
An E�ective Load Balancing Policy for

Geometric Decaying Algorithms �

Joseph Gil y

Dept� of Computer Science

The Technion� Israel

Technion City� Haifa �����

ISRAEL

Yossi Matias z

AT�T Bell Laboratories

��� Mountain Avenue

Murray Hill� NJ �	
	�

USA

Abstract

Parallel algorithms are often �rst designed as a sequence of rounds� where each

round includes any number of independent constant time operations� This so�called

work�time presentation is then followed by a processor scheduling implementation on a

more concrete computational model� Many parallel algorithms are geometric�decaying

in the sense that the sequence of work loads is upper bounded by a decreasing geometric

series� A standard scheduling implementation of such algorithms consists of a repeated

application of load balancing� We present a more e�ective� yet as simple� policy for

the utilization of load balancing in geometric decaying algorithms� By making a more

careful choice of when and how often load balancing should be employed� and by using

a simple amortization argument� we show that the number of required applications of

load balancing should be nearly�constant� The policy is not restricted to any particular

model of parallel computation� and� up to a constant factor� it is the best possible�

Keywords� Design of algorithms� analysis of algorithms� parallel algorithms� load

balancing�

�To appear in Journal of Parallel and Distributed Computing� A preliminary version of this paper was

part of a paper presented in the Second Annual ACM�SIAM Symposium on Discrete Algorithms� �

� ��
�
yPart of research was done while author was at the Hebrew University and at the University of British

Columbia� E�mail address� yogi�cs�technion�ac�il�
zPart of research was done while author was at Tel Aviv University and at the University of Maryland

Institute for Advanced Computer Studies� and was partially supported by NSF grants CCR�
������ and

CCR��
��
�
� E�mail address� matias�research�att�com�



� Introduction

Many parallel algorithms are designed using the well known work�timemethodology� �See ����

Chapter ���� for a detailed discussion and ���� for an early use in a pram algorithm�� Guided

by Brent�s theorem ���� the methodology suggests to �rst describe a meta�algorithm in terms

of a sequence of rounds� each round may include any number of independent constant time

operations� Second� the meta�algorithm is implemented on a p�processor parallel computer�

e�g�� a pram� using a scheduling principle� if the number of operations in round r is wr�

then each of the p processors should execute a set of O�wr�p� operations� Let w �
P
r wr

be the total number of operations� or work � of the meta�algorithm� Let t be the total num�

ber of rounds� or time� of the meta�algorithm� Then� using Brent�s scheduling principle�

the running time on a p�processor parallel computer should be O�
Pt
r�� dwr�pe� which is

O�w�p� t��

The work�time presentation is often a simple and natural way to express a parallel

algorithm� and forms the basis of many data parallel languages� Unfortunately� Brent�s

scheduling principle for adapting an algorithm given in the work�time presentation into a

concrete parallel algorithm is only a guideline� rather than a constructive technique� Tradi�

tionally� its implementation is done in an ad�hoc manner� resulting with additional e�ort in

the design and analysis of algorithms� as well as occasional degradation in performance� It is

therefore desirable to have general scheduling techniques that can be easily and e�ectively

used for adapting algorithms that are given in the work�time presentation into concrete

algorithms�

In this note we consider a somewhat restricted� yet quite common� family of algorithms�

the so�called geometric�decaying algorithms� for which simple and e�cient scheduling tech�

niques apply� these techniques are based on repeatedly employing a load balancing algorithm

as a key procedure� More speci�cally� the scheduling in geometric�decaying algorithms is

traditionally done by a straightforward application of a load balancing procedure after each

round� Quite a few parallel algorithms are of this type� we note that many logarithmic�time

linear work algorithms are geometric�decaying� See� e�g�� algorithms described in ���� ��� �
��

The time devoted to the applications of the load balancing algorithms contributes to the

�



total running time of the adapted algorithm� and should therefore be minimized� We show

that the standard policy of employing load balancing for a geometric�decaying algorithm

is somewhat wasteful� and provide an alternative� more e�ective� policy� An appealing

ingredient of the reported technique is that no extra overhead is introduced into the algo�

rithm� we only focus on the question of how often load balancing should be employed to get

the most e�ective performance� The implementation of this policy does not require more

than keeping track of the number of rounds and computing simple functions to determine

the rounds in which load balancing should be employed� For the purpose of concreteness�

the reader may wish to regard the ensuing discussion in the context of the pram model

