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Abstract
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1 Introduction

Machina [6] introduced the concept of smooth representations of preferences
over risky prospects. The real valued functional V over distribution functions
is Fr�echet di�erentiable at F if, for all G in a neighborhood of F , there is a
\local utility" function (over outcomes) u(�;F ) : R! R such that

V (G)� V (F ) =
Z
u(x;F )d[G(x)� F (x)] + o(k G � F k) (1)

where k � k is the L1-norm. The functional V is Fr�echet di�erentiable if it is
Fr�echet di�erentiable at all F (see Zeidler [13]). The preference relation � is
called Fr�echet di�erentiable if it has a Fr�echet di�erentiable representation.
Machina argued that since many problems in economics involve only local
analysis (for example, optimization and comparative statics analysis), and
since the functional V can be locally approximated by an expected utility
functional, it should follow that many of the economic results of expected
utility apply to all (smooth) nonexpected utility preferences.

It turns out that some well known preference relations are not Fr�echet
di�erentiable (see Chew, Karni, and Safra [1]), but they too have local utility
approximations, although only in Lp for p > 1 (see Wang [11]). It thus seems
that although the Fr�echet di�erentiability assumption rules out some models,
it does not have any e�ect on our ability to analyze local behavior under risk.
In this note we show that this, however, is not true, and assuming Fr�echet
di�erentiability has some economic meaning.

2 Orders of Risk Aversion and Fr�echet Dif-

ferentiability

At points (i.e., degenerate distributions) where the increasing utility function
u : R! R is di�erentiable (that is, almost everywhere), the expected utility
functional

R
u(x)dF (x) behaves locally like expected value. Extending this

property to nonexpected utility preferences, Segal and Spivak [9] de�ned the
concept of second order risk aversion as follows. Consider the set X of all
real bounded random variables on a measure space 
 = (S;�; P ). For each
X 2 X , let FX denote the cumulative distribution function of X. Without
abuse of notation, we denote by a the constant random variable with the
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value a and its distribution function is denoted by �a. Let � be a complete,
transitive, continuous (with respect to the weak topology) and monotone
(with respect to �rst order stochastic dominance) preference relation over
X . Monotonicity obviously implies that X � Y whenever FX = FY . For a
random variable ~x with expected value zero and for x� 2 R, de�ne the risk
premium function � implicitly by �x���(x�;~x) � Fx�+~x. Assume throughout
that the preference relation � exhibits risk aversion with respect to mean
preserving spreads. This preference relation is said to satisfy second order
risk aversion at x� if for every such ~x,

@

@t
�(x�; t~x)

�����
t=0+

= 0 and
@2

@t2
�(x�; t~x)

�����
t=0+

> 0

(t~x is the random variable that is obtained from ~x by multiplying its outcomes
by t). Similarly, the preference relation � is said to satisfy �rst order risk
aversion at x� if for every non trivial ~x with expected value zero,

@

@t
�(x�; t~x)

�����
t=0+

> 0

First order risk aversion implies kinked indi�erence curves along the main
diagonal in a states-of-the-world representation, while second order risk aver-
sion implies smooth such indi�erence curves (see Segal and Spivak [9]). The
concept of orders of risk aversion has some economic applications. A second
order risk averter will buy full insurance if and only if its price is \fair," that
is, when the price of a dollar insurance equals the probability of loss. On
the other hand, a �rst order risk averter will buy full insurance even at the
face of some marginal loading. (For this, see Segal and Spivak [9]. See also
Karni [4] for other results concerning insurance and orders of risk aversion.
For applications to the equity premium puzzle, see Epstein and Zin [2]).

