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Abstract

A finite-buffered banyan network analysis technique designed to model networks at high traffic
loads is presented. The technique specially models two states of the network queues: queue empty
and queue congested (roughly, zero or one slots free). A congested queue tends to stay congested
because packets bound for the queue accumulate in the previous stage. The expected duration
of this state is computed using a probabilistic model of a switching module feeding the congested
queue. A technique for finding a lower arrival rate to an empty queue is also described. The queues
themselves are modeled using independent Markov chains with an additional congested state added.
The new analysis technique is novel in its modeling the higher arrival rate to a congested queue
and a lower arrival rate to an empty queue. Comparison of queue state distributions obtained with
the analysis and simulation show that an important feature of congestion is modeled.

1 Introduction

A novel model of finite-buffered banyan networks, (multistage networks having exactly
one path between each input/output pair), is presented along with an improved banyan analysis
method based on the model. The distinguishing feature of the model is that the arrival rate of
traffic to a queue (buffer) in the network depends upon the state of the queue itself. In particular,
the arrival rate to an empty queue is lower than average while the arrival rate to an almost full
queue can be much higher than average. These arrival rates tend to prolong the respective queue
conditions, making sticky the queue empty state and what will be called the congested state. Since
traffic flow in such a network depends strongly on the fraction of time a queue is empty and full,
the model captures an important aspect of banyan network behavior.

Many of the banyan network analysis methods appearing in the literature are based on
Dias and Jump [1] and Jenq’s [6] analyses of single-buffered networks. Their models are based
on the observation that traffic arriving at the queues in a stage would be identically distributed
and the assumption that the arrivals at a queue are independent of the state of any queue. Using
symmetry properties the observation is easily proven; the assumption, while clearly a simplification,
yields an easily analyzed model. Each stage is modeled by a single queue. The queue’s stationary
state distribution can be found in closed form although analysis of the entire network uses iteration.
Similar models for finite-buffered banyan networks were presented by Yoon, et al [17] and Szymanski
and Shaikh [15] and more recently by Ding and Bhuyan [2]. The stationary distribution for the
queues in these models can also be found in closed form.

Performance predictions made with these models match simulations closely when the net-
work is offered light to moderate traffic; the predictions diverge, however, as the offered traffic rate
increases. The performance of many systems using banyan networks, including parallel computers,
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is determined by the performance of the network at high traffic rates, therefore models of banyan
performance which are more accurate at high traffic rates are needed.

One approach to handling heavy traffic is to modify these models so that the service rate
of a queue is dependent upon the fate of the head packet (next item in the queue to be served)
in the previous cycle. The rationale is that a head packet having been blocked will more likely
be blocked again in the next cycle. Such approaches have been tried by Lin and Kleinrock [11],
Mun and Youn [12], and Hsiao, et al [4] for finite queues and earlier by Theimer, et al [16] for the
single-buffered networks.

In the simplest of these analyses, Lin and Kleinrock’s [11], the queue itself is modeled as
by Yoon [17], however an effective service rate is used in place of the service rate computed as in
[17]. This service rate is derived by considering two cases: the probability of service for a packet
first arriving at the head slot and the probability of service for a packet which was blocked by a
full queue at the previous cycle. For the packet which first arrived at the head slot, the stationary
queue full probability is used in computing the service rate. For the packet which had been blocked,
the knowledge that the queue was full is used in computing the service rate. The two service rates
are combined to obtain the effective service rate. This analysis is for output buffered networks,
those using nonblocking crossbars with queues at the module outputs where any number of packets
entering a module can enter a queue as long as there is space. (The analysis presented here is for
input-buffered networks networks which use blocking crossbars.) Lin and Kleinrock’s analysis does
account for the effect of a full queue on performance, but does so by adjusting the overall service
rate. Unlike the analysis described here, it does not model the higher arrival rate when a queue is
full, which has a strong effect on the queue state distribution.

The analyses presented by Mun and Youn[12], Theimer, et al [16], and Hsiao, et al [4]
model each queue with several sets of states. Each set corresponds to the fate of the head packet
in the previous cycle. A different service rate is found for each set, thus modeling, for example, the
lower service probability of a packet that had been blocked. These approaches yield better results,
but there are shortcomings. Theimer, et al [16] analyzes only single-buffered networks. The results
presented in [4] lacked detail, probably because of space restrictions. As will be illustrated below,
the queue state distributions obtained using Mun’s analysis do not match those obtained from
simulation as well as the analysis presented here, especially under light traffic, and so may be less
useful in understanding congestion. Mun’s analysis can be computationally expensive for large
queues since the stationary distribution of the queues cannot, or at least not easily, be found in
closed form.