�see ������ although it is applicable to other models of parallel computation as well�

Load balancing Let m independent tasks be distributed among n processors of a pram�

The input to a processor Pi consists ofmi� the number of tasks allocated to this processor �its

�load��� together with a pointer to an array of task representations� no other information

about the global load distribution is available� The load balancing problem is to redistribute

the tasks among the processors such that each processor has at most O���m�n� tasks� In

other words� the loads are distributed asymptotically in an even manner� except of course

for the case m� n�

The load balancing problem can clearly be solved by using an algorithm for the more

di�cult pre�x�sum problem� Therefore� load balancing can be solved on circuits and on

the erew pram in O�lgn� time ����� and on the crcw pram in O�lgn� lg lg n� time ����

Specialized algorithms for load balancing run on the crcw pram in O��lg lg n��� time �����

and in O�lg� n� time� with high probability ��� �also on the Common crcw ����� On the

Robust crcw pram ��� ��� load balancing can be solved in O�lg lgn� time with high

probability ���� All the above algorithms require linear work�

�Let lg�i� x � lg�lg�i���
x� for i � �� and lg��� x � lg x� lg� x � minfi � lg�i� x � �g� The function lg���� is

extremely slow increasing and for instance lg� ������ � 	�

�



� Geometric Decaying Algorithms

Assume that an algorithm is restricted as follows� a task which executes in round r can

spawn at most one task and only for round r � �� �This assumption makes the algorithm

susceptible to load balancing�� In particular� this guarantees that the number of tasks will

not increase as the algorithm proceeds� Further assume that the number of tasks in round r

is upper bounded by a geometrically decreasing sequence� i�e��

�r � 	 wr � n � ���r ���

for some constant � � 	� and where n is initial number of tasks� We call these algorithms

geometric�decaying algorithms�

For randomized algorithms� we say that the algorithm is geometric�decaying if ��� holds

with positive constant probability� that is to say� with a non zero probability which is not

dependent on the problem size�

There is a weaker characterization for geometric�decaying algorithms� Suppose that at

each round r� each task has a positive constant probability to terminate� provided that

the number of tasks is at most ����r��� �which would be the case if in the �rst r � �

rounds the algorithm was geometric�decaying�� Then� the algorithm can be shown to be

geometric�decaying �
��

Consider a geometric decaying algorithm A whose work is O�n� and running time

is � � Brent�s scheduling principle suggests that it may be possible to implement A on

a p�processor pram in time

O�n�p� �� � ���

If a certain implementation runs in time O�n�p � � � T � we say that it has an additive

overhead of T � We will typically be interested in the case that the additive overhead

dominates the running time� When appropriate� we will therefore tacitly assume that

T � n�p� � �

Devising general implementation policies of applying Brent�s principle has become lu�

crative with the advent of very fast load balancing algorithms� Let � be an upper bound on

�



the running time of a given load balancing algorithm� �For randomized algorithms � may

be a random variable�� We investigate policies for the common case in which load balancing

is no slower than the algorithm itself� and therefore assume that

� � O��� � ���

Usually� the additive overhead is predominantly caused by the applications of a load bal�

ancing algorithm� An important measure of a general scheduling scheme is therefore the

ratio

T�� � ���

We call this ratio the multiplicative overhead of the implementation� or the overhead in

short� It is important to note that with the assumption ��� the overhead is also an upper

bound for T�� � the slowdown incurred by a concrete implementation�

A standard wasteful implementation

In the standard implementation� the load balancing algorithm is employed after each round�

until the number of tasks becomes O�p�� At this point� the remainder of Algorithm A can

be easily implemented in O��� time since no further scheduling is required�

Theorem � The overhead in the standard implementation is O�lg�����

Proof� Since Algorithm A is geometric�decaying� the number of rounds required to reduce

the number of tasks to O�p� is O�lg�n�p��� At round r each processor has O�n ����r� tasks�

every round is therefore implemented in O�n�p� time� Following from the assumption ����

we have that in the standard implementation the additive overhead is dominated by the

applications of the load balancing algorithm� Since there are O�lg�n�p�� such applications�

we have

T � O�� lg�n�p�� � ���

�



We note� however� that if the additive overhead dominates the term n�p� then we can

