L P\ldde Hugd

-

An approach to correctness
of data parallel algorithms

Joaquim Gabarré
Ricard Gavalda

Report LSI-91-19

TP
AR [XVEa)

FLCULTAT D4t
BIBLIOTECA

R.RHA 29 MAO 1591

An approach to correctness
of data parallel algorithms

Joaquim Gabarré * Ricard Gavalda *

Dep. de Llenguatges i Sistemes Informatics
Universitat Politécnica de Catalunya
Pau Gargallo 5, 08028 Barcelona
Spain
gabarro@Isi.upc.es gavalda@lsi.upc.es

Abstract: The design of data parallel algorithms for fine-grained SIMD ma-
chines is a fundamental domain in today computer science. High standards in
the specification and resolution of problems have been achieved in the sequen-
tial case. It seems reasonable to apply the same level of quality to data parallel
programs.

It appears that most of the data parallel problems can be specified in terms of
post and preconditions. These conditions characterize the overall state of the
fine-grained processors in the initial and final states. In this paper:

o We present an axiomatic system to prove correctness of data parallel algo-
rithms on fine-grained SIMD machines.

o We specify some data parallel problems like tree sum, radix sorting, and
dynamic memory allocation.

o With this set of axioms we prove the correctness of programs solving the
above problems.

It seems that the framework to deal with data parallel problems is quite different
from the other one dealing with problems of parallelism with multiple threads of
control, like those solvable in CSP.

Keywords: SIMD machines, programming languages, axiomatic semantics,
stepwise refinement.

* Research supported by the ESPRIT II Basic Research Actions Program of the EC under
contract No. 3075 (project ALCOM).

1. Introduction

The study of PRAM algorithms implemented in fine-grained machines is a fundamental
domain in today computer science [GR88, KR90]. A lot of effort has been done to find
optimal and efficient algorithms to solve different problems. However much less effort has
been done to have a good programming methodology. This can be dangerous if we look
back at what happened in the sequential case [Yo82].

Building the Connection Machine, Hillis [Hi85) seems to have fixed a new paradigm in
programming fine-grained machines. On the other hand, active data structures [HS86]
seem to be also an important and unexplored tool. In order to have a clear, usable, and
complete program methodology for PRAM algorithms it seems unavoidable to:

1) Consider what kind of high-level instructions are needed to construct high-level pro-
grams on fine-grained machines.

2) Give an axiomatic semantics for these instructions.
3) Develop the notion of data structure adequate to this kind of machines.

This paper intends to be a first step towards points 1) and 2). With respect to point 1), let
us be more precise about our goals: We want to find a set of instructions that can express
most of the SIMD algorithms described, for instance, in [GR88,KR90]. Furthermore, we
want to define them with no reference to the PRAM model or any other low-level model.
More important, let us make clear which are not our goals:

We do not claim that our instructions are sufficient for general-purpose programming. We
do not discuss input/output, data typing and other features that any true programming
language should have.

We do not claim either that the instructions can be efficiently implemented with current
technology. For instance, our high-level view ignores crucial issues such as:

e Mapping between data structures and processors: Similarly, when describing formally
high-level sequential languages, it is not reasonable to explain how global and local
variables, procedure parameters, and dynamic memory have to be mapped into a
machine’s memory, that is usually a linear array.

e Communication between processors, including network topology, broadcasting of val-
ues, routing... In our high-level view it is not even possible to say if processors
communicate through shared memory or by exchanging messages. In principle, every
data item is visible to every processor.

e Scheduling of tasks to individual processors: A typical consideration that we want to
exclude from our semantics is whether the parallel assignment
zlk + 1] := z[k] + z[k — 1]
is executed by the processor “numbered” k, k + 1, or k — 1, be this number physical
or virtual.

Of course, ignoring these items is unrealistic with present machines and compiler tech-
niques. However, by comparison with the history of sequential programming, we hope

2

that these problems will be less and less important in the far future. Otherwise, there is
little hope of ever having high-level, machine-independent parallel software.

2. Preliminaries

In order to present the semantics of a SIMD language we start with an informal overview
of it. It is very close to that used in [HS86]. We describe an abstract parallel machine
that supports it and how each language construct is implemented. We do this for clarity;
in the following sections, we will give a semantics not tied to any machine model.

We want to describe programs written for a machine with a large number of proces-
sor+memory cells. Every processor has an internal state bit, called the contezt flag. All
processors receive a common instruction stream from a host and examine it synchronously.
For each of them, the context flag determines whether the incoming instruction is actually
executed or ignored. There is also a set of instructions that are executed unconditionally,
i.e., even if the context flag is off. Such instructions are needed, at least, for setting and
clearing context flags. We call a processor selected or active at a given moment if its con-
text flag is on. The contezt at that moment is the set of selected processors. Note again
that the next instruction in the stream will be executed identically by all processors in the
context, while the rest of processors will remain idle.

Two classes of variables are considered: Global variables are not attached to any particular
processor. One can think of them as located in the host’s memory. Local variables are
replicated in each processor. We use array notation to define and use local variables. A
declaration such as

z : array [1..N] of proc of integer

creates an integer variable belonging to each processor k, that can be referenced as z[k].
Processors can exchange values of local variables (in a way not specified).