The model presented here differs in several important respects: it is the arrival rate,
rather than the service rate which is state dependent; the dependence is on the state of the queue
receiving the arrivals. This produces a distinctive queue state distribution, similar to those observed
in simulations (see the analysis results section below). The arrival rates themselves are computed
taking into account the queues receiving the arrivals and the queues feeding them, capturing the
effect of a congested queue on the queues feeding it. A closed-form expression gives the stationary
distribution of a queue, although iteration is still required to completely analyze the network.

Throughput obtained using the analysis is best for small queue sizes: the results are
comparable to those obtained using Mun’s analysis. For intermediate queue sizes Mun’s analysis
yields closer results, but for larger queue sizes, the analysis presented here gives closer and faster
results.

The queue state distributions obtained match those obtained from simulations for high
queue occupancies, indicating that the congestion effect is accurately modeled. The queue empty
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state predicted by the model is closer to simulation than Yoon’s analysis for all stages and Mun’s
analysis for stages near the output.

In a related work a queue is modeled using sticky states as well as the state of queues in
the next and same stage, quadrupling the number of states [9]. While the predicted throughput is
closer than that obtained here, the added complexity is not necessary to model the sticky states
induced by congestion.

2 Preliminaries

The network being modeled, which will be called the (n,m, d) basic network, is an n-
stage banyan network consisting of m ×m modules each having m d-slot queues. The stages are
numbered from 0 to n− 1, with 0 being the first stage. Each stage consists of mn−1 modules. The
network has mn inputs which are connected to the first-stage module inputs by links; for all but
the last stage, module outputs are connected by links to module inputs in the next stage. Module
outputs in the last stage are connected to network outputs. For a banyan network the links can be
connected in any way as long as there is exactly one path between every input/output pair [3].

Each module consists of m queues, each with d slots connected to an m × m crossbar
switch. The module inputs connect to the queues; the queue outputs connect to the crossbar; and
the crossbar outputs connect to the module outputs. A packet is the unit of communication; it
consists of a destination (a network output) and data. Each slot can hold one packet (all packets
are the same size). The queue uses a first in, first out service discipline; the slot containing, or that
would contain, the packet being served is called the head slot, the packet is called the head packet.

Earlier analyses and the analysis presented here apply to networks having symmetry
properties that are easily proven for a subclass of banyan networks called bidelta networks [10]. A
network is a delta network if the module output needed by a packet is uniquely determined only
by the stage number and the packet’s destination [13]; it is a bidelta network if a similar property
holds when routing from outputs to inputs. (For example, in an n-stage omega network using 2×2
modules a packet in stage j uses module output 0 if digit n−j−1 of its destination is 0 and output
1 otherwise.) Most banyans of interest are bidelta networks, and the symmetry properties likely
hold for many others. See [14] for an elementary introduction and [10] a discussion of the topology
of banyan networks.

The network operates in a synchronous clocked fashion; time is divided into cycles. In
cycle t a packet can move from a queue in one stage to a queue in the next stage if 1) it is at the
head of the queue, 2) it is granted use of the appropriate link, and 3) the queue in the next stage
has at least one free slot during the cycle. The packet which is granted use of a link is chosen
randomly from those contending for its use. The packet meeting these conditions at cycle t will
be in the next stage queue starting at cycle t+ 1. A packet at a network input will move into the
network in cycle t if there is at least one slot free in the corresponding queue in the first stage. A
packet will move from a queue in the last stage to a network output if it is at the head of the queue
and is granted the appropriate output.

In the remainder of this paper Yoon’s analysis method will be used to refer to an analysis
which is similar to that of Yoon, Lee, and Liu [17], except that packets move as described above,
as later done by Ding [2].

The number of arrivals at network inputs in a cycle is modeled by independent, identically
distributed Bernoulli random variables. The arrival rate is the expected number of arrivals at an
input per cycle. (Equivalently, the probability of one arrival at an input in a cycle.) An arriving
packet which does not enter the network is dropped. Each packet arriving at the network has a
fixed destination, randomly chosen such that all outputs are equally likely and destination choices
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FIG. 1. Illustration of congestion. Queue A, being congested, is full much of the time. This causes
packets bound for A to accumulate at the head of the feeder queues, F1 and F2, prolonging congestion.
Queue B is not congested

are independent and identically distributed. The latency of a network is defined to be the mean
or expected number of cycles packets spend in the network. The throughput of the network is the
mean or expected number of packets leaving the network per output per cycle.

3 Sticky State Model

3.1 Congestion

Under the sticky model a queue can change from a full state to a congested state, in
which the arrival rate is much higher due to the accumulation of packets bound for the congested
queue. The congested state is self-prolonging or sticky because the higher arrival rate is both a
consequence of and tends to prolong the state. This situation is illustrated in Figure 1 and defined
below.

Definition 1: A queue in stage 0 < j < n of an (n,m, d) basic network is said to be in

the congestion start condition if it contains d items and the queue head slot of at least one of the

queues in the previous stage contains a packet which is to pass through the queue.

Definition 2: A queue in stage 0 < j < n of an (n,m, d) basic network is said to be in

the congestion end condition if it contains d− 1 items and no queue head slot in the previous stage

has a packet which is to pass through the queue.

Definition 3: A queue in stage 0 < j < n of an (n,m, d) basic network is said to be

congested in cycle t if there exists a cycle ts < t such that the queue was at the congestion start

condition in cycle ts and for all ts < τ < t the queue was not in the congestion end condition.
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An example of a queue going from an uncongested state to a congested condition, and
then back to an uncongested condition is presented in the table below.

TABLE I
A Congestion Example

Queues

Feeder Fed

Cycle F1 F2 A B

0 A∗ E d− 1 0

1 E B∗ d 0

2 A E d∗ 1∗

3 A∗ B∗ c1 0

4 A A c0∗ 1

5 A∗ A c1∗ 1∗

6 B∗ A∗ c1 0

7 B∗ E c0∗ 1∗

8 E B∗ c1 1∗

9 A∗ E d− 1 1

Table 1 shows the history of four queues connected to a common crossbar, as illustrated in
Figure 1. Queues F1 and F2 are connected to the crossbar’s inputs; queues A and B are connected
to the crossbar’s outputs. For queues F1 and F2 the next queue on the path of the head packet
is shown, A or B, or E if the queue is empty. For queues A and B either the number of items in
the queue is shown, or if A is congested the entry indicates whether A has zero or one slots free,
indicated by c0 or c1, respectively. An asterisk next to the entry indicates that the head packet of
the respective queue will move to the next stage at the end of the cycle. Queue A suffers congestion
due to feeder queues F1 and F2. Queue A is full but not congested up to cycle 2. At cycle 2 F1
offers a packet which A cannot accept so that congestion starts. Congestion continues until the
end of cycle 8, in which there is one slot free in A but no packet is offered.

3.2 The Module Model

An important quantity in the sticky analysis is the expected duration of congestion.
The computation of the expected duration of congestion uses a state model, called the module
chain, modeling the state of the previous stage module which is connected to the congested queue.
The queues in the previous stage module will be referred to as feeding queues. The important
information captured in this chain is the destination of the head packets in the module.
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FIG. 2. State transition diagram for a module chain in a network using 2× 2 modules. The state X
indicates no congestion. The other state labels indicate status of the head slot in each feeder queue, A
for a packet bound to the congested queue, B for packet bound to another queue, and E for head slot
empty. Transition probabilities are presented in the text

A feeding queue will be modeled as having either zero or at least one packet; if it has
at least one packet then it will also have one of two types of destination: one requiring passage
through the congested queue and one passing through any other queue. These feeding queue states
will be labeled E, A, and B, respectively.

Let the state of the module chain in stage j−1 at cycle t be denoted Mj−1,t for 1 ≤ j < n.
A module state is labeled with multisets (a set which can have more than one copy of an element)
of queue states as described above, plus an absorbing state indicating that there is no congestion.
(A state is absorbing if the probability of leaving the state is zero.) That is,

Mj−1,t ∈ X ∪ {{q1, q2, . . . , qm} | q1 ∈ {A,B,E}, q2 ∈ {A,B,E}, . . . , qm ∈ {A,B,E}} ,

where X is the absorbing state label. The absorbing state is entered if none of the feeding queues
are in state A and the congested queue is not full. For example Mj−1,t = {A,B} indicates that the
module in stage j− 1 at cycle t has one queue in which the head packet is bound for the congested
queue and one queue in which the head packet is bound for the non-congested queue. The module
state transition diagram for 2× 2 modules appears in Figure 2.

Note that, because a multiset is used, the identity of the queues is not represented. This
allows certain states to represent several possible queue state arrangements. For example, a module
in an (n, 2, d) network in which one feeding queue’s head packet was bound for the congested queue
and one was not would be in state {A,B} regardless of which queue had the packet bound to the
congested queue.