Machina [7] o�ers an extensive discussion of di�erent possible kinks of
indi�erence curves in the space of payo�s. Some of these kinks are consistent
with Fr�echet di�erentiability (e.g., expected utility with a non di�erentiable
utility function), and some are not (e.g., the rank dependent model). The
di�erence between his approach and ours is that he is interested in the lo-
cally separable versus locally nonseparable nature of such kinks, while we are
interested in the relation between Fr�echet di�erentiability and orders of risk
aversion.
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Segal and Spivak [10] show that under the assumption of Fr�echet di�eren-
tiability of the representation functional V , the preference relation � satis�es
�rst [second] order risk aversion at a point x� i� the local utility u(x; �x�) is
not di�erentiable [di�erentiable] with respect to its �rst argument at x = x�.
Using these results, Theorem 1 below states a connection between Fr�echet
di�erentiability and orders of risk aversion.

Theorem 1 If the preference relation � can be represented by a Fr�echet

di�erentiable functional V , then for almost all x�, � satis�es second order

risk aversion at x�. In other words, the set of points where the preference

relation � satis�es �rst order risk aversion is of measure zero.

Proof By monotonicity, the functional V satis�es V (�x) > V (�y) () x >
y, hence the set of points where @V (�x)=@x does not exist is of measure
zero. The conclusion now follows from the equivalence of the following three
conditions.

1. The derivative @V (�x)=@x exists at x = x�.

2. The preference relation � satis�es second order risk aversion at x = x�.

3. The local utility u(x; �x�) is di�erentiable with respect to its �rst argu-
ment at x = x�.

The equivalence of (2) and (3) is proved in [10]. To see why (1) and (3)
are equivalent, note that

V (�x�+")� V (�x�) = u(x� + "; �x�)� u(x�; �x�) + o(")

(see eq. 1). Divide both sides by " and let " ! 0 to obtain that V (�x) is
di�erentiable with respect to x at x = x� i� u(x; �x�) is di�erentiable with
respect to its �rst argument at x = x�. �

The theorem implies that all models that have kinked indi�erence curves
at all points along the main diagonal in a states-of-the-world representation
are not (L1) Fr�echet di�erentiable. Such is the rank dependent model (for
a direct proof that this model is not Fr�echet di�erentiable, see Chew, Karni
and Safra [1]. For a proof that this model satis�es �rst order risk aversion, see
Segal and Spivak [9]). Another example is Gul's [3] disappointment aversion
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model (see [5, Lemma 1]). Theorem 1 also implies that there is an economic
behavioral di�erence between preference relations that are L1 Fr�echet di�er-
entiable and preferences that are Lp Fr�echet di�erentiable for p > 1, as the
latter may display �rst order risk aversion everywhere.

3 Second Order Behavior and Nondi�eren-

tiability

An interesting question is whether the converse of Theorem 1 holds. That is,
whether a preference relation that satis�es second order risk aversion almost
everywhere is necessarily Fr�echet di�erentiable. In this section we o�er an
example showing that such a connection does not necessarily exist. In the
sequel, we use the fact that expected utility with a di�erentiable utility u
exhibits second order risk aversion (see Segal and Spivak [9]).

Example 1 Let the set of outcomes be [0; 2], let u(x) = �x2+5x�3, and de-
�ne F � G i� V (F ) > V (G), where for every F , V (F ) = minfE[F ];E[u(F )]g.
We show that this preference relation satis�es second order risk aversion, but
is not Fr�echet di�erentiable.

Second order risk aversion: It is easy to verify that for x < 1, u(x) < x,
and for x > 1, u(x) > x. Let x� 62 f0; 1; 2g, say 0 < x� < 1. Then for
every ~x 6= �0 with expected value zero and for every su�ciently small t > 0,
E[u(x� + t~x)] < E[x� + t~x] = x�. Second order behavior thus follows from
the properties of the expected utility functional E[u(F )]. A similar argument
holds for the case 1 < x� < 2.

Next we show second order behavior at x� = 1. Since u is a concave
function, it follows that for all ~x with zero expected value and for all t > 0,

E[u(x� + t~x)] < u(x�) = 1 = E[x� + t~x]

Also, for all � > 0, u(x� � �) < x� � �. Therefore, both x� + t~x and x � �
are computed with respect to u, which exhibits second order behavior.