Language constructs
e The main parallel construct is the for-all, denoted as
for all k do in parallel S(k) end

It indicates that statement S(k) will be executed by all active processors, each with a
different value of variable k. We will also use the construction

for all k : E(k) do in parallel S(k) end

to indicate that only active processors k such that condition E(k) is true will actually
execute S(k). This statement is used for notational convenience. It can be viewed as an
unrestricted for-all enclosing an if statement (described below).

e Inside a for-all we can have parallel assignments of the form z[Fi(k)] := F,(k) giving
statements like

for all k : E(k) do in parallel z[Fi(k)] := F3(k) end

3

This statement instructs each selected processor k to compute F,(k) and update variable
of processor Fj(k). This requires some communication if Fy(k) # k. Note that expression
Fy(k) can be in fact independent of k (for example, it can be a global variable).

e We also have a conditional statement of the form
if E(k) then S(k) end

It indicates that all currently selected processors evaluate E(k). Those that evaluate to
true will execute S(k) and all others are deselected during that time.

e But remember that the instruction stream is still sent to all processors in the machine.
This is necessary because S might contain some unconditional instructions that require
activating all of them. Instructions that are executed unconditionally are indicated as

unconditionally S end

Here all processors are temporarily selected for execution of § and after termination the
original context is restored.

o The while statement has some important differences in relation to the sequential one. A
statement like

while E(k) do S(k) end

should be interpreted as following: at each iteration, a processor for which E(k) is false
becomes deselected. The loop terminates when all processors have become deselected, and
the original context is then restored.

e We use two functions called count and enumerate as primitives of our language. If c is
a global variable and X is a local variable, then the statement

¢ := count
will place in ¢ the number of elements in the current context, and
z[k] := enumerate

will place in variable z of each selected processor its relative position in the context. That
is, the selected processor with lowest value of k will receive 0, the immediate next will
receive 1, etc. [HS86] and [Ble86] argue that these operations can be regarded as primitive
because they can be implemented very efficiently on real machines and allow to write many
algorithms concisely. We will support this opinion by showing that they also have a very
simple and elegant definition in our semantics.

o Finally, we inherit all constructs common in sequential programming, such as sequential
composition (denoted ;) and sequential for loop.

With all these constructs we can code algorithms easily. This is specially true when have
right to consider procedures and functions. For example, Figure 1 presents an algorithm

4

procedure Fast Binary_Sum
(a,b: array [N — 1..0] of proc of bit): array [N..0] of proc of bit;

import
Tree_And (a: array [N — 1..0] of proc of bit): bit;
Tree_Or (b: array [N — 1..0] of proc of bit): bit;

var
p: array [N — 1..0] of proc of bit; { carry propagate }
g: array [N — 1..0] of proc of bit; { carry generate }
c: array [N — 1..0] of proc of bit; { carry }
z: array [N —1..0, N — 1..0] of proc of bit;

begin

{ compute the carry }
for alli: N > i > 0 do in parallel p[i] := a[i] + b[i]; g[¢] := a[?] * b[z] end;
for alli,5: N >4 > j > 0 do in parallel z[i,j] := Tree_And (p[t..j + 1]) * g[j] end;
c[0] := g[0];
for alli: N > i > 0 do in parallel c[i] := g[i] + Tree_Or (z[:..0]) end;
{ compute the sum }
Fast_Binary_Sum[0] := a[0] + 5[0];
for alli:0 <i < N do in parallel Fast Binary_Sum(i] := a[i] ® b[i] ® c[z — 1] end;
Fast Binary _Sum[N] := ¢[N — 1]
end Fast_Binary_Sum

Figure 1. Fast binary sum.

implementing a fast adder. In this paper we deal with procedures informally. However,
their axioms can be translated directly from those of sequential languages.

Notation

We introduce some notations to deal with finite sets of integers. Let A be a subset of IN
such that A = {ao,a1,a2,...}. We assume A ordered, this means ay < a; < az <... Let
A be the cardinal of 4. Given k > 0, we define the following subsets of A:
Acy={a€ A | a<k}
ﬁ’l‘.!t A:{{ao,...,ak_l} lfk<#A
¥ A otherwise.

Given a mappingy : A — A’ and two sets B C A and B’ C A’ we denote as B -, B' the
restriction of this mapping to the sets B and B'. Note that given two sets A and B the
following conditions are equivalent

° ﬁ”tmin(#A,#B)A SN ﬁ”tmin(#A,#B)B is a bijection.

o first,pA AN firsty 4B is a bijection.

3. Semantics

In this section we present an axiomatic semantics, based on the notion of state and pre-
and post- conditions for the language described. This extends the work done by A. Hoare
[Ho69] and E. Dijkstra [Di75] for sequential programming.

To see why this type of semantics is natural in this framework, recall that we assume a
single instruction stream that is executed in perfect synchrony by all processors. This gives
us two immediate advantages at the time of designing and proving programs correct:

o First, there is no need to synchronize processors explicitly. In particular, there is no
danger of deadlock: the state of each processor (selected or not) is internal to it and can
only be changed by the instruction stream, not by any other processor’s signal. Thus,
we can prove termination of these programs using the same techniques as in sequential
programming.

e Second, programs are completely deterministic. There are no invisible state changes or
nondeterministic choices. As a consequence, there is a precise definition of the “state” of
a program at a given moment.

For these reasons, it is possible to specify the behaviour of one of these programs completely
in terms of its initial and final state. Note that such specification is not possible for

concurrent MIMD programs, because one must also specify how and when each program
is ready to communicate.

States, processors, and assertions

In the sequential case the state of a computation is determined by the value of the variables.
The relationship between these values is described by a predicate P. To describe the state
of a SIMD algorithm we need to take care of two different facts.

e As in the sequential case we need to describe the relationship between the values of the
local and global variables. This can be done by a predicate P.

e Recall that each processor can be active or inactive. Any description of the state of a
program must take care of this, because the same program, started with different active
processors, will have different results. We assume that processors are denoted by natural
numbers; our axioms can be easily generalized if any other countable type is used. The
set of active processors will be described by a set A.

Summarizing these two aspects, our assertions about states will be a pair of the for;n
{A; P} where A is a set of natural numbers and P is a predicate describing the relationship
between the values of all program variables.

One can argue that the set of active processors A can be regarded as just another variable
and handled by the predicate P. We will not adopt this view for two reasons:

~ First, our axioms are much simpler if the set A is displayed clearly in each assertion
and not hidden inside P.

~ Second, processors should be selected or deselected on entry or exit of the plock-
structured statements only. In this sense, changing context flags explicitly is the

6

parallel analog of the sequential goto statement. In particular, no program expression
or assignment should use the context flags as variables.

Therefore, our specification of a program S will have the form

{4 P} S {4Q}

meaning that $ transforms predicate P into predicate Q if it is started with processors in
A active. Note that with our program constructs the active processors are always the same
before and after §. However, they can change during the execution of S. For example, S
can contain if statements that deselect some processors temporarily.

Azioms

Global Assignment. The axiom for assignment to a global variable is identical to that
of the sequential case. If ¢ is a global variable and E a global expression, then:

{4 P}e:=E{4Q}

iff P implies domain(E) A Q%. Here, Q% denotes the predicate that results of the teztual
substitution of ¢ by E in Q; see [Gr81] for details on textual substitution. In the following

axioms, conditions such as domain(E) will not appear explicitly in order to lighten the
notation.

Local Assignment. We present two axioms for assignment to local variables that cor-
respond to assignment in Owner Write and Exclusive Write modes. The first axiom is a
particular case of the second. We include both because parallel programs usually contain
many assignments in Owner Write and we can then use a considerably simpler axiom. Let
z be a local variable. We consider that z contains a function of finite domain, so each local
instance of z, z[k], is in fact the application of the function in z to argument k. Thus, we
can view assignments to components of z as a change of the function z.

o Qwner Write. Let E(k) be an expression that may depend on k. Let us give an axiom to
formalize the idea “every active processor k does some local computation (represented by
E(k)) and memorizes the result on its local variable z[k]”. We call this kind of assignment
Owner Write assignment. If we consider the most inner for-all statement enclosing an
Owner Write assignment z[k] := E(k) we have the following axiom.

for all k£ do in parallel--- { 4; P } z[k] := E(k) { 4; Q }---end
iff P implies QF, , gy and (z, 4, E) is the array (or function) defined as

E(k) ifkeA

z[k] otherwise

(=4, B)IK) - {

Remark that (z,A4, E) describes the global modification of z and Q{z,4,F) describes the
global modification of the state described by Q.

7

o Ezclusive Write. The axiom for Exclusive Write assignment is slightly more complicated
because it must deal with indirection between processors as in z[F(k)] := E(k). If F(k)
and E(k) are expressions that may depend on k and, as we want exclusive writes, F(k)
must be injective on the domain of k. After executing the assignment, we have for all [
and k that z[l] = E(k), if F(k) =l and k is active. The processor k can be identified as
k = F~1(l) where F~1(j) = {k : F(k) = j}, so the expression E(F~*(l)) makes sense
here. Then, the assignment z[F(k)] := E(k) is equivalent to z[l] = E(F~1(l)). As k and [
are dummy variables we get the following axiom

for all k do in parallel.---{ A; P } z[F(k)]:= E(k){ 4; Q }---end

iff P implies
(F(k) as a function of k is injective) A (Qf; 4 g F))-

Here, (z, 4, E, F') is the function that is equal to ¢ in each component that is not altered,
and that has value E(k) at the component altered by processor k:

(z,A,E,F)[k] = {E(F‘l(k)) if F-1(k) e A

z(k] otherwise

We can give a slightly stronger axiom noticing the following: to have Exclusive Write,
it is enough to prove that F is injective on the domain A. Then, F~1(k) N A has at
most one element even if F~1(k) is larger, and the component k of X receives the value

E(FY (k)N A)if F-Y(k)N A #0.

Counting active processors. This instruction assigns to a global variable ¢ the number
of currently active processors. Thus, we have an axiom similar to that of global assignment.

If #A denotes the cardinality of set 4, then
{A4; P} c:=count { 4; Q}
iff P implies Q% 4.

Enumerating active processors. This instruction enumerates from 0 onwards the cur-
rently active processors. Each active processor receives its relative position into its own
copy of a local variable. Thus, the axiom for enumerate is similar to local assignment in
Owner Write. For every index ¢ and a set A we define #A4.; = #{j € A | 7 <i}. Then
#A,;1s 0if 7 is the minimum of set A4, 1 if it is the second element in 4, and so on. Then
the axiom is:

{ A; P } z;[k] := enumerate { 4; Q }

iff P implies QE'“Z A A" In this predicate, # A< is interpreted as an expression that
depends on one argument.

Sequential composition. The axiom for sequential composition is identical to that of
the sequential case.

{A;P}Sl;sz{A;Q}

8

iff there exists a predicate R such that

{4 P}YSi {4 R}IAN{A R}YS: {4 Q}

Conditional statement. The following holds

{ A; P }if E(k) then S(k) end { 4; Q }
iff

({1 E() A keAY; PYSH) (k] E() A kE4} Q)

When the expression E(k) does not depend on k the axiom for sequential conditional
statement can be derived.
Unconditional statement. The following holds

{ 4; P } unconditionally S end { 4; Q }
iff

{D; P}S{D;Q}

where D denotes the domain of processors of the program.

For-all statement. Let us consider how a for-all statement affects the state of a compu-
tation. If the following holds

for all k do in parallel { 4; P} S(k) { 4; Q } end

it also holds
{ A; P} for all k do in parallel S(k) end { 4; Q }

It seems that, in general, the for-all instruction can be considered redundant. It only
declares the variable that will be used to index parallel constructs.

From an another point of view the statement for all k£ do in parallel S(k) end is often
intuitively interpreted as “every active processor k does some easy local computation. This
computation does not interfere with the computation of its neighbours”. In these cases,
the postcondition usually has the form Vk: k € A = Q(k), and we can give a useful rule.