substitute the multiplicative overhead lg�n�p� with lg ��

� A New E�ective Policy

Our objective is to reduce the overhead in the implementation� This would be obtained

if we could reduce the number of times that a load balancing algorithm is employed while

taking care not to incur too much of a slowdown as a result of the imbalance in the number

of tasks�

To motivate our improved policy we note that after employing a ���� time load balancing

algorithm� we may have a phase in which the processors execute for O��� time without load

balancing� Their potential wasteful execution can be amortized against the load balancing

application that preceded this phase� In other words� it is �justi�ed� to employ a new �

time load balancing algorithm only after each processor has run for ���� time� following

the previous load balancing�

Assume that after employing a load balancing procedure� each processor has at most y

tasks� Then� by the above argument� the next load balancing procedure should be employed

only after d��ye rounds since each round of this phase is implemented in O�y� time� Ac�

cordingly� as long as y � �� load balancing is employed after each round� as in the standard

policy� In this initialization phase� the load balancing application at each round is dom�

inated by the execution time of the round� Since this is a geometric decaying algorithm�

the total execution time in this initialization phase is O�n�p�� and therefore it does not

contribute to the additive overhead� At the end of this phase each processor has at most �

tasks�

After the initialization phase� the algorithm runs in phases� phase i starts with an � time

load balancing� followed by ti rounds� Let xi be an upper bound on the number of tasks

that each processor is responsible for in phase i �x� � ��� The execution of each round in

phase i takes O�xi� time� and the total execution time of the phase is thus O�xiti�� We

�



set ti to the largest possible value so that the total execution time of phase i is O����

ti � ��xi � ���

The upper bound on the number of tasks per processor in phase i� � is

xi�� � xi��
�ti ���

and hence� by ����

ti�� � ti�
�ti � �
�

For some i � lg� ��O���� ti � � and xi � O���� From this point no further load balancing

is required to complete the execution of the algorithm in time � � The number of phases

is thus O�lg� ��� Recall that the execution time of each processor in each phase is O����

This time can be amortized against the load balancing application at the beginning of the

phase� The additive overhead is only determined by the applications of load balancing� The

number of such applications is as the number of phases� implying an overhead of O�lg� ���

We can therefore conclude�

Theorem � The overhead of the improved load balancing policy is O�lg� ��� The additive

overhead is O�� lg� ���

It follows that in most interesting settings� the improved policy leads to an implemen�

tation that is slower by a nearly constant factor than the idealistic prediction of Brent�s

principle�

On the optimality of the improved policy

The additive overhead in the policy presented here is ����� A natural question is therefore

if this policy is the best possible �although an overhead of O�lg� �� does not leave much

room for improvement�� Following the motivation given above� we may want to consider

setting ti to satisfy

�� tixi � � lg� � ���

�



in an attempt to achieve an o�lg� �� overhead� Suppose that ti is set to satisfy tixi � � lg� ��

and let us ignore the extra execution time imposed on the processors due to imbalance�

Then� ��� is replaced by

ti � � lg� ��xi

but ��� and �
� do not change� It is easy to verify that the overhead is still ��lg� ���

Moreover� it is easy to see that the performance of the above policy �when ignoring the

extra execution due to imbalance as above� can match the performance of any other policy

of load balancing utilization� up to a constant factor� The policy presented in this paper is

therefore optimal�

� Conclusions

This paper introduces a simple e�ective policy for employing load balancing algorithms

for processor scheduling in geometric�decaying algorithms� The resulting implementation

is as simple as the standard implementation with the only di�erence being a more careful

account of when and how often load balancing should be used� The load balancing algorithm

is used as a black box� and the suggested policy is thus applicable to many models of parallel

computation�

We de�ned the overhead of policies of invoking load balancing to implement Brent�s

scheduling principle� The overhead can be used to evaluate and compare such policies� It

was shown that the overhead for our policy is O�lg� ��� where � is the run time of the load

balancing algorithm in use� For most models this would imply an overhead of O�lg� n� time�

For the randomized crcw pram� this would imply an overhead of O�lg��lg� n�� time�

As a result� the overwhole additive overhead for processor scheduling in geometric�

decaying algorithm� implied by the suggested policy� is O�lgn lg� n� time on circuits and

the erew pram� O��lg lg n�� lg� n� time on the crcw pram� and O�lg� n lg��lg� n�� time

on the randomized crcw pram�

Many parallel algorithms in their work�time presentation are geometric�decaying� Our






technique enables a simple cost�e�ective implementation with little e�ort� It was used for

the �rst time to implement a fast optimal parallel hashing algorithm ���� The hashing

algorithm in ��� comprises two parts� the �rst part is a randomized geometric decaying

algorithm which runs for O�lg lg n� steps� By using the technique of this paper and the

O�lg lg n� time load balancing of ���� this part was implemented optimally with expected

additive overhead of O�lg lgn lg� n� time� which implies an work�optimal implementation

that takes O�lg lgn lg� n� time� i�e�� using p � n� lg lg n lg� n processors� The second part

runs in O�lg lgn� time using p processors� implying a work�optimal implementation for the

entire algorithm that takes O�lg lgn lg� n� expected time�

Subsequent to a preliminary version of this paper �presented in ����� other policies of

e�ective load balancing for other classes of algorithms were introduced� often using amorti�

zation arguments similar to the one used here ���� �� �	� �� �see also ������

References

��� O� Berkman� P�B� Gibbons� and Y� Matias� On the power of randomization for the

Common PRAM� In Proc� �th Israel Symp� on Theory of Comp� and Sys�� pages

���
��	� January �����

��� A� Borodin� J�E� Hopcroft� M�S� Paterson� W�L� Ruzzo� and M� Tompa� Observations

concerning synchronous parallel models of computation� Manuscript� ��
	�

��� R�P� Brent� The parallel evaluation of general arithmetic expressions� Journal of the

ACM� ����	�
�	
� �����

��� R� Cole and U� Vishkin� Faster optimal parallel pre�x sums and list ranking� Infor�

mation and Computation� 
�����
���� ��
��

��� P�B� Gibbons� Y� Matias� and V� Ramachandran� E�cient low�contention parallel

algorithms� In �th ACM Symp� on Parallel Algorithms and Architectures� pages ���


���� June �����

�



��� J� Gil� Renaming and dispersing� Techniques for fast load balancing� Journal of Parallel

and Distributed Computing� ���������
���� November �����

��� J� Gil and Y� Matias� Fast hashing on a PRAM�designing by expectation� In Proc�

�nd ACM�SIAM Symp� on Discrete Algorithms� pages ���
�
	� January �����

�
� J� Gil and Y� Matias� Designing algorithms by expectations� Information Processing

Letters� ��������
��� �����

��� J� Gil� Y� Matias� and U� Vishkin� Towards a theory of nearly constant time parallel

algorithms� In Proc� ��nd IEEE Symp� on Foundations of Computer Science� pages

��

��	� October �����

��	� M�T� Goodrich� Using approximation algorithms to design parallel algorithms that may

ignore processor allocation� In Proc� ��nd IEEE Symp� on Foundations of Computer

Science� pages ���
���� �����

���� T� Hagerup� Fast deterministic processor allocation� In Proc� �th ACM�SIAM Symp�

on Discrete Algorithms� pages �
�	� �����

���� T� Hagerup and T� Radzik� Every robust CRCW PRAM can e�ciently simulate a

Priority PRAM� In �nd ACM Symp� on Parallel Algorithms and Architectures� pages

���
���� ���	�

���� J� J�aJ�a� Introduction to Parallel Algorithms� Addison�Wesley Publishing Company�

Inc�� �����

���� R�M� Karp and V� Ramachandran� Parallel algorithms for shared�memory machines�

In J� van Leeuwen� editor� Handbook of Theoretical Computer Science� volume A� pages


��
���� North�Holland� Amsterdam� ���	�

���� R�E� Ladner and M�J� Fischer� Parallel pre�x computation� Journal of the ACM�

���
��

�
� ��
	�

���� Y� Matias� Highly Parallel Randomized Algorithmics� PhD thesis� Tel Aviv University�

Tel Aviv ����
� Israel� December �����

�	



���� Y� Matias and U� Vishkin� Converting high probability into nearly�constant time�with

applications to parallel hashing� In Proc� ��rd ACM Symp� on Theory of Computing�

pages �	�
���� May �����

��
� J�H� Reif� editor� A Synthesis of Parallel Algorithms� Morgan�Kaufmann� San Mateo�

CA� �����

���� Y� Shiloach and U� Vishkin� An O�n� lg n� parallel Max�Flow algorithm� Journal of

Algorithms� ����

���� ��
��

��


