on pairwise
stability, efficiency, and dynamic link formation in the connections model, see JW and
Watts [1997].)

The multiplicity of improving paths emanating from some networks, and the variety
of pairwise stable networks in this example sets the stage for the later evolutionary
analysis. For instance, when ¢ >7, it may be that although there are no improving paths
emanating from the empty network, a mutation or two which introduce links could lead
to a network from which there are improving paths leading to more efficient networks.

3.3 Stable States

A network ¢ is a stable state if it is pairwise stable and there exists an improving path
connecting the empty network to g.

The notion of a stable state is from Watts [1997] (although with a different process),
and here is tied directly to the idea of an improving path. This notion identifies the
networks that may be reached by a process where players act to improve their situation
starting from the empty network.

3.4 Co-Author Example
In the co-author model, all pairwise stable networks are stable states. Here, a straight-

forward set of calculations show that there is at least one improving path leading from
the empty network to any specific pairwise stable network.

3.5 Cycles

It is possible for a dynamic process, and improving paths in particular, to cycle among
a set of networks. Let us examine this possibility in some detail.



A set of networks C form a cycle if for any g € C' and ¢’ € C there exists an improving
path connecting g to ¢'.

A cycle C' is a mazimal cycle if it is not a proper subset of a cycle.

A cycle C'is a closed cycle if no graph in C' lies on an improving path leading to a
graph which is not in C'.

Note that a closed cycle is necessarily a maximal cycle.

3.6 Asymmetric Connections Example (Existence of a Cycle)

Consider an asymmetric variation of the connections model with 5 players, where ¢ is
player specific, denoted §;. Assume that §; < ¢ < §; + 67 — 62 — 7; so player 1 is willing
to add a link to make a circle if player 1 is at the end of a line involving all players.
But player 1 does not want to be directly linked to a player who is not linked to anyone
else. Assume that the reverse is true for player 3, so d3 > ¢ > 3 + 62 — 65 — &3, (for
example, let 6, < (v/5 —1)/2 < 3 and set ¢ = (0, + d3)/2). Here, player 3 prefers to
delete a link if he is in a circle with everyone else. Assume that §; > ¢ > §; — 67 for all
other players. These players are willing to link with any player they are not directly or
indirectly connected to, but these players do not wish to shorten an indirect connection
of distance 2 (but may or may not wish to shorten longer paths).

In such a setting a cycle exists. Start with the circle {12,23,34,45,15}. Player 3
wants to delete the link 23, and no one else is interested in deleting a link. So, we move
to {12, 34,45,15}. Player 1 now wants to delete the link 12, and no one else is interested
in deleting a link. So, we move to {34,45,15}. Players 2 and 3 now want to add the
link 23, and no one is interested in deleting a link. So, we move to {23, 34,45,15}. Now,
players 1 and 2 want to add the link 12. So, we move back to circle {12, 23,34, 45, 15}.

Note that this cycle is reachable from an improving path from the empty network.
For instance first add link 15, then 45, then 34, then 23, then 12. However, this cycle is
not closed, since player 3 could start by severing 34 instead.

Note also that there is an asymmetry in payoffs in this example that allows for the
cycle. If a network is completely symmetric and payoffs are symmetric (such as the
circle in the symmetric connections model, where each link is similar to every other link
in value) then there cannot be a cycle containing the network that consists of entirely
subgraphs or entirely supergraphs, since no one should want to delete a link that they
just added.

The concept of improving path provides for an easy proof of the following existence
result.

Theorem 1 For any v and Y there exists at least one pairwise stable network or closed
cycle of networks.
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Proof: Notice that a network is pairwise stable if and only if it does not lie on an
improving path to any other network. So, start at any network. Fither it is pairwise
stable or it lies on an improving path to another network. In the first case the result
is established so consider the second case. Follow the improving path. Given the finite
number of possible networks, either the improving path ends at some network which has
no improving paths leaving it, which then must be pairwise stable, or it can be continued
through each network it hits. In the second case, the improving path must form a cycle.
Thus, we have established that there always exists either a pairwise stable network or a
cycle. So consider the case where there are no pairwise stable networks. We show that
there must be a closed cycle. Since there must exist a cycle, given the finite number of
networks there must exist a maximal cycle. Consider the collection of all maximal cycles.
By the definition of maximal cycle, there must be at least one such cycle for which there
is no improving path leaving the cycle. (There can be improving paths leaving some of
the maximal cycles, but these must lead to another maximal cycle. If all maximal cycles
had improving paths leaving them, then there would be a larger cycle, contradicting
maximality.) Thus, there exists a closed cycle. |

It is necessary in Theorem 1 to allow for the existence of either pairwise stable net-
works or closed cycles. There are cases where only pairwise stable networks exist and no
cycles exist (for instance the connections model with very low costs so that all networks
are on an improving path to the complete network). Also, there are cases where only
closed cycles exist and there are no pairwise stable networks. The following example
illustrates this point.

3.7 Trading Example (Non-existence of a Pairwise Stable Net-
work)

Consider a situation where players benefit from trading with other players with whom
they are linked, and trade can only flow along links. In this example, players begin
by forming a network. Subsequently, they receive random endowments and the players
trade along paths of the network. Trade flows without friction along any path and each
connected component trades to a Walrasian equilibrium.

There are two goods. All players have identical utility functions for the two goods
which are symmetric Cobb-Douglas of the form U(z,y) = zy. Each player has a random
endowment, which is independently and identically distributed. A player’s endowment is
either (1,0) or (0,1), each with probability 1/2. Links are formed before players’ endow-
ments are realized. For a given network, Walrasian equilibria occur on each connected
component, regardless of the configuration of links. For instance, three players a line
have the same trades as three players in a circle (triangle), but with a lower total cost of
links. Let the cost of a link be equal to 5/96 (for each player).

Let us show that if n is a least 4, then there does not exist a pairwise stable network.

11



The utility of being alone is 0. Not accounting for the cost of links, the expected utility
for a player of being connected to one other is 1/8. (There is a 1/2 probability that the
realized endowments will differ, in which case the players will trade to an allocation of
(1/2, 1/2) which results in a utility of 1/4 for each of the two players. There is also a 1/2
probability that the realized endowments will be identical in which case the utility will
be 0 for each player.) Similar calculations show that, not accounting for the cost of links,
the expected utility for a player of being connected (directly or indirectly) to two other
players is 1/6; and of being connected to three other players is 3/16. Most importantly,
the expected utility of a player is strictly concave in the number of other players that he
is directly or indirectly connected to. Thus the marginal gain of being connected to an
additional player is decreasing in the number of players that one is already connected to.

Accounting for the cost of a link, it becomes clear that if £ players are in a component,
then there must be exactly & — 1 links. If there are more than k£ — 1 links, then there is
at least one link that could be severed without changing the component structure of the
network. Thus, some player can sever a link thereby saving the cost of the link but not
losing any expected utility from trading.

Note that if ¢ is pairwise stable, then any component with 3 or more players cannot
contain a player who has just one link. This result follows from the fact that a player
connected to another player, who is not connected to anyone else, loses at most 1/6 —
1/8 = 1/24 in expected utility by severing the link, but saves the cost of 5/96 and so
should sever this link.

From these two observations it follows that if there were to exist a pairwise stable
network, then it would have to consist of pairs of connected players (as two completely
unconnected players benefit from forming a link), and one unconnected player if n is odd.
If n is at least 4, then there must exist at least two pairs. However, such a network is not
pairwise stable, since any two players in opposite pairs gain from forming a link. Thus,
there is no pairwise stable network. From Theorem 1, we know that there exists a closed
cycle.

3.8 Ruling out Cycles:

Let us explore conditions on Y and v which rule out the existence of cycles. If there are
no cycles, then a dynamic process that follows improving paths will necessarily come to
rest at a pairwise stable network.

Fix Y and v. If there exists an improving path from ¢ to ¢, then let us use the symbol
g — ¢'. Given the transitivity of —, there are no cycles if and only if — is asymmetric.
Although this provides a direct characterization of the existence of cycles, Theorem 2
provides what turns out to be a more useful characterization.

The following definition is used in Theorem 2.

12



Y and v exhibit no indifference if for any ¢ and ¢' that are adjacent either ¢ defeats
g’ or ¢’ defeats g.

Theorem 2 Fir v and Y. If there exists a function, w : {glg C ¢"} — IR, such
that [¢" defeats g] < [w(¢’) > w(g) and ¢' and ¢ are adjacent|, then there are no cy-
cles. Conversely, if Y and v ezxhibit no indifference, then there are no cycles only if
there exists a function, w : {glg C g~} — IR, such that [¢' defeats g] & [w(g') >
w(g) and ¢' and ¢ are adjacent)].

Note that w is independent of the players involved in the link that is being added
or deleted. Thus, in a rough sense, w is similar to a potential function. Theorem 2
shows that the existence of a cycle is tied to the existence of a single function (that is
player independent) that represents the incentives of players with regards to any adjacent
changes. Although this is a demanding condition, it is precisely what is needed to rule
out cycles.

The proof of Theorem 2 appears in the appendix. The proof of the first part of the
theorem, that the existence of such a w precludes the existence of cycles, is direct. The
proof of the second part of the theorem, that the existence of such a w is necessary for
the absence of cycles, is more involved. It starts from a result in decision theory, that a
binary relation on a finite set (like —) has a representation by such a w if and only if
it is negatively transitive and asymmetric. Here, the binary relation of improving paths
(—) is transitive and asymmetric when there are no cycles, but may fail to be negatively
transitive. We then show that the relation of improving paths may be extended to a
more complete relation, that is negatively transitive, asymmetric and still agrees with
7?7on adjacent networks.

The supposition in the last part of Theorem 2, that Y and v exhibit no indifference
is critical to the existence of such a w. To see this, consider the following example with
n = 3. Suppose that {12,23, 13} defeats {12,23} defeats {12} defeats {12,13}, but that
players 2 and 3 are both indifferent between {12,23,13} and {12, 13}. Suppose also, that
no other network defeats any other. Here there are no cycles, and yet the existence of
such a w would require that w({12,23,13}) > w({12,13}), while {12,23,13} does not
defeat {12,13}.

3.9 Exact Pairwise Monotonicity

The existence of a function satisfying the role of w is sometimes difficult to check, but in
some situations there is a natural candidate for w, which is simply v. This is captured
in the following condition, which is a slight modification of the pairwise monotonicity
condition of JW.

Y is exactly pairwise monotonic relative to v if ¢’ defeats ¢ if and only if v(¢') > v(g)
(and ¢’ is adjacent to g).
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Exact pairwise monotonicity provides a nice alignment of individual incentives and
overall value. It implies that strongly efficient networks are pairwise stable (but not
necessarily that all pairwise stable networks are efficient). By Theorem 2, exact pairwise
monotonicity rules out cycles.

Corollary 3 IfY is exactly pairwise monotonic relative to v, then there are no cycles.

While ruling out cycles implies that a dynamic process which follows improving paths
will come to rest at a pairwise stable network, this condition does not imply that any
pairwise stable network, and in particular that any strongly efficient network, is reachable
if we start at the empty network. However, the addition of the following condition does
lead to this conclusion.

3.10 Single Peakedness

A value function v is single peaked if v(g) > v(g') implies v(g’) > v(¢"), and if v(¢") >
v(g') implies v(g") > v(g), forany g C ¢’ C ¢"

The idea of a single peaked value function is as follows: consider growing a network
by adding links one by one. Suppose that adding links adds value initially. The value
function is ‘single peaked’ if once you add a link that lessens value, then continuing to
add links will continue to lessen value.

A path is an increasing path if it only involves adding links.

Proposition 4 Suppose that v(g + ij) # v(g) for any g and ij ¢ g. If Y is exactly
pairwise monotonic relative to a v that is single peaked, then for every pairwise stable
network there exists an increasing improving path leading from the empty network to that
pairuise stable network. Therefore, in such a case the set of stable states coincides with
the set of pairwise stable networks, and every strongly efficient network is a stable state.

Proof: Consider any pairwise stable network ¢ and some g — ij. By exact pairwise
monotonicity it follows that v(g —ij) < v(g). Thus by single peakedness, v(g—ij —kl) <
v(g —1ij) and so on for any order of removal of links. By exact pairwise monotonicity any
order of addition of links to get to v(g) defines a increasing improving path (note that
no two players want to delete a link at any point since the value of the resulting network
must be lower and the severing player’s payoff could be no higher by exact pairwise
monotonicity). |

Proposition 4 rules out cases where adjacent networks have identical values. That case
requires a significant complication of the pairwise monotonicity condition, with little gain
in insight.
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3.11 Examples

For some values of § and ¢ the connections model satisfies exact pairwise monotonicity
and single peakedness (for instance if ¢ is very small or very large). For some intermediate
values of ¢ when § is close to 1, for instance where § > ¢ > n(d — " 1), the connections
model satisfies exact pairwise monotonicity but not single peakedness. Here?a player only
wants to add a link if it is to a player who is not already in his or her component, and
a player wants to sever any links whose deletion would not change the component; both
of which are value increasing operations. Yet for other choices of ¢ and ¢, for example
when ¢ > § and c¢ is low enough for a star to be efficient, the connections model fails to
satisfy both exact pairwise monotonicity and single peakedness.

The co-author model does not satisfy the exact pairwise monotonicity condition since
the strongly efficient network, where all players are arranged in pairs, is not pairwise
stable as players in different pairs want to form links even though these extra links
decrease the value of the network. It fails to satisfy single peakedness, since adding
a new connection to an existing component can sometimes lower value while adding a
link between two completely unconnected agents always increases value, regardless of the
other components’ configurations.

4 A Stochastic Process and the Evolution of Net-
works

Based on the notion of improving path, and the implicit associated dynamic, networks
evolve as players myopically form or sever links based on the improvement the resulting
network offers relative to the current network. In this section, we explicitly describe a dy-
namic process which allows for additional stochastic changes to a network. Occasionally
two players will add a link that they normally would not add, or a single player will sever
a link that he normally would not sever. This random element in the process will allow
the dynamic formation process to deviate from an improving path. As a network evolves,
the formation process will occasionally jump from one improving path to another. We
will examine which networks the stochastic process will spend a positive amount of time
in as the probability of mutations goes to zero.

These stochastic mutations in the formation process have several different interpre-
tations or justifications. They may be thought of as errors made by the players. They
might also represent a lack of knowledge on the part of the players and be a form of ex-
perimentation. Such mutations might also be due to exogenous factors that are beyond
the players’ control. More fundamentally, what follows may be thought of as a check
on the robustness, or stochastic stability (in the language of Foster and Young [1991]),
of networks. Although a number of networks may be pairwise stable, it can turn out
that they differ in how they respond to random perturbations. For instance it may be
relatively easy to leave and hard to get back to some networks, and vice versa for others.
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Fix Y and v. The discussion that follows will be with respect to such a fixed Y and
v, although we omit notation indicating this dependence.

4.1 A Stochastic Dynamic Process

At each time a pair of players ij is randomly identified with probability p(ij) > 0. The
(potential) link between these two players is the only link that can be altered at that
date. (One may think of a random matching process where players randomly bump into
each other, and time is identified with the bumping times.) If the link is already in the
network, then the decision is whether to sever it, and otherwise, the decision is whether
to add the link. The players involved act myopically, adding the link if it makes each
at least as well off and one strictly better off, and severing the link if its deletion makes
either player better off. After the action is taken, there is some small probability ¢ that
a tremble (or mutation) occurs and the link is deleted if it is present, and added if it is
absent. (In the appendix, we discuss alternative definitions of this process.)

The above process naturally defines a Markov chain with different states correspond-
ing to the network obtained at the end of a given period. The Markov chain is irreducible,
given non-zero trembles, as it is possible for the process to eventually transition from any
state to any other. The Markov chain is also aperiodic, given non-zero trembles, since
it is possible for the network to return to itself at the end of any period. A finite state
irreducible, aperiodic Markov chain has a unique corresponding stationary distribution.
Since the transition matrix is continuous in ¢, the stationary distribution is also contin-
uous in €. Thus, as € goes to zero, the stationary distribution will converge to a unique
limiting stationary distribution. As £ goes to zero, we can examine the limiting station-
ary distribution to see what percentage of the time in the long run the network is of any
given form.

Note that we assume that the probability of a tremble, £, is independent of both the
network, ¢, that the process is currently starting from, and the link, j, that has been
randomly identified. However, since adding a link requires both players’ cooperation, one
could argue that the probability of a tremble that adds a link should be smaller than the
probability of a tremble that severs a link. Also, one might argue that players’ incentives
to experiment are decreasing in their current payoff, and so the probability of a tremble
should decrease as the relative payoff to players i and j increases. One could allow the
probability of a tremble to equal k4 ;e > 0, for some constant k,,;; which depends on
both ¢ and ij. However, from the analysis of Young [1993] (and Bergin and Lipman
[1996]) we know that the set of stochastically stable states, of such a Markov chain, is
independent of £, ;;. Thus allowing the probability of a tremble to equal kg ;e will not
affect our the set of stochastically stable states; so for simplicity we let the probability
of a tremble equal €.