Given u and v in A such that u # v, the statements S(u) and S(v) do not interact if
they act over different sets of variables, this means:

¢ S(u) cannot read from any variable written by S(v), and reciprocally,
e S(u) and S(v) cannot write into the same variable, but
e S(u) and S(v) can read from the same variable.

Then, the following holds

{A; Vk:k € A= P(k)} for all k£ do in parallel S(k) end {4; Vk:k€ A= Q(k)}

9

if
Vk:ke A= {4;P(k)} S(k) {4;Q(k)}
and
Vuw:u#vAu,v€ A= S(u)and S(v) do not interact

We would like to remark that, in some cases, programming with for-all statements having
only non-interacting S(k) can be a serious handicap. In these cases the previous rule is
useless.

To see what kind of computation is possible with no interaction, suppose that a program
has the following form, where the different S(k) do not interact:

for all k € {1,...,} do in parallel 5(k) end

Then, any arbitrary interleaving of the statements S (1),...,S(l) will give us a correct
computation. In CSP notation we could characterize the meaning of the for-all as:

SIS 15(1)

In particular the sequential computation S(1);S(2);...;5(!) gives us a correct result.

4. Examples

As examples of use of our axioms, we present now three programs of increasing complexity:

1) Computing the sum of the elements of an array (Figure 2).
2) Radix sorting an array of integers (Figure 3).
3) Dynamic allocation of processors and memory (Figure 4).

The three programs are taken directly from [HS86]. We have only added variable declara-
tions and split long programs into procedures for clarity.

Example 1: Tree Sum of N numbers

Program Tree Sum in Figure 2 computes the sum of all components of array X in time
O(log N) by the well known binary-tree technique. This program illustrates the use of
Owner Write assignment within for-all’s, and is an example of small program where con-
sidering mainly “local states” is still feasible. The set of active processors is A=[0..N).
It can be specified as:
{45 (z[0],...,z[N — 1]) = (Xo,. .. , Xnv-1) }
Tree Sum
{4; =[N —1] = 1" X3}
To specify the procedure Partial Sums it is interesting to consider the set

o active(j)={k€ A : (k+1) mod2/ =0}
such that

10

Recalling that we view restricted for-all’s as a composition of one for-all and one if state-
ment, we must show that:

for all k : (k+ 1) mod 27 = 0 do in parallel
{active(3); SUMS(j — 1) }
z[k] := z[k — 277! + z[k]|
{active(7); SUMS(3) }

end

We call e(k) the expression z[k — 2/~!| + z[k] that depends on k. Then

e[k — 2771 + z[k] if k € active(j)

z(k] otherwise.

(2, active(3), K] = {
By the axiom of owner write assignment we must show that
SUMS(J - 1) = SUMS(j)fz,activc(j),e)

As the predicate SUMS(j)(zz active(j),e) 1S €quivalent to

k
k € active(j) = o[k — 277! + z[k] = z X;

k—2i+1
we must prove
k
SUMS(j — 1) = (k € active(j) = o[k — 2] +zlk] = > X))
k—-2i41

Let k € active(j). Then k € active(j — 1) and k — 27! € active(j — 1). Assumimg
SUM(j — 1) we have

k
k € active(j — 1) = z[k] = Z X;
i=k—2i-141
k—2i=1
k—2771 € active(j — 1) = z[k — 277! = Z X;
i=k—2i+41

and this implies SUMS(J)7, . tive(j),c)- The proof is done. 0

€)”

12

procedure Tree Sum (z : array [0..N — 1] of integer): integer;
var j: integer;
procedure Partial Sums (i: integer),
for all k : (k+ 1) mod 2! = 0 do in parallel
z[k) := z[k — 271 + z[k]
end
end Partial Sums;

begin
for j :=1 to log, N do
Partial Sums(j)
end;

Tree Sum := z|N — 1]
end Tree_Sum

Figure 2. Sum of N numbers.

e active(j) C active(j — 1).
o k € active(j) => k € active(j — 1) A k+ 277! € active(j — 1).
With this set let us define the invariant of the sequential for:

SUMS(j) = (¥ k € active(j) => z[k] = >, Xi)

i=k—2i +1

Let us prove the following:

Lemma 1: The procedure Partial Sums verifies for 3 > 0:
{4; SUMS(; 1)}
Partial_Sums (7)
{4; SUMS(5) }

Proof. Subtituting the call Partial Sums by its body we have:

{4; SUMS(j 1)}

for all k : (k + 1) mod 2/ = 0 do in parallel
z[k] = z[k — 2771] + z[k]

end

{4; SUMS(j) }

11

Lemma 2: The program Tree Sum satisfies its specification.

Proof. As
SUMS(0) = ((=[0],-..,z[N —1]) = (Xo,..., Xn-1))

N-1
SUMS(log, N) =z[N —1] =)_ X;
i=0

we must prove
{4; SUMS(0) }
Tree_Sum

{A; SUMS(log, N) }.
Subtituting Tree Sum by its body we must prove

{4; SUMS(0) }

for j :=1 to log, N do
Partial Sums (j)

end

{A; SUMS(log, N) }

But this is done by the previous lemma and the well known axiom for sequential for. U

Example 2: Radix Sort

Figure 3 presents a parallel implementation of Radix Sort. This algorithm provides us
with the occasion to deal formally with the axioms for count, enumerate, and exclusive
write. Let us introduce the following notations:

If V is a vector, PERM(V) denotes the set of vectors that are permutations of V.
Let A be the domain of array z, that is, the set [0 .. N).
A specification of Radix_Sort (in fact, of any sorting program) is then:
{4 (2=X)}
Radix_Sort
{ 4; (z is ordered) A z € PERM(X) }

To show that Radix_Sort satisfies this specification, we must express that, after the jth
iteration, vector z is already sorted if only the j less significant bits of its elements are
considered. So, let us denote with “z mod 1” the following vector

z mod i = [z[0] mod i, z[1] mod 3, ..., z[N — 1] mod i].
And finally, define predicate SORTED(j) to be

SORTED(j) = ((z mod 27) is ordered) A (z € PERM(X)).

13

procedure Radix_Sort
(var z: array [0.. N — 1] of proc of {0,...,N —1});

var y: array [0.. N —1] of proc of {0,...,N —1};
¢, j: integer;

procedure Enum Zeros (z : integer);
for all k : (z[k] mod 2') < 2! do in parallel
¢ := count;
y[k] := enumerate
end
end Enum Zeros;

procedure Enum Ones (i : integer);
for all k : (z[k] mod 2¢) > 2! do in parallel
y(k] := enumerate + ¢
end
end Enum _Ones;

procedure Exchange;
for all k do in parallel
z[y[k]] := =[k]
end
end Exchange;

begin
for j := 1 to log(maxint) do
Enum Zeros(j);
Enum Ones(j);
Exchange
end
end Radix_Sort

Figure 3. Radix Sort.

It is easy to see that the precondition to Radix_Sort implies SORTED(0), and that

SORTED(log(maxint)) = ((z mod maxint) is ordered) A (z € PERM(X))
= (¢ is sorted) A (z € PERM(X)).

so it is exactly the postcondition. Therefore, using the axiom of the sequential for, we
must show that for j > 0 we have

{ A; SORTED(j — 1) }

14

Enum Zeros(j);
Enum Ones(7);
Exchange

{ 4; SORTED(5) }

We do this in the following lemmas. Informally, Enum Zeros(j) and Enum _Ones(3) divide
the elements of z into two subsets and enumerate in y each of them. Let us give a name
to the elements that each procedure enumerates at iteration j.

o small(j)={ k€ A : z[k] mod 2/ <2771}
o big(j) = A\ small(j).
We have the following easy properties:
o [0..N)=small(j) U big(s).
0 = small(5) N big(j).
k € small(j), k' € big(j) = z[k] < 277! < z[k'].
k € small(j) = z[k] mod 27 = z[k] mod 2/7!.

k € big(j) = z[k] mod 27 = 2/~! + z[k] mod 277},

Procedure Enum Zeros(j) deals with the elements of small(;). It counts the elements in
small(7) and enumerates them. To deal with the number of elements we introduce the
predicate

COUNTED;meu(j,c) = (¢ = #small (7))

To deal with the enumeration we consider a mapping small(j) - [0 . . #small (j)) which
is the (unique) increasing bijection defined as y(k] = #small(j)<ix. We describe y by the
predicate

ENUMERATED,pau(G,y) =

(small () =5 [0 . . #small (7)) is the increasing bijection) =
(VE € small(j) : y[k} = #small(j)_,).

We can now specify procedure Enum Zeros(3).

Lemma 3: Procedure Enum Zeros(j) satisfies the following specification:

{ A; true }
Enum Zeros(y)
{ A; COUNTED,mqou(j,c) N ENUMERATEDsnau(3,y) }

15

Proof. Subtituting Enum Zeros(j) by its definition we obtain:

{ A; true }

for all k : (z[k] mod 27) < 277! do in parallel
¢ := count;
y(k] := enumerate

end
{ A; COUNTEDmau(j,c) A ENUMERATED smau(7,y) }

When we go inside the for all statement the set of active processors is small(j). Then we
have
for all k : (z[k] mod 2/) < 277! do in parallel
{ smali(j); true }
¢ := count;
y[k] := enumerate
{ smali(j); COUNTED, man(j,c) N ENUMERATED srmau(J,y) }

end

To deal with the statement y[k] := enumerate we need (y, small(j), #small(j)<) defining
the mapping

(y, small(5), #small(§)<)[F] = { Hemaller T b e mallld)

As ENUMERATED,,mau(j,y)’(’yysma“(j)’#sma“(j)<) = true, by the axiom of enumeration
we get

{small(j); true}

y[k] := enumerate

{small(j); ENUMERATED,..u(j,v)}

As CO UNTE'D,ma”(j,c):,#sma”(j) = true, by the axiom of counting we get

{smali(j); true} c := count {small(j); COUNTEDmqu(j,c)}

and the lemma is done.]

Procedure Enum Ones(j) enumerates the elements of big(j) starting from the number
#small(j). Rather than introducing a predicate giving us the enumeration of big(j) we
would like to enumerate all the elements of [0 . . N) = small(7) U big(7).

o The enumeration of small(j) can be done as above. We consider the (unique) increas-
ing bijection small(j) -2 [0 . . #small(j)) defined as y(k] = #small(§)<k.

e To enumerate big(j) we start from #small(j). We take the (unique) increasing bijec-
tion big(j) - [#small (j) . . N) defined as y[k] = #small(j) + #big(5) <.

16

To describe this enumeration we introduce the predicate

ENUMERATED(j,y) =
(small (5) 2, [0 .. #small () is the increasing bijection
A big(j) =5 [#small (5) . . N) is the increasing bijection) =
(VE € amall(]) y{k] = Hemall(i)_,) A (Vk € big(i) : ylk) = #romall(i) + H#bia(i).y).

ENUMERATED(5,Y){, big(i).ct#bigli)<) =
COUNTED,man(j,c) N ENUMER ATED mau(j,y)

by the same techniques as in the above lemma we obtain

Lemma 4: Procedure Enum_Ones(j) satisfies the following specification:

{ A; COUNTED,mau(j,c) A ENUMERATED mau(3,y) }
Enum_Ones(7)
{ A; ENUMERATED(j,y)}

As Enum Zeros(j) and Enum Ones(j) do not modify the array z, the above lemmas give

Lemma 5: The sequential composition of Enum Zeros and Enum_Ones satisfies:

{ A; SORTED(; —1) }
Enum Zeros(7);
Enum _Ones(7)
{ A; SORTED(j — 1) A ENUMERATED(j,y) }

To deal with procedure Exchange we consider the mapping y~! where y is defined by
ENUMERATED(j,y). This mapping [0 .. N) > [0 .. N) verifies:
o [0.. #small (7)) LI small(j) is the increasing bijection.

o [#small (j)..N) N big(7) is the increasing bijection.

Let us specify and prove procedure Exchange.

Lemma 6: Procedure Exchange satisfies:

{ A; SORTED(j — 1) A ENUMERATED(3,y) }
Exchange
{ A; SORTED(j) }

Proof. Subtituting the procedure call by its body we come to
{ A; SORTED(j — 1) A ENUMERATED(j,y) }

17

z[y(k]] == z[k]
{ A; SORTED(j) }

In order to deal with the statement z[y[k]]:= z[k] we need to consider the array (z, 4, z,y).
We have
(z,A,z,y)k] = z[y ' [k]] = z oy~ [k].

By the axiom of exclusive write we have
{4; SORTEDE, 4, (i)} alylbl):= alk] {4; SORTED(})}

SORTED?, , , ~(j) = SORTEDZ, _.(j) =

zoy~!

((z oy *mod 27) is ordered) A (z oy~' € PERM(X)))

we need to prove

SORTED(j — 1) A ENUMERATED(j, y) =
((z oy *mod 27) is ordered) A (z o y~! € PERM(X)))

First we prove
SORTED(j — 1) NENUMERATED(j,y) = (z oy~ € PERM(X))).

As SORTED(j — 1) is assumed « is a permutation of X. ENUMERATED(j,y) implies

that y~! is a bijection. Therefore z o y~! is a permutation of X.

Secondly we prove
SORTED(j — 1) A ENUMERATED(j,y) = ((z oy~ *mod 2/) is ordered).
We can rewrite ((z o y"'mod 27) is ordered) as
(Vkk €A A kE<k = zoy '[k] mod 2/ <zoy '[k'] mod 27).

There are three cases:
Case 1: Both k and k' are in [0 . . #small(j)). As we assume ENUMERATED(j,y) the
mapping [0 . . #small (j)) v, small(j) is the increasing bijection and

o k<k'=y k] <y k]

o k,k'€[0.. #small(5)) = y[k],y k'] € small(y).

o y~i[k] € small(j) = (z[y~}[k]] mod 2/~ = z[y~![k]] mod 27) and similarly for k.
As we assume SORTED(j — 1), then

y k] <y l[k'] = z oy '[k] mod 27! <z oy '[k'] mod p X

18

Putting together all these results we have

k<k =y k] <y '[k] = z oy ![k] mod 27! <z oy '[k'] mod 2’7
—> z oy ![k] mod 2/ < z oy }[k'] mod 27.

Case 2: Both k and k' are in [#small . . N). In this case we have the increasing bijection

[#small (j) .. N) L5 big(j). As y~'[k] € big(j) we have
zoy '[k] mod 2/ = 277! + z oy ! [k] mod 2971,

Other steps are as in case 1.

Case 3: Consider k € [0 . . #small(j)) but k' € [#small(j) . . N). As y~' is bijective we
have y~1[k] € small(j) but y~![k'] € big(j). Therefore

zoy (k] <27 <zoy kK]

And the proof is done. []

By the above lemmas we have that

Lemma 7: The sequential composition of Enum Zeros, Enum_Ones, and Exchange sat-
isfies

{ A; SORTED(j —1) }
Enum Zeros(j);
Enum Ones(j);
Exchange

{ A; SORTED(5) }

The above lemma and the axiom of (sequential) for statement give us the correctness of

the Radix_Sort.

Example 3: Dynamic processor/memory allocation

In machines with a large number of processors, it may be useful to create the high-level
illusion that processors and memory are created dynamically on program demand. Figure 4
presents a program that allows an arbitrary set of processors to set up pointers to new
processors, each with its own share of free memory. This program is based on a rendezvous
technique: Demanding processors and free processors exchange their addresses through
variables that they all know.

We present this example as an exercise in specification and refinement. First, we give
and initial, very general specification of the problem. Then, we refine it adopting various

19

procedure Parallel Cons
(var free: array [0..MaxProc] of proc of boolean;
var new : array [0..MaxProc] of proc of integer U {null});

var available : integer;
rv : array [0..MaxProc] of proc of integer;

procedure Give Rv;
var required : integer;
free_proc : array [0..MaxProc] of proc of intcger;
begin
for all k do in parallel
required := count;
unconditionally
if free [k] then
available := count;
free_proc [k] := enumerate;
if free_proc [k] < required then
free [k] := false;
™ [freeproc [k] | := k
end
end
end
end
end Give Ryv;

procedure Accept Rv;
var requestor: array [0..MaxProc] of proc of integer;
begin
for all k do in parallel
requestor [k] := enumerate;
if requestor [k] < available then
new [k] := rv [requestor (k] |
end;
if requestor [k] > available then
new (k] := null
end
end
end Accept Rv;

begin
Give Rv;
Accept Rv
end Parallel Cons

Figure 4. Dynamic processor/memory allocation.

20

decisions on implementation, until we can prove that the particular program in Figure 4
is correct.

Assume there is a set F of processors having available free memory. This information is
initially stored in the array

free: array [0..MaxProc| of proc of boolean

Therefore the set of initially free processors is defined as F' = free ' (true). Let A be the
set of processors that are active when program Parallel_Cons is called. We will assume
that A is the set of processors that require extra memory.