Fr�echet di�erentiability: Suppose � can be represented by the Fr�echet
di�erentiable functional W (F ) = h(V (F )), where h is strictly increasing.
Let F1 = fF : E[F ] 6 E[u(F )]g, and let F2 = fF : E[F ] > E[u(F )]g. By
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the linearity of the expected utility functional, if F;F 0 2 Fi, then for all
� 2 [0; 1], �F + (1 � �)F 0 2 Fi. Moreover,

d

d�
V ((1 � �)F + �F 0) =

8><
>:

E[F 0]� E[F ] F;F 0 2 F1

E[u(F 0)]� E[u(F )] F;F 0 2 F2

Since W is Fr�echet di�erentiable, it follows that d

d�
W ((1��)F +�F 0) exists

for F;F 0 2 Fi, i = 1; 2, and is given by h0(V ((1 � �)F + �F 0)) d
d�
V ((1 �

�)F + �F 0). Since this is true for all F and F 0 in Fi, we obtain that h is
everywhere di�erentiable. Next we show that there exists F 2 F1 \ F2 such
that h0(V (F )) > 0.

Consider the set of lotteries

F3 =
�

3

4x� x2
�x +

�
1 �

3

4x � x2

�
�0 : x 2 [1; 2]

�

It is easy to verify that F3 � F1 \ F2, and that V (F3) = [1; 3
2]. Therefore,

there exists F 2 F3 such that h0 at V (F3) is strictly positive.
Pick such a distribution F and observe that since W is Fr�echet di�er-

entiable at F and h0(V (F )) > 0, then V too is Fr�echet di�erentiable at F .
De�ne G = �0 2 F2 and G0 = �2 2 F1. Observe that

1
2
G+ 1

2
G0 2 F2. Clearly,

V (G) = �3, V (G0) = 2, and V (12G + 1
2G

0) = 0. We obtain the following
derivatives.

�
d

d�
V ((1� �)F + �G) = �3�

Z
u(x)dF (x) = �3 � V (F ).

�
d

d�
V ((1� �)F + �G0) = 2�

Z
xdF (x) = 2� V (F ).

�
d

d�
V ((1� �)F + �[

1

2
G +

1

2
G0]) = �

Z
u(x)dF (x) = �V (F ).

In other words, the derivative d

d�
V ((1��)F+�F 0) is not linear in F 0. It thus

follows that V is not Fr�echet di�erentiable. Since W = h(V ) and h0(V (F ))
exists, W is not Fr�echet di�erentiable at F . Also note that V , and hence W ,
are not even Gâteaux di�erentiable: A functional V is Gâteaux di�erentiable
at F if for every G, �V (F;G� F ), which is given by

�V (F;G� F ) =
d

dt
V ((1� t)F + tG)

�����
t=0+
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exists, and if it is a continuous linear function of G � F . V is Gâteaux
di�erentiable if it is Gâteaux di�erentiable at F for every F (see Zeidler [13,
p. 191]).

4 Conditional Second Order Behavior

The original de�nitions of orders of risk aversion relate to mean preserv-
ing spreads from a nonstochastic outcome x. The standard analysis of risk
aversion deals also with mean preserving spreads of a possible outcome in a
lottery (see Rothschild and Stiglitz [8]). Likewise, it is possible to relate the
concept of orders of risk aversion to such conditional spreads (see Loomes
and Segal [5]).

Let X = (x1; p1; : : : ;xn; pn), and let ~x 6= �0 be a random variable with
zero expected value. De�ne the conditional risk premium �(X;xi; t~x) by

(: : : ;xi � �(X;xi; t~x); pi; : : :) � (: : : ;xi + t~x; pi; : : :)

We say that the risk averse preference relation � satis�es conditional second
order risk aversion for X at xi if for every such ~x,

@

@t
�(X;xi; t~x)

�����
t=0+

= 0 and
@2

@t2
�(X;xi; t~x)

�����
t=0+

> 0

Similarly, the preference relation � is said to satisfy �rst order risk aversion
for X at xi if for every non trivial ~x with expected value zero,

@

@t
�(X;xi; t~x)

�����
t=0+

> 0

In this section we show that Fr�echet di�erentiability implies conditional
second order risk aversion almost everywhere, but even this stronger concept
does not imply Fr�echet di�erentiability. (The reason Example 1 is neverthe-
less needed is explained below).

Theorem 2 If the preference relation � can be represented by a Fr�echet

di�erentiable functional V , then for all X = (x1; p1; : : : ;xn; pn), for all i,
and for almost all x�i , � satis�es conditional second order risk aversion for

(X�i; x�i ) := (x1; p1; : : : ;x�i ; pi; : : : ;xn; pn) at x
�
i .
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The proof is similar to the proof of Theorem 1.

The preference relation of Example 1 exhibits second order risk aver-
sion. Moreover, using the same arguments, it exhibits conditional second
order risk aversion everywhere. (As before, the only interesting case is when
E[F ] = E[u(F )]. Adding t~x with E[~x] = 0 to xi will reduce E[u(F )], but
will not change E[F ]. Also, since for all x, u0(x) > 1, the computation of
the conditional risk premium will be done with respect to u. Conditional
second order thus follows from the fact that di�erentiable expected utility
exhibits conditional second order risk aversion (see [5])). As we have shown
above, for any representation of the preference relation of Example 1 there
are points where this representation is not Fr�echet (and Gâteaux) di�eren-
tiable, but this set is small (the functional V of this example is di�erentiable
everywhere except for the set of distributions where E[F ] = E[u(F )]. For any
representation W = h(V ), h is almost everywhere di�erentiable, hence W is
not Fr�echet di�erentiable only at the distributions where V is nondi�eren-
tiable, or at the small sets of indi�erence sets where h is nondi�erentiable).
The functional V of the next example is nowhere Fr�echet di�erentiable, more-
over, given any representation W = h(V ) of the preference relation, there
is a dense set of indi�erence sets such that for all points in these sets, W is
not Fr�echet di�erentiable there (although it is Gâteaux di�erentiable). As
we show, although this preference relation exhibits �rst order risk aversion
everywhere, it exhibits conditional second order risk aversion almost every-
where.

Example 2 Here too the set of outcomes is [0; 2], and the preference relation
� can be represented by V which is a Yaari [12] functional of the form
V (F ) =

R
xdg(F (x)), where

g(p) =

8><
>:

4p
3 p 6 1

2

2p+1
3 p > 1

2

This example exhibits �rst order risk aversion at all x. Indeed, let ~x =
(x1; p1; : : : ;xn; pn) such that x1 6 � � � 6 xn and E(~x) = 0. Assume, wlg, that
there exists k such that

Pk
i=1 pi =

1
2 . Clearly, V (�x) = x, and V (�x + t~x) =

x + 2t
3

Pk
i=1 pixi. Therefore, �(x; t~x) = �2t

3

Pk
i=1 pixi, and

@

@t
�(x; t~x)jt=0+ =

�2
3

Pk
i=1 pixi > 0.
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On the other hand, it is easy to verify that the preference relation rep-
resented by V satis�es conditional second order risk aversion at xi unlessP

j:xj<xi
pj <

1
2
, but

P
j:xj6xi

pj >
1
2
. In other words, conditional second or-

der risk aversion is satis�ed everywhere, except for the outcome where the
cumulative distribution function intersects the level F (x) = 1

2 .
Despite the fact that this preference relation is essentially (conditional)

second order, the functional V is nowhere Fr�echet di�erentiable and for any
transformation W = h(V ) of it, there is a dense set of indi�erence sets of
� such that W is not Fr�echet di�erentiable at all distributions in these sets.
Of course, we know already from Chew, Karni, and Safra [1] that the rank-
dependent functional V (of which Yaari's dual theory is a special case) is not
Fr�echet di�erentiable at distributions F that are discontinuous, but here we
show that it is not di�erentiable at all distributions. The proof is tedious,
and appears in the Appendix.

5 Constant Risk Aversion

A partial answer to the question whether second order risk aversion implies
Fr�echet di�erentiability is o�ered by the next proposition. If a preference
relation � satis�es constant risk aversion (de�nition below) then having sec-
ond order risk aversion almost everywhere (in fact, even at one point only),
implies that � is the expected value preference relation, and hence Fr�echet
di�erentiable.

For X 2 X , let X be the lowest possible value of X (that is, X is the
supremum of the values of x for which FX(x) = 0). Observe that for X 2 X
and a > �X, X + a 2 X .

De�nition 1 The preference relation � satis�es constant risk aversion if

1. For every X and Y and for every a > maxf�X;�Y g, X � Y i�

X + a � Y + a; and

2. For every X and Y and for every � > 0, X � Y i� �X � �Y .

Proposition 1 Assume constant risk aversion. Then the following three

conditions are equivalent.

1. V is an expected value functional.
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2. There is a wealth level x� at which the decision maker's preference

relation displays second order risk aversion.

3. At all wealth levels, the decision maker's preference relation displays

second order risk aversion.

Proof Obviously, (1) =) (3) =) (2). By constant risk aversion, it is easy to
verify that (2) =) (3). To see why (3) =) (1), pick X = (x1; p1; : : : ;xn; pn)
such that

P
pixi = x�, but X 6� �x�. If x is su�ciently close to x�, then

there is 
 6= 0 such that X + 
 = (x1 + 
; : : : ; xn + 
) � �x�. De�ne
~x = (x1 � x�; p1; : : : ;xn � x�; pn) and obtain by constant risk aversion that
the risk premium the decision maker is willing to pay to avoid t~x is t
. This
contradicts the assumption that the preference relation satis�es second order
risk aversion. �

Appendix: The Non-Di�erentiability of Exam-

ple 2

For a distribution function F on [0; 2], denote by �F the epigraph of F , �F =
f(x; p) : p > F (x)g. Let � be the Lebesgue measure on [0; 2] � [0; 1] � R2.
An alternative representation of the functional of Example 2 is given by

V (F ) =
4

3
�( �F \ ([0; 2]� [0;

1

2
]) +

2

3
�( �F \ ([0; 2]� [

1

2
; 1]) (2)

The local utility of Yaari's functional is given by (see Chew, Karni, and
Safra [1])

u(x;F ) =
Z x

dg(F (y))

In our case, let x� = supfx : F (x) 6 1
2g. We obtain that

u(x;F ) =

8><
>:

4x
3 x 6 x�

4x�

3
+ 2

3
(x� x�) x > x�

To show that V is not Fr�echet di�erentiable at F , we need to �nd Fn ! F
such that

V (Fn)� V (F ) 6=
Z
u(x;F )d[Fn(x)� F (x)] + o(k Fn; F k)
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Assume �rst that x� 2 (0; 2), and that the variation of F at x� is bounded
away from zero and in�nity (we de�ne these requirements more precisely
below). For a su�ciently large n, de�ne x1n = supfx : F (x) 6 1

2
+ 1p

n
g and

x2n = supfx : F (x) 6 1
2 �

1p
n
g. Let

F 1
n(x) =

8>>>>>><
>>>>>>:

F (x) x < x� � 1p
n

1
2
+ 1p

n
x� � 1p

n
6 x < x1n

F (x) x1n 6 x

and

F 2
n(x) =

8>>>>>><
>>>>>>:

F (x) x < x2n

1
2 �

1p
n

x2n 6 x < x� + 1p
n

F (x) x� + 1p
n
6 x

F 1
n is the minimal distribution above F going through (x�� 1p

n
; 12 +

1p
n
) and

F 2
n is the maximal distribution below F going through (x�+ 1p

n
; 1
2
� 1p

n
) (see

Fig. 1). Note that V assigns the square A2
n = [x� � 1p

n
; x�] � [12 ;

1
2 +

1p
n
]

the weight 2
3n
, while the weight of this square according to the local utility

function is 4
3n
. Similarly, V assigns the square A4

n = [x�; x�+ 1p
n
]� [1

2
� 1p

n
; 1
2
]

the weight 4
3n , while its weight according to the local utility function is 2

3n .
On the other hand, on the areas

� A1;1
n = f(x; p) : x > x�; F (x) 6 p 6 F 1

n(x)g

� A3;1
n = f(x; p) : x 6 x�; F (x) 6 p 6 minfF 1

n(x);
1
2gg

� A1;2
n = f(x; p) : x > x�;maxfF 2

n(x);
1
2
g 6 p 6 F (x)g

� A3;2
n = f(x; p) : x 6 x�; F 2

n(x) 6 p 6 F (x)g

the weights according to V and u(�;F ) agree. Therefore, for i = 1; 2,

din :=
����(V (F i

n)� V (F ))� (
Z
u(x;F )d[F i

n(x)� F (x)])
���� = 2

3n
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Figure 1: The distributions F , F 1
n , and F 2

n

We now show that din is not o(k F
i
n; F k) for either i = 1 or i = 2. Clearly,

k F 1
n ; F k= �(A1;1

n [A2
n[A

3;1
n ), while k F 2

n ; F k= �(A1;2
n [A4

n [A
3;2
n ). If there

are 0 < K < L <1 such that either

1. For every n, [F (x1n) � F (x�)]=(x1n � x�) = 1p
n
=(x1n � x�) > K and

[F (x�)�F (x�� 1p
n
)]=[x�� (x�� 1p

n
)] = [F (x�)�F (x�� 1p

n
)]= 1p

n
6 L;

or

2. For every n, [f(x�)�f(x2n)]=(x
��x2n) =

1p
n
=(x��x2n) > K and [F (x�+

1p
n
)� F (x�)]=[(x� + 1p

n
)� x�] = [F (x� + 1p

n
)� F (x�)]= 1p

n
6 L,

then we are through. The reason is that in the �rst case, lim�(A1;1
n ) 6

1=(2nK) and lim�(A3;1
n ) 6 L=(2n). Since �(A2

n) =
1
n
, it follows that in the

limit, d1n and k F 1
n ; F k are of the same order of magnitude. In the second

case, we obtain in a similar way that in the limit, d2n and k F
2
n ; F k are of the

same order of magnitude. Moreover, the same analysis holds for the cases
where for every n, at most one of 1p

n
=(x1n�x�) and [F (x�)�F (x�� 1p

n
)]= 1p

n

is less than K, or when for every n, at most one of [F (x�+ 1p
n
)�F (x�)]= 1p

n

and (x� � x2n)=
1p
n
is larger than L.

The two remaining cases happen when F is either (almost) 
at at x�, or
(almost) vertical there (or x� 2 f0; 2g). Formally, if either for allK, (wlg) for
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every n, 1p
n
=(x1n � x�) < K and [F (x�)� F (x� � 1p

n
)]= 1p

n
< K, or when for

all L, (wlg) for every n, [F (x�+ 1p
n
)�F (x�)]= 1p

n
> L and (x��x2n)=

1p
n
> L.

In the �rst case, rede�ne A2
n to be the rectangle [x2n; x

�] � [1
2
; 1
2
+ 1p

n
], and

rede�ne A4
n to be [x�; x1n]� [1

2
� 1p

n
; 1
2
] to obtain once again that either d1n is

of the same order of magnitude as k F 1
n ; F k, or d2n is of the same order of

magnitude as k F 2
n ; F k. In the second case, rede�ne A2

n to be the rectangle
[x�� 1p

n
; x�]� [1

2
; F (x�+ 1p

n
)], and rede�ne A4

n to be [x�; x�+ 1p
n
]� [F (x��

1p
n
); 1

2
] for similar results.

The proof that any transformation W = h(V ) has a dense set of indif-
ference sets such that W is not Fr�echet di�erentiable at all points in these
sets is similar to that of Example 1. All we need to show is that in any
open interval in the range of W there is a point w such that either h is not
di�erentiable at h�1(w), or its derivative there is not zero.
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