Nevertheless, Bergin and Lipman [1996] show that if mutation rates for different states
are allowed to go to zero at different rates, then the set of stochastically stable states
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of a Markov chain may change; and thus the evolutionary process does matter. This
is an important observation, and suggests that one should pay attention to appropriate
orders of magnitude of mutation rates for various networks. For instance, if, instead of
considering a rescaling of mutation rates, as above, one lets an exponent on the mutation
rate be dependent on the current network and link in question, then the results can be
affected. With this noted, in what follows, we concentrate on the case where mutation
rates are of the same order.

The following definitions will be important in the discussion of the stochastic evolu-
tionary process.

4.2 Evolutionary Stability

A network that is in the support of the limiting stationary distribution of the above-
described Markov process (as € goes to 0) is evolutionarily stable.

For a given network, g, let im(g) = {¢’ such that ¢" — g}. This is the set of networks
that live on the improving paths leading back to g.

4.3 Resistance of a Path

The resistance of a path p = {g1,...,9x} from ¢’ to g, denoted r(p), is computed by

r(p) = Z{(_l 1(gi, giv1), where I(g;, giv1) = 0 if g; € im(g;41) and I(g;,gi11) = 1 other-
wise.

Resistance keeps track of how many trembles must occur along a path, with the idea
that a tremble is necessary to move from one network to an adjacent one whenever it is
not in the players’ interests to sever or add the link in question.

4.4 g-Trees

Given a network g, a g-tree is a directed graph which has as vertices all networks and
has a unique directed path leading from each ¢' to g. Let T'(g) denote all the g-trees,
and represent a t in T'(g) as a collection of ordered pairs of networks, so that ¢'¢" € t if
and only if there is a directed edge connecting ¢’ to ¢” in the g-tree t.

4.5 Example of a g-Tree

Assume there are four possible networks: g1, g2, g3, g4. Then there are 13 possible g4-
trees. To see this consider Figure 1. There are six possible g4-trees with the same shape
as tree A. (To find the remaining five trees, let graphs g1, ¢2, and ¢3 switch places.)
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There are six possible g4-trees with the same shape as tree B, and one possible tree of
shape C.

Let 7(¢', g) denote the minimum r(p) over all paths p from g¢'tog, and set r(g, g) = 0.

Note that r(¢',g) = 0 if and only if ¢’ is in im(g) or ¢’ = g. Thus, if ¢’ and ¢ are in the
same cycle, then r(¢',g) = 0.

4.6 Resistance of a Network

The resistance of a network ¢ is computed as

Z T(gl, g/l)'

glgll et

rle) = g

Theorem 5 The set of evolutionarily stable networks is the set {g|r(g) < r(¢')¥g'}.

The proof of Theorem 5 is in the appendix, and is based on results of Freidlin and
Wentzell [1984] and Young [1993] concerning limiting distributions of aperiodic, irre-
ducible Markov processes.

Remark: The set of evolutionarily stable networks is always nonempty as we are taking
a minimum over a finite set.

Remark: Theorem 5, and also Theorem 9 which follows, hold for any definition of
improving path (such as the definition of ordered improving path found in the appendix).
As illustrated in Section 5, these results are easily adapted to variations on the definition
of improving path.

Before illustrating the implications of Theorem 5 in examples, we provide two aux-
iliary results. The first notes that the only networks that are evolutionarily stable are
either pairwise stable or part of a closed cycle. The second provides a simplified method
of calculating resistance.

Lemma 6 If ¢' € im(g) and g ¢ im(g"), then r(g) < r(g'), with strict inequality if g is
pairwise stable or in a closed cycle. Thus, if g is evolutionarily stable, then either g is
pairwise stable or part of a closed cycle. Furthermore, if one network in a closed cycle is
evolutionarily stable then all networks in the closed cycle are evolutionarily stable.

Proof: Let us start by showing that if ¢’ € im(g) and g ¢ im(¢'), then r(g) < r(¢’).
Consider a ¢'-tree relative to which r(g’) is obtained. Construct a g-tree by starting with
the ¢'-tree and directing an edge from ¢’ to ¢, and erasing the edge that led away from
g. Since ¢’ € im(g), it follows that the added edge has 0 resistance, so this g-tree has a
resistance of no more than r(g'). Thus, r(g) < r(g').
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Moving out of the order of the statement of Lemma 6, let us next verify that if
one network, ¢, in a closed cycle is evolutionarily stable then any other network, ¢,
in the same closed cycle is also evolutionarily stable. To see this simply start with a
g-tree relative to which r(g) is obtained, and switch the places of ¢’ and g. Since g
and ¢’ are both connected to each other by improving paths, r(¢”,9) = r(¢”,¢') and
r(g,9") = r(¢',¢") for any ¢”. Thus, the resistance will be unchanged, and so ¢’ must
also be evolutionarily stable.

Next, let us show that if ¢’ € im(g) and g ¢ im(g') and g is pairwise stable, then
r(g) < r(g'). Again, construct a g-tree by starting with a ¢’-tree relative to which r(g’)
is obtained, directing an edge from ¢’ to g, and erasing the edge that led away from g.
Note that if ¢ is pairwise stable, then erasing the edge that led away from ¢ saved at least
1 unit of resistance. Since the added edge has 0 resistance, it follows that r(g) < r(¢’).
This argument is extended to the case where g is in a closed cycle, as follows. If the
edge that led away from ¢ in the original ¢’-tree had a positive resistance, then the same
argument as above works. If not, then it must be that the edge leading away from ¢
in the original ¢’-tree pointed to some network in the closed cycle containing ¢g. In that
case, there must have been some ¢” in the closed cycle containing ¢ that had an edge
exiting the closed cycle. Construct the ¢” tree from the ¢’ tree as described above. By
the definition of closed cycle it must be that g € im(¢") and g” ¢ im(g'). Thus the above
argument holds, establishing that ¢” is evolutionarily stable. So, it follows that ¢ must
also be evolutionarily stable as it is part of the same closed cycle. |

Remark: From the results in section 3, it follows that if Y is exactly pairwise monotonic,
then the set of evolutionarily stable networks contains only pairwise stable networks (and
no cycles).

Noting that only pairwise stable networks and closed cycles matter in the dynamic
process, and that resistance along improving paths is 0, we can simplify the calculations
of resistance as follows. Given a closed cycle C' and a network g, let 7(C,g) = r(g’, 9)
where ¢’ is any network in C, and similarly r(g,C) = r(g,¢') where ¢’ € C. These are
well defined since r(g', g) = r(¢”, g) (and similarly r(g, g') = (g, ¢")) for any ¢' and ¢"
in C since there is a path of zero resistance between ¢” and g¢'.

Given a network g, a restricted g-tree is a directed graph which has as its root g, and
as other vertices g the pairwise stable graphs and closed cycles, and has a unique directed
path leading from each other vertex to g. Denote the set of restricted g-trees by RT(g).
In the following lemma, we let z denote a generic vertex which could be a graph ¢ or
a cycle ¢. The following lemma follows from the proof of Theorem 5 (from a result by
Young (1993)).

Lemma 7

r(g) = min r(a, 2.
0= min ¥ o)
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The implication of Lemma 7 is that the resistance of a network may be calculated by
restricting attention to a simpler problem. The intuition behind the result is straight-
forward: paths that can be made via improving paths add nothing to resistance. Thus,
the resistance comes in only from transitions for which there are no improving paths.
Since any network that is not pairwise stable or in a cycle lies on an improving path to
a pairwise stable network or cycle, their additional consideration does not add to the re-
sistance, while a transition from some pairwise stable network or closed cycle to another
network will involve some resistance.

Now let us illustrate the results above through the following examples.

4.7 Symmetric Connections Example

In this example, we use the above results to find the set of evolutionary stable networks.
Consider the connections model with 4 identical players. For each player assume that
§ <1,0<d—c<d?and § —c > 6. The two pairwise stable network structures are a
circle and a star, and there are no cycles. There are three different circles possible that
may be catalogued by the player who is across from player 1, and there are four different
stars possible that may be catalogued by the player at the center. Given the symmetry
of this setting, the resistance of one star is the same as the resistance of any other star,
and similarly for the circles. So let us calculate the resistance of the circle {12, 14, 23,34}
and the star {12,13,14}.

First let us calculate the resistance of the star ¢ = {12,13,14}. Note that {12,13, 14,
23,34} is in im(g) (2 severs 23 and 4 severs 34). Thus, the distance from the circle
{12,14, 23,34} to im(g) is 1, and the same is true for each of the other circles. The
distance from another star, say {12,23,24} directly to g is 2 since {12} is in im(g) and
no network within distance 1 of {12,23,24} is in im(g). However, such a star has a
resistance of just 1 to some circle ({12,23} is on an improving path to {12,14,23,34})
and so on a restricted g-tree, the other stars can be directed to a circle. Thus, the total
resistance of g is 6. (Note that each pairwise stable network must contribute at least 1
unit to the resistance, and so this must be the minimum.)

Next let us calculate the resistance of the circle ¢’ = {12,14,23,34}. The distance
from the star g to im(g') is 1 since {12,14} is in im(g’). Similarly for each other star.
The distance from another circle, say {13,14,23,24} to ¢’ is 1 since {12,13,14,23,24}
lies in im(g') (3 severs 13, 2 severs 24, 3 and 4 add 34). Thus, the resistance of the circle
is also 6. Following Lemmas 6 and 7, the evolutionarily stable networks are the stars and
circles.
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4.8 Insurance Example

Consider an example where financial help or mutual insurance is exchanged in a devel-
oping country. (For an empirical study see Lund and Fafchamps [1997]).

Each player can be thought of as a household that receives its income from crops.
Every period there is a probability that someone in the household will need serious
medical attention, which will cause the household to fall below a subsistence level, which
is normalized to a level of 0. In particular, assume that in each period a player (household)
has a probability of p of not having any medical needs and thus having an income of a$,
and a probability of 1 — p of having a medical need and thus having an income of 1§,
where 0 < p < 1. Each player I has a utility function for income Uy, that is increasing,
concave and satisfies U;(0) = 0. For simplicity, we assume that income is consumed each
period, and abstract away from additional smoothing that may come from savings.

The players (households) can form networks through which they provide each other
with mutual insurance. Each player decides to form or sever links based on his expected
utility. For the purposes of this example, mutual insurance is assumed to pass through
the network in the following manner. If player j has a$ this period and he is directly
connected to k£ players who each have medical needs, then ;7 brings all k£ players up to
the subsistence level, as long as doing so does not bring j below subsistence level; thus
player j gives each of the k players min{a/k,1}. In situations where several players are
connected to the same player who has medical needs, then they each pay an even share
of the amount needed to bring the player up to subsistence. For instance, if players 7 and
j each have a$ and are both directly connected to player [, who has 41$, then players
i and j each give player [ min{a/2,1/2}.) If one of the players is constrained, then the
other continues until he hits his constraint or player one reaches subsistence. After the
k players directly connected to player j are brought to the subsistence level, player j
helps players who are directly connected to one of these k£ players, who are not already
at their subsistence level, as long as doing so does not bring j below subsistence level.
Next player j helps anyone who is two links away, etc.; and this process continues until
player j either runs out of money or has helped everyone who needs his help.

Consider the specific example where there are 5 players, a=4 and |U;(—1)] is large
enough, compared to U;(4), so that any two players, who are not directly or indirectly
connected, are always willing to form a link. Thus any PS network will consist of one
component. Since a = (n — 1), every player in a single-component network will have
income greater than or equal to subsistence level as long as at least one player in the
network receives a$. Thus there is no benefit (but rather only a liability) to having a
direct connection instead of an indirect connection.

The three PS network structures are the star, line, and half-star (example, {12, 23, 35,
34} is a half-star with player 3 in the center). There are 5 possible stars, 60 possible lines
and 60 possible half-stars.

Next we find the set of evolutionary stable networks. There are no cycles. Let us
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consider the resistance of the line ¢ = {23,31,14,45}. The half-star {23,31,14, 15}
has a distance of 1 from im(g) as link 15 can be severed to get a subgraph of g. The
star {13,12,15,14} has a distance of 1 from the half-star {23,31,14,15}. The remain-
ing 11 half-stars, with player 1 in the center, each have a distance of 1 from the star
{12,13,14,15}. The 12 half-stars of the form {il, 17, jk, jn} each have a distance of 1
from a half-star with 1 in the center. The remaining 36 half-stars each have a distance
of 1 from a half-star of the form {il, 1y, jk,jn}. Each of the remaining 59 lines is a
distance of 1 from a half-star. The remaining 4 stars are each a distance of 1 from a
half-star. Thus the total resistance of g is 124. Similarly it can be shown that every star,
half-star and line has a resistance equal to 124. Thus, by Theorem 2, all PS networks
are evolutionary stable.

In the examples above, all of the pairwise stable networks are evolutionary stable.
Next we give an example where only a subset of the pairwise stable networks are evolu-
tionarily stable.

4.9 Co-Author Example (Selection from Pairwise Stable Net-
works)

Consider the co-author model from JW with n = 7. In this case (see proposition 3 in
JW), the pairwise stable networks are the complete network and the networks where five
players are completely interconnected and the two remaining players are connected only
to each other. There are no cycles.

Consider a restricted g-tree for the complete network. FEach of the other pairwise
stable networks has distance 1 from an improving path to the complete network. By
severing the link between the two paired players, one obtains a network on an improving
path to the complete network (either player will link with a member of the group of 5 if
they have that opportunity, and then would link with each of the others, and so forth).
Thus, the complete network has a resistance of 7!/(5!2!)=21, which is the minimum
possible given the number of pairwise stable networks (22).

However, consider a restricted g-tree for one of the other pairwise stable networks.
The complete network lies more than a distance of 1 away from an improving path leading
to some other pairwise stable network, since severing only one link leads to a network
only on an improving path back to the complete network. Thus, for any of these pairwise
stable networks, the resistance will be greater than 21.

Thus, by Theorem 5 and Lemma 7, the unique evolutionarily stable network is the
complete network.

The following observation was used in the above example. Let PSC denote the pair-
wise stable networks and the closed cycles, with a closed cycle treated as a single object.
Denote a generic object in PSC by x.
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Observation: For z in PSC, if mingcpsc a2y 7(2, @) > maxpepscarsay r(2”, ),
then z is evolutionarily stable, and it is uniquely so if the inequality is strict.

Intuitively, it is relatively difficult to get away from x and easy to get back to x. In the
case where PSC has only two elements, PSC={x, '}, this implies that z is evolutionarily
stable if and only if r(z,2") > r(2',x). This observation is applied in the example below.

In the next example, the uniquely evolutionarily stable network is not a stable state.
This emphasizes the importance of mutations in the evolutionary process. In this ex-
ample, the empty network is pairwise stable, and thus the only stable state as any two
agents are worse off by forming a link. Thus, without mutations, the process would never
advance. However, with mutations, some links eventually form allowing the process to
reach non-degenerate networks, which are, in fact, efficient.

4.10 A Connections Example with Increasing Returns (Unique
Evolutionarily Stable Network is not a Stable State)

Consider a variation on the connections model where the payoff to any individual is
scaled by 0 times n, where n is the number of direct links that the given individual
has. The value of a link increases as connectedness increases; so this model exhibits
increasing returns. (For example, substituting nd where § was before, the middle person
in a three-player line receives a payoff of 46 — 2c¢, while the end players receive § +4§2 < c.)

Suppose that ¢ > § so that starting from the empty network initial inertia exists, as in
the symmetric connections model; and so the unique stable state is the empty network.
However, if ¢ < 6 + 62, then once two links in a row form additional links will be added.
If ¢ < 58 — 462, then with four individuals, the dynamic process will lead to the complete
network (which is efficient). The complete network is the unique evolutionarily stable
network as one has to break four links in the complete network to get to an improving
path to the empty network, and one needs only to form two links to get from the empty
network to an improving path leading to the complete network.

4.11 Evolutionary Stability and Efficiency

There is no guarantee that the evolutionary process will lead to an efficient network.
Theorem 1 in JW shows that there are situations where no strongly efficient network
is pairwise stable (and where there are no cycles), for a large class of allocation rules
Y. Thus there are examples where no strongly efficient network is evolutionarily stable,
for the same class of Y’s (i.e., those which are anonymous and component balanced, as
defined below).

Nevertheless, one would hope that if a strongly efficient network is pairwise stable,
then the evolutionary process would select this network as one of the evolutionarily stable
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networks. Proposition 8, below, however, shows that this is not the case. Even if there is
a unique efficient network and it is pairwise stable, it can fail to be evolutionarily stable
for a wide class of allocation rules.

The following definitions will be used in Proposition 2.

Given a permutation 7 : N — N, let ¢" = {ij|i = n(k),j = w(l),kl € g} and v™ be
defined by v™(¢™) = v(g). An allocation rule Y is anonymous if, for any permutation ,
Y7r(z) (gﬂa Uﬂ) = Y;(ga U)'

A value function v is component additive if v(g) = Ypecg v(h). (Here, implicitly
v(0) = 0, although the definitions can be extended to avoid this normalization.)

An allocation rule Y is component balanced if 3= e n(n) Yi(g,v) = v(h) for every g and
h € C(g) and component additive v.

Proposition 8 If N > 3, then there is no Y which is anonymous and component bal-
anced and such that for each v at least one strongly efficient graph is evolutionarily stable,
even if there exists a strongly efficient graph that is pairwise stable.

Proof: Let n = 3 and consider the component additive v such that for all ¢, 7, and &,
v({ij}) = —c, v({ij, jk}) = —3¢/2, and v({ij, jk,ik}) = v > 0. So, links are initially
costly and then valuable. First, note that Yj({ij}) = —% for each ij by anonymity and
component balance, and similarly Y;({ij, jk,ik}) = 3. Second, note that {ij} is only on
an improving path to {}. This follows since at least one of j and & will not want to add
the link jk (if it is improving for &, then it must be that Y;({ij, jk}) < —c/2). Both i
and j are better off by severing ij. Lastly, note that {ij, jk} lies on an improving path
to {ij} as at least one of j and k will benefit by severing jk, regardless of the choice of
Y ({ij, jk}). Thus {ij, jk} may or may not lie on an improving path to {ij, jk,ik}.

From these observations, it follows that the resistance of {} is 1, and the resistance
of {ij, jk,ik} is at least 2, and that these are the only two pairwise stable networks (and
there are no cycles). Thus, {} is the unique evolutionarily stable network. This is easily
extended to contexts where n > 3. |

4.12 Relative Probabilities of Evolutionarily Stable Networks

In many of the previous examples, there were several networks, of different forms, that
were all evolutionarily stable. Thus each of these networks received positive weight in
the limiting distribution of the evolutionary process. One might ask how relatively likely
each evolutionary stable network is, in the limiting distribution. In fact, there exists a
closed form expression for the stationary distribution of the evolutionary process, for any
epsilon. To present this expression, the following notation is necessary.
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Let Q(g,¢) = Xier(g) [ggrer P(9'5 9", €), where p(g', g,€) is the probability of transi-
tioning from ¢’ to ¢ in a given period when the probability of a tremble is e.

Let MT(g) = {t € T(g)|r(g,t) < r(g,t') for all ¢ in T'(g)}, where r(g,t) represents
the resistance of a graph g along a specific g-tree t; r(g,t) = X, 7(g',g"). Thus
MT(g) is the set of resistance minimizing trees.

Let Q(g,¢) = Siemrig) ygrer (9,95 €)-
Let ES denote the set of evolutionarily stable graphs.

Theorem 9 The unique stationary distribution of the dynamic process given € is de-

scribed by
Q(g,¢)
m(g,e) = ————.
Eg’ Q(gla 6)
The limiting stationary distribution of network g, m(g) = lim._,om(g,¢), is strictly pos-
itive if and only if g is evolutionarily stable, and then

. Q(g,¢)
=1 = .
m(g) larn Zg’GES’ Q(gla 6)

Proof: The expression for m(g,¢e) follows from Lemma 6.3.1 in Freidlin and Wentzell
[1984] (see also Kandori, Mailath, and Rob [1993]). The expression for m(g) follows from
Theorem 5 and the expression for m(g,¢), since [y, p(g,9',€) is on the order of ¢
raised to the power r(g,t). |

4.13 Asymmetric Connections Example (Application of Theo-
rem 9)

Let n = 3 and consider a variation of the connections model, where all players receive
the same payoff from the same connection (i.e., all players have the same 0), but players
have different costs of connection. Let ¢; represent player 1’s cost of directly connecting
to player 2 or 3. Let c9; represent player 2’s cost of directly connecting to player 1 and
co3 represent player 2’s cost of connecting to player 3. Let ¢3 represent player 3’s cost
of connecting to either player 1 or 2. Assume that § < ¢; < 6 + 6%, § < ¢35 < 6 + 62,
(S+(52 < Co1, and c3 < 0.

It is easy to check that the set of pairwise stable networks coincides with the set of
evolutionarily stable networks, which are {13,23} and {}.

Consider a version of the evolutionary process where each of the three possible links
has an equal probability of being identified at any given time. Thus, the network {12, 13}
has equal probabilities (1 —¢)/3 of changing to {12} or {13}, and a probability of £/3 of
changing to {12,13,23}. In Figure 2, the solid arrows represent moves between networks
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which have a resistance of 0 (so the arrow from {12,13} to {12} indicates that {12}
defeats {12,13}). Generally, from any network in Figure 2, there is a probability of
(1 — €)/3 of changing to another given adjacent network if there is a solid arrow to
that given adjacent network, and there is a probability of £/3, otherwise. From these
observations it is easy to find the resistance minimizing trees, MT(+), of {} and {13,23}.
Each one of these trees has the same resistance, 1, and correspondingly [T, ¢ (9,9, €)
for such a tree is £(1 — £)®/37. Thus, by Theorem 9, the relative probabilities of {} and
{23,13} can be found by identifying the number of resistance minimizing trees for {}
and {13,23}.

This set of resistance minimizing trees can be generated from Figure 2. By definition,
the two pairwise stable networks {} and {13, 23} do not have solid arrows exiting them.
The dashed arrows exiting the two pairwise stable networks represent the moves of re-
sistance 1 from one pairwise stable network to the other. For instance, the dashed line
from the network {} to {23}, then connects to {13,23} via a solid line. Notice that the
network {} does not have a dashed arrow going to {12} since the only solid arrow exiting
{12} goes back to {}. To find all the resistance minimizing trees for the network {}, we
must delete arrows so that every other network has only one arrow exiting it and so that
every other network has a path leading to {}. Straightforward calculations show that
there are 80 such trees for {}, and there are 48 resistance minimizing trees for {13,23}.
Thus, from Theorem 9 it follows that m({}) = 80/128 = .625 and m({13,23}) = .375.

5 Matching Models

We have mentioned several times that the results on evolutionary stability can easily
be adapted to alternative notions of improving path. We now illustrate this fact in the
context of matching problems, such as the Gale and Shapley [1962] marriage problem and
the hospital-intern (and college admissions) problem. (See Roth and Sotomayor [1989]
for a detailed background on these problems.) This section is also of independent interest
as both an application of the model, and as an analysis of evolutionary dynamics in the
Gale and Shapley matching world.

In matching problems, there are restrictions on the set of admissible networks so that
only some subset G of all possible networks are feasible. We provide definitions for two
of the most extensively studied of these problems.

5.1 Marriage Problems

For the marriage problem, the set of players N is divided into a set of men, M =
{my,...,m;}, and a set of women, W = {wy,...,w;}. A network, g, is feasible if each
woman is linked to at most one man, and each man is linked to at most one woman. Let
G denote the set of such feasible networks.
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Let m;(g) = {j|ij € g} denote the match of player ¢ in the network g.

In a marriage problem, v = Y, u;(¢g), and Y;(v, g) = u;(g), where for each i, u; : G —
IR depends only on the match of I. That is, for each i u; is such that u;(g) = u;(g)
whenever m;(g) = m;(g').

5.2 Hospital-Intern and College Admissions Problems

For the hospital-intern (or college admissions) problem, the set of players N is divided
into a set of hospitals, H = {hy,...,h;} and a set of interns, I = {4;,...,4;}. A network,
g, is feasible if each intern is linked to at most one hospital, and each hospital, h, is linked
to at most ¢, interns, where ¢, > 0 is the quota for the hospital; thus each hospital has
a fixed number of slots.

Again, v = Y, u;(g), and Y;(v,g) = u;(g), where for each i, u; : G — IR depends
only on the match of I. That is, for each i wu; is such that u;(g) = wu;(¢') whenever
mi(g) = mi(g').

Additionally, we work under the assumption of responsive preferences (see Roth and
Sotomayor [1989]). This is the condition that a hospital (college) has a ranking over
interns (students) and an empty slot, such that preferences over subsets are consistent
with the hospital’s (college’s) ranking.

Preferences are responsive if for each h € H there exists y, : N — IR such that

(i) if mp(g) = my(g') Ui, then up(g) > up(g’) if and only if y, (i) > y,(0),
(ii) if my(g) = mp(g') /i, then uy(g) > up(g’) if and only if y, (i) < y,(0), and
(iil) if mp(g) = mp(g’) Ui/g, then up(g) > up(g') if and only if y, (i) > yu(j).

Next we give the definition of a core stable network. A network g is core stable if
there is no group of players who prefer network ¢’ to g and who can change the network
from ¢ to ¢’ without the cooperation of the remaining players. In the marriage problem,
it turns out that a network is core stable if and only if no player wants to sever his/her
current link and no two players want to simultaneously sever their existing links and
link with each other. This notion of core stability has been explored in great detail in
matching models, beginning with Gale and Shapley (and again, see Roth and Sotomayor
[1989] for more detail).

5.3 Core Stability

A network ¢ is core stable if there does not exist any set of players A and ¢’ € G such
that
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(i) Yi(¢") > Yi(g)for each i in A (with at least one strict inequality),
(ii) if ij € ¢’ but ij ¢ g, then i € A and j € A, and

(iii) if ij ¢ ¢' but ij € g, then either i € A or j € A.

Ezample (Contrast of core stability and pairwise stability")

Preferences are

The above table can be read as follows: mq’s first choice for a spouse is wl and
his second choice is wy. The remaining preferences can be read in a similar fashion.
The unique core stable matching is {mjw;, mows}. However, both {mjw;, mewy} and
{myws, myw, } are pairwise stable. Also, both networks are evolutionarily stable (using
the definition given in section 4). From either network, two links need to be severed to
get to an improving path to the other network.

5.4 Simultaneous Improving Paths

A simultaneous improving path, is a sequence of networks g, ..., gx in G such that if ¢/
follows ¢ in the sequence then either

(i) ¢ = g — ij and either Y;(¢') > Y;(g) or Y;(¢') > Y(g), or

(ii) o' € {g+ij—ik, g+ij — ik —jm, g+ij, g+ij — jm} where ij ¢ g and Yi(g) > Yi(g)
and Yj(g') > Y;(g) (with one inequality holding strictly).

Note that improving paths are a subset of simultaneous improving paths. Here the
simultaneity refers to the fact that a player may make several changes at once: a player
may both sever an existing link and add a new one. Note that the above definition can be
altered so that the players, when adding a new link, sever the minimum necessary number
of links in order to add the given link. In the context of the marriage and hospital-intern
problems, a core stable network ¢ is any network from which there is no simultaneous
improving path leaving g.

!Gale and Shapley have a notion that they call pairwise stability that is core stability when A is
restricted to have no more than two members. Here, we mean pairwise stability in the sense of JW, as
indicating the lack of improving paths.
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As illustrated in the following example, cycles can exist with the notion of simulta-
neous improving path.

Ezample (Existence of a cycle in a marriage problem)

Consider a marriage problem with two men and two women, where preferences are
as follows:

mo I Wo, W1
w1 ¢ Mo, My

we : M1, Mao.

There exists a cycle under the definition of simultaneous improving path: {mjw,}
to {mow;} to {mows} to {mywy} to {myw;}. Interestingly, there are no cycles in the
marriage problem under the notion of improving path, as a cycle in this setting requires
some simultaneous changes to be made.

As we shall see as a key step in the proof of Theorem 10, however, there are no closed
cycles when considering simultaneous improving paths in the marriage problem.

Let us now discuss an evolutionary process that corresponds to the notion of simul-
taneous improving path.

5.5 A Simultaneous Evolutionary Process

At each time a pair of players is randomly identified. If the link is already in the network,
then the decision is whether to sever it; otherwise the two players are allowed to form
a link and at the same time sever up to one existing link each. (Their actions are
constrained to lead to a feasible g in GG, so in some cases they must sever an existing link
in order to add the new link). The players involved act myopically, adding the link (with
corresponding severances) if it makes each at least as well off and one strictly better off,
and severing the link if its deletion makes either player better off. After the action is
taken, there is some small probability that a tremble occurs and the link is deleted if it
is present.

Here, we consider only trembles that delete the given link; thus one does not have to
worry about the constraints imposed by feasibility, which might bind in the case of adding
a link. This turns out to be irrelevant due to the natural tendency towards the addition
of beneficial links, the restrictions on numbers of links, and the absence of externality
effects.?

2What is important is that it is impossible to have a situation where someone hesitates to add a
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5.6 S-Evolutionarily Stable Networks

The set of networks that is the support of the limiting stationary distribution (of the
simultaneous improving process) is the set of S-evolutionarily stable networks.

Next we explore the set of S-evolutionarily stable networks. In particular, we show
in Theorem 10 that the set of S-evolutionarily stable networks is equal to the set of core
stable networks. This result is somewhat surprising for two reasons. First, as we have
just seen in the example above, there can exist cycles with simultaneous improving paths.
Thus, one has to show that no networks in these cycles are evolutionarily stable. Second,
the example below shows that the set of pairwise stable networks does not coincide
with the set of evolutionarily stable networks, and as we are making parallel changes in
these definitions one might not expect the set of core stable and S-evolutionarily stable
networks to always coincide either.

Ezample (Contrast between Pairwise Stable and Evolutionarily Stable Networks)

Consider a marriage problem with two men and two women. Preferences are:

my . wp, W2
ms : wy, alone
wy : mq, alone

Wwo2 : Mo, Mjq.

Thus my prefers being alone to being matched with w;. Here {mjw, mows} and
{myws} are both pairwise stable. However, only {mjw;, mows} is evolutionarily stable.
This result follows since it takes two mutations to get from {mjyw;, mows} to {miws},
but only one mutation to go the other way.

Theorem 10 Consider the marriage problem where players’ preferences are strict (and
players are allowed to prefer staying alone to being in some matches). The set of S-
evolutionarily stable networks coincides with the set of core stable networks.

The proof of Theorem 10 is in the appendix. We first show that although there exist
cycles under the definition of simultaneous improving path, there are no closed cycles.
The proof builds on this observation, and utilizes the lattice structure of the marriage
problem to build restricted g-trees for any core stable network that has a resistance of
K — 1, where K is the number of core stable networks.

Theorem 10 extends to the college admissions (hospital-intern) problem.

link, that once added would lead to changes in incentives for the subsequent networks (such as in the
increasing returns connections example). In the marriage model, and the college admissions model with
responsive preferences, if a link were added that did not benefit the players involved, it would simply be
deleted at the next opportunity.
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Corollary 11 Consider the college admissions (hospital-intern) problem with strict and
responsive preferences. The set of S-evolutionarily stable networks coincides the set of
core-stable networks.

Proof: This follows from the proof Theorem 10, by considering a related marriage market
where each college is replicated gh times. (For more on the relationship between the

college admissions and marriage problems see Chapter 5 in Roth and Sotomayor [1989].)
|

Ezample (Role of responsiveness)

Consider a college admissions problem with 1 college and 3 students. The set of
feasible networks allows only for links that involve the college and a student. Here the
term ‘full network’ refers to the network with all three feasible links. Assume that each
student prefers being in the college to being out. The college prefers to have all three
students to none, but prefers none to having any proper subset of students. Thus the
college’s preferences fail to satisfy responsiveness.

There are two pairwise stable networks: one that has each student linked to the
college and another where none are linked to the college. However, the only network that
is ‘core-stable’ is the full network.

Under evolutionary stability the resistance of the full network is 2 (to get from the
null network to the full network, at least two links must exist for the third to be added).
However, the resistance of the null network is 1 (delete one link from the full network
and it lies on an improving path back to the null network). Thus, only the null network
(which is Pareto inefficient and out of the core) is evolutionarily stable. Similarly, only
the null network is S-evolutionarily stable.

6 Conclusion

We have developed a model for the study of the dynamic formation and evolution of
networks based on a tool of improving paths. We have studied cycles under improving
paths, a stochastic evolutionary process, and variations of that process, as well as exam-
ples and applications of the model and results. As we have emphasized, there are many
alternatives in modeling choices, especially with respect to the dynamic process and to
the particulars of the definition of improving path.

One modeling decision that deserves further attention is the assumption that players
are myopic. It would be natural to have forward-looking players in situations with a small
number of players who are well-informed about all the other players, the allocations and
valuations, and who care about the future. A interesting problem for future research,
is to develop an appropriate definition of improving path for forward looking players,
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deal with existence issues, and find the set of evolutionary stable networks for these
forward-looking improving paths.

To get an idea of what types of differences might emerge from the myopic model,
consider the following three-player example. Let players have payoffs which meet the
following inequalities: ¥7(12) < 0 < ¥3(12,13) < Y7(13) < Y31(12,13,23); Y5(23) < 0 <
Y5(12,23) < Y3(12) < Y3(12,13,23); Y3(13) < 0 < Y3(13,23) < Y3(23) < Y3(12,13,23);
Yi({}) = 0 and Y;(iy, jk) < Y;(12,13,23), for all i. Thus {12,13,23} is the unique efficient
network.

If players are myopic, then there are two pairwise stable networks, {12,13,23} and
{}. From the network {12,13,23} one link must be severed to get to an improving path
to {}. From the network {} one link must be added to get to an improving path to
{12,13,23}. Thus, by Theorem 5, both networks are evolutionary stable and it is easy to
show (using Theorem 9) that the evolutionary process will split its time equally between
the two networks.

Now assume that players are non-myopic and care about future payoffs. Assume also
that each player knows every other player’s payoff function. Suppose the players are
currently in the network {12} and suppose that the link {12} is identified and can thus
be severed by either player 1 or 2. If player 1 were myopic then he would sever the link.
However, if player 1 values the future enough, then he will decide not to sever the link as
long as he believes that the other players have incentive to do the same thing when faced
with a similar decision. Thus if all players value the future enough, the unique stable
network will be {12,13,23}, and so {12,13,23} will be the unique evolutionary stable
network as well. In this example, if players care enough about the future and are not
myopic, they will end up at the efficient network.
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Appendix

Proof of Theorem 2: First, suppose that there exists a cycle, so that there is some ¢
such that ¢ — g. We show that there cannot exist such a w. Suppose, to the contrary,
that there exists such a w. By transitivity of >, w satisfies w(g) > w(g), which is
impossible. So, if there is a cycle there cannot exist such a w, and so the existence of
such a w precludes any cycles.

Next, assume there are no cycles and that for g and ¢’ (that are adjacent) either ¢
defeats ¢’ or ¢’ defeats g. We show that there exists such a w. The following Lemma (see
Kreps [1988], Proposition 3.2) is helpful.

Lemma: If X is a finite set and b is a binary relation, then there exists w : X — IR such
that [w(x) > w(y)] < [zby], if and only if b is asymmetric and negatively transitive.

Since there are no cycles, our binary relation — is acyclic, and thus asymmetric.
Also, — is transitive by the definition of improving path. However — is not necessarily
negatively transitive. (For an easy example, consider the connections model with n = 3,
c=.1,and 6 =.9.) Thus, we construct a binary relation b over the set of networks such
that (i) ¢ — ¢’ implies ¢'bg, (ii) if ¢ and ¢’ are adjacent, then ¢ — ¢' iff ¢’bg, and (iii) b is
asymmetric and negatively transitive. Then, by (iii) we can apply the Lemma to obtain
w, and Theorem 2 follows from (ii).

Construct b as follows.
Case 1. For every distinct g and ¢’ at least one of the following holds: ¢ — ¢’ or ¢’ — g¢.

Set b by ¢'bg iff ¢ — ¢'. We show that b is negatively transitive. Write ¢"nbg"” if
it is not the case that ¢”"bg"”. Suppose that gnbg’ and ¢'nbg”. This implies that ¢'bg
and ¢”bg’. Thus, by transitivity, it follows that ¢”bg, and so by asymmetry gnbg”. Thus
negative transitivity is satisfied.

Case 2. There exist distinct g and ¢’ (which are not adjacent) such that g not— ¢’ and
g not— g.

Define the binary relation b; as follows. Let ¢”b;¢" iff ¢"" — ¢", except on ¢ and ¢’
where we arbitrarily set ¢’b;g. Note that by construction, (i) and (ii) are true of b;. Note
also that by is acyclic (and hence asymmetric). To see the acyclicity of by, note that if
there were a cycle that it would have to include ¢ and ¢', as this is the only place that
by and — disagree. However, the existence of such a cycle would imply that ¢ — g,
which is a contradiction. Next, define b, by taking all of the transitive implications of
by. Again, (i) and (ii) are true of by. By construction by is transitive. We argue that by
is acyclic. Let us show this by constructing be; we will add one implication from b; and
transitivity at a time, and we will verify acyclicity at each step. Consider the first new
implication that is added and suppose that there exists a cycle. Let ¢” and ¢” be the
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networks in question. So ¢”b;¢" and ¢"'nb.g"”, but ¢"'byg"”, and there exist a sequence

of networks {go, g1, . - ., g-} such that ¢"'b1gob19; ...b1g-b1¢". This implies that there is a
cycle under by, which is a contradiction. Iterating this logic implies that by is acyclic.

Now, reconsider Cases 1 and 2 when b, is substituted for —. Iterating on this process,
we will eventually come to a case where we have constructed by, and relative to b, we
are in Case 1. Iterating on the argument under Case 2, it follows that (i) and (ii) will be
true of by, and by will be transitive and asymmetric. Then, by the argument under Case
1, by will be negatively transitive. Let b = b, and the proof is complete.

Proof of Theorem 5 The proof is an application of a theorem from Young [1993]. To
state Young’s theorem, the following definitions are necessary.

Consider a stationary Markov process on a finite state space X with transition matrix
P.

A set of perturbations of P is a range (0, a] and a stationary Markov process on X with
transition matrix P(e) for each ¢ in (0, a], such that (i) P(¢) is aperiodic and irreducible
for each € in (0, qa], (ii) P(e) — P, and (iii) P(¢),, > 0 implies that there exists r > 0
such that 0 < e"P(g),, < 0.

The number r in (iii) above is the resistance of the transition from state x to y. There
is a path from x to z of zero resistance if there is a sequence of states starting with x and
ending with z such that the transition from each state to the next state in the sequence
is of zero resistance. Note that from (ii) and (iii), this implies that if there is a path from
x to z of zero resistance, then the n-th order transition probability associated with P of
x to z is positive for some n.

The recurrent communication classes of P, denoted X1, ..., X, are disjoint subsets of
states such that (i) from each state there exists a path of zero resistance leading to a state
in at least one recurrent communication class, (ii) any two states in the same recurrent
communication class are connected by a path of zero resistance (in both directions), and
(iii) for any recurrent communication class X; and states = in X; and y not in X; such
that P(¢),, > 0, the resistance of the transition from x to y is positive.

For two communication classes X; and Xj, since each P(¢) is irreducible, it follows
that there is a sequence of states z1,...,z; with z; in X; and z;, in X; such that the
resistance of transition from zj to xjy; is defined by (iii) and finite. Denote this by
r(xk, Tg+1). Let the resistance of transition from X; to X; be the minimum over all such
sequences of S5 ' r(xy, 7441), and denote it by r(X;, X;).

Given a recurrent communication class X;, an i-tree is a directed graph with a vertex
for each communication class and a unique directed path leading from each class j(# i)
to i. The stochastic potential of a recurrent communication class X; is then defined by
finding an i-tree that minimizes the summed resistance over directed edges, and setting
the stochastic potential equal to that summed resistance.
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Also, given any state x, an z-tree is a directed graph with a vertex for each state and
a unique directed path leading from each state y(# z) to x. The resistance of z is then
defined by finding an z-tree that minimizes the summed resistance over directed edges.

The following theorem is a combination of Theorem 9 and Lemmas 1 and 2 in Young:

Theorem (Young [1993]): Let P be the transition matrix associated with a stationary
Markov process on a finite state space with a set of perturbations { P(¢) } with correspond-
ing (unique) stationary distributions {m(g)} be the corresponding (unique) stationary
distribution. Then m(e) converges to a stationary distribution m of P, and a state = has
m, > 0 if and only if is in a recurrent communication class of P which has a minimal
stochastic potential. This is equivalent to x having minimum resistance.

To apply this to our setting, note that under version 1 (or 2 or 5) of the dynamic
process, each pairwise stable graph and closed cycle is a recurrent communication class of
the corresponding process P (and these are exactly the recurrent communication classes
of P). Next, the transition from any graph ¢g to an adjacent one ¢’ has probability on
the order of ¢ if g is not in im(¢') (and thus has resistance 1), and is of the order of 1
otherwise (and thus has resistance 0).

Proof of Theorem 10: Consider the following results about the core stable networks
(see Roth and Sotomayor [1989)):

Theorem A (Gale and Shapley, Knuth): There exists a man optimal stable matching
which all men (weakly) prefer to any other stable matching and similarly there exists a
woman optimal stable matching. Moreover, all men (weakly) prefer any matching to the
woman optimal stable matching, and a similar statement holds for the women and the
man optimal stable matching.

Theorem B (2.22 in Roth and Sotomayor): The set of players with no links is the same
in all core stable matchings.

We use these in proving the following series of claims.

Claim 1: From any g that is not core stable, there exists a simultaneous improving path
that leads to a core stable network ¢’ that is weakly preferred by each man to g.

Proof of Claim 1: Consider any initial graph ¢ that is not core stable. The following
algorithm constructs a simultaneous improving path from g to a core stable graph. This
algorithm is similar to the deferred-acceptance algorithm where the man proposes (see
Theorem 2.8 in Roth and Sotomayor).

Throughout the algorithm, we assume a man (woman) is acceptable to a woman
(man) only if he (she) is preferred to both her (his) current spouse and to being single.
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Algorithm:

Step 1: Start at graph g. Let anyone who prefers being single to their current mate,
sever their current tie.