Parallel Cons assigns free memory to processors in A: It sets up a total mapping new :
A — F U {null} (new(k) is defined for all k € A) giving to each processor k € A the
address new(k) of a free processor if possible, otherwise new(k) = null. More precisely:

e When not so many processors ask for extra memory, all of them get it.

#A < H#F = A XY new(A) is a bijection.

¢ When there are too many processors, a maximum number is satisfied.

#A> #F = new ' (F) X5 F is a bijection.

To deal with the mapping new we introduce the following predicate

ALLOCATED (new) = (new: A — F U {null} is a total mapping A
#A < H#F = A "5 new(A) is a bijection A
#A> #F = new (F) 8 F is a bijection).

After the execution of Parallel Cons, the set of free processors has diminished. Array free
verifies:

free[k] = true <= new™![k]=0.

To deal with this set we consider the following predicate, where the whole set of processors

is IP = [0..MaxProc].

FREE (new, free) =
(free : IP — {true, false} is total A free[k] = (k € F A new™ (k) = 0)).

The dynamic processor/memory allocation would meet:

21

Specification 8: Parallel Cons satisfies the following specification:

{4; free : IP — {true, false} is total A F' = free ! (true) }
Parallel_Cons
{A; ALLOCATED(new) A FREE(new, free)}

To develop any implementation we need to assume some extra hypothesis about new.
We can implement new : A — F U {null} in a variety of ways. For example, take the
processors of A and F in ascending order

A:{ao,al,az,...} s F:{fl);flaf?.)"'}

and define new as

new(ao) = fo,new(ay) = fi,...

Of course there exists many other possible definitions. However, to develop Parallel Cons
by refinements it is better to hide as many details as possible of new. Let us consider
implementations of new giving priority to the processors with small identifiers (as in the
previous example). Then we consider functions new such that

new: firstypA — firsty 4F is a bijection A new(A \ firstypA) = {null}.
To describe this approach we introduce the predicate

LOW_ALLOCATED (new) =
(new: A — FU{null} istotal A first,pA =5 firsty 4 F is a bijection).

By construction LOW_ALLOCATED(new) implies ALLOCATED(new).

Under these hypotheses the free processors are those having large identifiers.

HIGH_FREE (free) =
(free : IP — {true, false} is total A (Vk € A : free[k] = (k € F A #F<i > #A4))

Then LOW _ALLOCATED(new) A HIGH _FREE(free) implies
ALLOCATED(new) A FREE(neuw, free)

We can refine the above specification to the following one:

22

Specification 9: With the idea that the first elements of A will pair with the first
elements of F' we get

{4; free : P — {true,false} is total A F' = free (true) }
Parallel_Cons
{A; LOW_ALLOCATED(new) A HIGH FREE(free)}

As Parallel_Cons = Give_Rv ; Accept_Rv, we should find the right specifications for these
two procedures. Give_Rv will give addresses of free processors in an array rv (rendezvous).

rv: array [0..MaxProc| of proc of integer.
Formally a rendezvous is a bijection
rv: [0.min(#A,#F)) — firsty, (F.

There are many possibilities to construct such a bijection. For example rv[# Fci] = k,
such that
(0] = fo, rv[l] = f1, ™[2] = fa,...

But in fact the specification of procedure Give_Rv asks just for a bijection, any bijection
will work. We introduce the predicate

RENDEZ _VOUS(m) = (rv: [0.min(#A,#F)) — firsty 4F is a bijection).

Then we can prove that Give_Rv given in Figure 4 works.

Lemma 10: The procedure Give Rv satisfies the following specification:

{A; free : IP — {true,false} is total A F' = free (true) }
Give Rv
{A; (available = #F)A RENDEZ _VOUS(rv) A HIGH FREE(free)}.

Proof. After procedure Give_Rv we have the following functions
free_proc: F — IN such that free_proc[k] = #F<.
We have also
free: F — {true,false} suchthat freelk] = false iff k£ < #A.
When we consider the overall set F the function free can be rewritten as
freelk] = (k € F A #F<i > #A)

The function rv: [0..min(#A4,#F)) — F satisfies 7v[# F<i] = k. In fact the range of this
function is firsty 4. Then

rv: [0..min(#A,#F)) — first, ,F such that rv[# F<k| = k is a bijection.
This finishes the lemma. (]

Finally the following lemma gives us an specification of Accept_Rv.

23

Lemma 11: The procedure Accept_Rv satisfies the following specification

{4; (available = #F) A RENDEZ VOUS(rv)}
Accept.Rv
{A; LOW_ALLOCATED(new)}.

Proof. In the procedure Accept_Rv we have the following functions
requestor: A — IN such that requestor(k] = #A<k

In particular there is a bijection
requestor : first p A — [0..min(#A,#F))

The statement “new (k] := rv [requestor [k]]” gives a bijection

firstyp A T [0, min(# A, #F)) > firsty 4F
Then new is a bijection on
new: firstypA — firsty \F
such that new(k] = rv[#A«k]| and
new(A \ firstypA) = {null}

This is all. [J

5. Conclusions

Parallel machines are becoming cheaper and more flexible everyday. It is almost certain
that the design of large software systems and the development of portable languages for
them will be an important issue in a few years. All this is difficult if the only way to
describe parallel programs is describing a machine that runs them.

As a small step, we have shown that it is possible to give a formal meaning to the notations
used to describe PRAM algorithms. It seems that the theory and tools required are not
so different from those used in the sequential case.

There is an important difference, though. The borderline between high level and low level
is nowadays quite clear in sequential programming. We believe that there is a long way
to go before we have such a clear distinction in parallel programming. Take as examples
the points e mentioned in the Introduction. Or, concerning our notation, consider the
following question: does it make sense to nest for-all statements in a program?

¢ If we take a low-level view, an statement such as

for all k do in parallel S(k) end

24

indicates that an index k is given to each processor, and the instruction S is broadcast to
all. Under this approach it seems nonsense a piece of code like

forall k : E{(k) do in parallel
for all j : E5(j) do in parallel S(j) end
end

because it is rather unclear which instructions should be sent to each individual processor.
Then it seems that for-all statements cannot be nested. But this fact is far from being
obvious.

e Let us take another view. Suppose we have an array
z : array [0..N — 1,0..N — 1] of proc of boolean
and consider the following program:

forall i : 0 <i < N do in parallel
forall j: 0 < j < N do in parallel
z(i, j] := false
end;
z[i,1) := true
end

In a high level this text would suffice to indicate that all the assignments z[i,j] := false can
be done safely in parallel and the same happens for assignments z[i,1] := true. Therefore,
this program computes the identity matrix and makes sense.

However, it does not seem wise to nest for-all’s except in simple cases like this.
e There is one case where the nesting of for-all’s is clearly a good program methodology. It

appears when we hide the for-all statement inside a procedure. Let us consider as example
the matrix product, Figure 5.

In this case the unfolding of the structure

forall 7,5 : 1 <i,5 < N do in parallel
Matrix_Productli, j] := Tree Sum(z[i,0..N —1,3])
end

implies the nesting of two for-all’s. Figure 6 gives us a version of the reflexive transitive
closure with a high nesting of for-all instructions.

Let us give a tentative list of proverbs that may be useful in the design and proof of parallel
algorithms.

e Try to avoid unconditional instructions. We believe that unconditionals are very low
level statements because they break the block structure of the program. They should

25

procedure Matrix_Product;
(a,b: array [0..N —1,0..N — 1] of proc of integer):
array [0..N —1,0..N — 1] of proc of integer;

import
Tree Sum (a: array [0..N — 1] of proc of integer): integer;
{ returns Y, ;. alt] in time O(log N) }

var
z: array [0..N —1,0..N — 1,0..N — 1] of proc of integer;

begin
for all 1,5,k :0 <14,j,k < N do in parallel
z[t,J, k] := ali, 5] * b7, k]
end;
for all7,5:0 <1, < N do in parallel
Matrix_Product[, j] := Tree Sum(z[z,0..N — 1,3])
end;
end Matrix_Product

Figure 5. Matrix product.

be used in exceptional cases that occur asynchronously, such as dynamic memory
management.

Try to avoid the nesting of for-all’s. When this nesting is necessary deal with it clearly.
Hide it into procedures. A good idea is that different procedures act over different
active data structures.

Try to avoid S(k) with complicated structure in a statement like

for all k : E(k) do in parallel S(k) end

Try to program with small for-all pieces with clearly defined global intermediate states,
like

{ clearly defined global state }

for all k: E;(k) do in parallel Si(k) end;

{ clearly defined global state }

for all k : E,(k) do in parallel S3(k) end

When you have a statement

for all k : E(k) do in parallel S(k) end

26

procedure Transitive_Reflexive_Closure;
(a: array [0..N — 1,0..N — 1] of proc of boolean):
array [0..N — 1,0..N — 1] of proc of boolean;

import
Bool_Mat_Product (a,b: array [0..N — 1,0..N — 1] of proc of boolean):
array [0..N —1,0..N — 1] of proc of boolean;
{ returns the matrix product a - b in time O(log N) }

var
z: array [0..N —1,0..N — 1] of proc of boolean;

begin
for alli,5:0 <1, < N do in parallel
if i = j then z[1,7] := true else z[i, ;] := az,j] end
end;

for k:=1 to log N do
for allZ,5:0< 1,7 < N do in parallel
z[i,j] := Bool_ Mat_Product (z,z)[s, j]

end
end;
for alli,5:0 <13, < N do in parallel
Transitive Reflexive_Closure[z, 7] := z[t, 7]
end;

end Transitive_Reflexive_Closure

Figure 6. Transitive reflexive closure.

with a local structure of S(k) try to express the global state after the execution of
the for-all as a union of local states. As an example we can take some well-known
algorithms for numerical simulation.

¢ When you have a statement

for all k£ : E(k) do in parallel S(k) end

and different S(k) interact heavily, try to give directly the global state.

6. References

[Ble86] Blelloch, G.: Parallel prefix vs. concurrent memory access. Rep. Thinking Ma-
chines Corp., Cambridge, Mass., 1986.

27

[Di75]) Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of
programs. Communications of the ACM, 18, 453-457 (1975). Reprinted in Pro-
gramming Methodology, a Collection of Articles by Members of W(G2.3. editor
Gries, D., Springer-Verlag 1978.

[Gr81] Gries, D.: The Science of Programming. Springer-Verlag 1981.
(Hi85] Hillis, D.W.: The Connection Machine. MIT Press 1985.

[Ho69] Hoare, C.A.R.: An axiomatic basis for a computer programming. Communi-
cations of the ACM, 12, 576-580 (1969). Reprinted in Essays in Computer
Science. 45-58 edited by Hoare, C.A.R. and Jones, C.B., Prentice-Hall 1989.

[HS86] Hillis, D.W.; Steele, G.L.: Data parallel algorithms. Communications of the
ACM, 29, 1170-1183 (1986).

[KR90] Karp, R.M.; Ramachandran, V.: Parallel algorithms for shared-memory ma-
chines. In Handbook of Theoretical Computer Science (vol A), 869-941, editor
Jan Van Leeuwen, Elsevier and MIT Press 1990.

[Yo82] Yourdon, E.: Writings of the Revolution. Yourdon Press 1982.

28