Step 2: Let each man, who is not married to his first choice, propose to his first choice,
as long as she is acceptable. Each woman rejects all offers that are not acceptable. Of
the remaining offers she receives, she accepts the one she likes best and rejects all others.
If a woman accepts an offer, she and the man sever all existing ties and marry.

Step & Any man who was rejected in step 2, or who is now single, proposes to his first
choice, as long as she is acceptable. Repeat this step until there are no more acceptances.

Step 4: Each man who is not married to his first or second choice, proposes to his second
choice, as long as she is acceptable. The woman rejects offers as in Step 2. If a woman
accepts an offer she and the man sever all existing ties and marry.

Step 5: Any man who was rejected in Step 4 or who is now single, proposes to his second
choice, as long as she is acceptable. Repeat this step until there are no more acceptances.

Repeat Steps 4 and 5 for each man’s third choice, as long as she is acceptable. Keep
repeating Steps 4 and 5 for each man’s next choice, until every man has proposed to his
last acceptable choice.

Go back to Step 1. Repeat the entire sequence, until there are no more acceptances.

In order to make the algorithm into a simultaneous improving path, no marriages can
take place simultaneously. Thus, if at any step multiple marriages take place, we need
to randomly order them so that the marriages occur sequentially.

Such an algorithm cannot cycle, since the deferred acceptance algorithm cannot cycle
(see proof of Theorem 2.8 in Roth and Sotomayor). Thus the algorithm must stop at a
graph ¢', which is by construction core stable. Since no man ever proposes to a woman
who is worse than his current mate, we know that ¢’ is weakly preferred by each man to

g.
Claim 2: There exist no closed cycles.
Claim 2 follows directly from Claim 1.

Claim 3: If there is a singleton core stable network, then it is the unique S-evolutionarily
stable network.

Claim 3 follows from Claim 2.

Claim 4: Any core stable network, ¢, that is not man-optimal is one link away from an
improving path that leads to a core stable network, ¢’, that all men weakly prefer and
some men strictly prefer to g.
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Proof of Claim 4: Find a man in g who is not linked to his man-optimal mate and sever
that link. (By theorem B, that man must be linked under g.) Call the resulting network
¢"”. Alter this man’s preferences to be the same except that his previous mate and all
those less preferred than her are now unacceptable. Note that ¢” cannot be stable under
the new preferences, as the woman who had her link severed must be the man-optimal
mate of some currently matched man (again by Theorem B). So, by claim 1 there is a
simultaneous improving path from ¢” to some ¢’ such that ¢’ is core stable and each man
weakly prefers ¢’ to g”, under the new preferences. Now we argue that the original man
strictly prefers ¢’ to g under the original preferences, which completes the claim. Since
the man-optimal matching is unchanged by the preference change, the original man must
be linked in ¢’ since he is linked in the man optimal matching (again by Theorem B).
Given the stability of ¢’ under his new preferences, he strictly prefers his mate in ¢’ to
his mate in g under his original preferences.

Claim 5: If there are k£ > 1 core stable networks, then the resistance of the man optimal
network is £ — 1.

Proof of Claim 5: This follows from Claims 2 and 4 by constructing a restricted man-
optimal tree by directing each core-stable ¢ that is not man optimal to a ¢’ as defined
in Claim 4. Note that by the preference ordering of men over g and ¢', this results in a
directed tree and there must be some network that connects to the man optimal network.

Claim 6: If there are k > 1 core stable networks, then the resistance of any core-stable
network is k£ — 1.

Proof of Claim 6: We know this for the man-optimal (and correspondingly the woman
optimal) network. Consider some other core stable g. We know that this is man-optimal
under a change of preferences where each man’s preferences are changed so that any
woman that he preferred to his mate under ¢ is now unacceptable. Then, by the logic
of claim 5, we can find a restricted g tree where the resistance of each edge is 1. Note
that from the proof of claim 1, the resistance of each of these edges is the same under
the original preferences (since no one is ever linked to an unacceptable mate). Thus, we
can find a restricted g-tree on the set networks that all men find weakly less preferred
to g, where the resistance of each edge is 1. Similarly we can find a restricted g-tree on
the set of networks that all men find weakly preferred to ¢ (using Theorem A ), where
the resistance of each edge is 1. For other networks that are not uniformly ranked by
men relative to g, keep the same directed edges as in the tree in Claim 5. The resulting
restricted g-tree has resistance k — 1.

Claims 2, 3 and 6 establish the theorem.

Ordered Improving Paths:

In the definition of improving path there is no priority over addition and deletion of links.
In some contexts one might require that addition of links only take place when no player
wishes to delete a link (see Watts (1997) for additional). The following definition is a
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variation on the definition of improving paths is in this spirit.

An ordered improving path from g to ¢’ is a finite sequence of graphs ¢i,..., gx with
g1 = g and gg = ¢’ such that for any k£ € {1,..., K — 1} either:

1. grr1 = g — ij for some ij such that Y;(gx — ij) > Yi(gx), or

2. gk+1 = gk +14j for some ij such that Yi(gy, +ij) > Yi(gr) and Y;(ge +15) = Yj(gx),
and for any i'j" € gx, Yir(gr) > Yir(gr — i'j').

The set of ordered improving paths are a subset of the set of improving paths.

Note that implicit in the definition of ordered improving path is the idea that deletion
is done sequentially, rather than simultaneously.

Version 2 of the Dynamic Process:
Same as version 1, except that trembles occur over the whole graph (independently) after
each period.

Version & of the Dynamic Process:
Same as version 1, except that all agents may choose to delete any existing links at the
end of each period, as in Watts.

Version 4 of the Dynamic Process:
Same as version 3, but with independent trembles again over whole graph.

Version 5 of the Dynamic Process:
Same as version 4, except trembles take place after deletion.

Note that with versions 2 and 4 a change of two links at once is on the order of £2,
which is vanishing more quickly than €. Given any one of the versions above, we can
define a markov chain with different states corresponding to the graph obtained at the
end of a given period (given some specification of what agents do when they are faced
with several actions over which they are indifferent—e.g., severing either of two different
links.) In versions 1, 2, and 5, the markov chain is irreducible (given non-zero trembles).
In versions 3 and 4 one cannot end a period at a graph where an agent would like to
delete a link. Thus, versions 3 and 4 do not satisfy irreducibility. In versions 1, 2, and 5
the markov chain is also aperiodic (given non-zero trembles). This is most easily seen by
noting that it is possible for the graph to return to itself at the end of the period, and so
the periodicity must be one. However, this is not true in versions 3 and 4. it may not be
in version 4 unless the trembles occur after agents’ choices to delete any existing links.
A finite state irreducible, aperiodic markov chain has a unique corresponding stationary
distribution. Thus, this is guaranteed for versions 1, 2, and 5.
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Theorem 12 Consider version 5 of the dynamic process. The set of evolutionarily sta-
ble networks is the set {g| or (g) < or r(g') for all ¢'} and thus includes only closed
cycles and pairwise stable graphs of least resistance, where or(g) is defined relative to
ordered improving paths (with simultaneous deletion—a corresponding definition applies
for sequential deletion).

The following corollaries (to Theorem 2) give sufficient conditions for a network (or
cycle) to be evolutionarily stable.

Reciprical resistance
The resistance between g and ¢’ is reciprocal if v(g,9") = r(¢', 9).

Proposition 13 If resistance is reciprocal between all networks in the set of pairwise
stable or closed cycle networks, then all such networks are evolutionarily stable.

Proof: Consider some g in this set and ¢, a resistance minimizing restricted g-tree. For
any other ¢, a restricted ¢'-tree with the same resistance as ¢ can be constructed by
keeping the same links as in ¢, but reversing them where necessary (i.e., on the directed
path between g and ¢’ only) to obtain a restricted g'-tree. This implies that the resistance
of ¢" must be at least as low as that of g. Since g and ¢’ were arbitrary, g and ¢’ must
have the same resistance, which by Theorem 2 (and Lemma 7) establishes the result. 1

Corollary 14 Consider a case where there exists a directed graph with vertices the el-
ements of PSC, with one directed edge leaving each vertex, and such that for any x in
PSC, a minimal resistance x-tree may be found by deleting the directed edge leaving x.
Note that this directed graph must be a directed circle. Then x is evolutionarily stable if
and only if r(x,z") is mazimal where the directed edge leaving x goes to z'.

Corollary 15 Let PSC consist of three elements; PSC= {x,z',2"}. Then r(z,z') >
r(z',x) and r(xz,2") > r(z",x) imply that x is evolutionarily stable (and uniquely so if
both inequalities are strict). While r(x,2") < r(z',z) and r(z,2") < r(z",x) imply that
x s not evolutionarily stable.
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