Since each module state for an (n, 2, d) network is a combination of two feeding queue
states the transition probabilities must take into account changes in both queues. For example, the
change from state {A,E} to {B,E} could occur because the queue in state A changed to state B
or because the queue in state A changed to E and the queue in state E changed to B. When both
queues are in state A or B a link will always be granted to one of the queues; since the queues are
not distinct it is not necessary to consider the probability that a particular queue is granted a link.
(The case in which m > 2 is more complex because multiple queues in state B could have their
packets passing through multiple links.)
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Transition probabilities for the module chain will be described by first describing feeding
queues individually. Furthermore, to simplify analysis it is assumed that at most one queue to
which a module is connected will be congested.

The arrival processes into all feeding queues are assumed independent. Since an arriving
packet’s destination is random with a uniform distribution and independent of other packets, the
probability that a packet’s path will take it through the congested queue is 1/m. Therefore if a
feeding queue is in state E the transition probability to state A is r0,j−1/m and to state B is
r0,j−1(m− 1)/m, where r0,j−1 denotes the probability of arrival to an empty queue in stage j − 1.

The transition out of state A requires that the congested queue be not full. Let vj denote
the service probability for a queue in stage j. It will be shown that the probability a congested
queue is not full is approximately vj . If a feeding queue is in state A the transition probability to
E is then vj(1−αj−1), where αj−1 is the probability that a queue in stage j− 1 will not be empty
given that a packet moved out of the queue in the previous cycle. The transition probability from
A to A is vjαj−1/m+ 1− vj . The transition probability from A to B is vjαj−1(m− 1)/m.

Because the module chain models situations in which one queue is congested, the head
packet of a queue in state B will always advance to the next stage. Then, the transition probabilities
from B to E, A, and B, are 1− αj−1, αj−1/m, and αj−1(m− 1)/m respectively.

The module chain transition probabilities are found from the feeding queue transition
probabilities. Let QF1,t and QF2,t be the states of the feeding queues, F1 and F2, in stage j − 1
at time t. The probability of a module going from state {A,A} to {A,B} is then

P [Mj−1,t = {A,B} |Mj−1,t−1 = {A,A}] =
P [QF1,t = B | QF1,t−1 = A]

=
m− 1
m

αj−1vj .

Note that only one of the head packets could be served, so this equation reflects the one possible
transfer. A more complex case is for a transition from {A,E} to {A,B}:

P [Mj−1,t = {A,B} |Mj−1,t−1 = {A,E}] =
P [QF1,t = A | QF1,t−1 = A]P [QF2,t = B | QF2,t−1 = E]+
P [QF1,t = A | QF1,t−1 = E]P [QF2,t = B | QF2,t−1 = A]

=
(

1− vj + vj
1
m
αj−1

)
m− 1
m

r0,j−1 +
1
m
r0,j−1vjαj−1

m− 1
m

.

All of the state transition probabilities for the module chain for stage j − 1 of an (n, 2, d)
network appear in the transition matrix below. State labels appear above and to the side of the
matrix halves.

TM =



{A,A} {A,B} {A,E}
{A,A} 1−vj+

vjαj−1
2

αj−1(2−2vj+vjαj−1)
4

(2−2vj+vjαj−1)r0,j−1
4

{A,B} vjαj−1
2

αj−1(1−vj+vjαj−1)
2

(1−vj+vjαj−1)r0,j−1
2

{A,E} vj(1−αj−1) (1−αj−1)(1−vj+vjαj−1) 1−vj+
vjαj−1

2 −r0,j−1+
3vjr0,j−1

2 −vjαj−1r0,j−1

{B,B} 0 vjαj−1
2

4
vjαj−1r0,j−1

4

{B,E} 0 vj (1− αj−1)αj−1
vj(αj−1+r0,j−1−2αj−1r0,j−1)

2

{E,E} 0 vj(1− αj−1)
2 vj (1− αj−1) (1− r0,j−1)

X 0 0 0
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{B,B} {B,E} {E,E} X

{A,A} 0 (1−vj)αj−1r0,j−1
4

(1−vj)r0,j−1
2

4 0

{A,B} (1−vj)αj−1
2

(1−vj)αj−1r0,j−1
2

(1−vj)r0,j−1
2

2 0
{A,E} 0 (1−vj)(αj−1+r0,j−1−2αj−1r0,j−1)

2
(1−vj)(1−r0,j−1)r0,j−1 0

{B,B} (1−vj)αj−1
2

(1−vj)αj−1r0,j−1
4

(1−vj)r0,j−1
2

4 0
{B,E} (1−vj)(1−αj−1)

(1−vj)(αj−1+r0,j−1−2αj−1r0,j−1)
2 (1−vj)(1−r0,j−1)r0,j−1 0

{E,E} 0 (1−vj)(1−αj−1)(1−r0,j−1) (1−vj)(1−r0,j−1)2 0
X vj vj vj 1


.

3.3 Congestion Duration

The expected duration of congestion is found by combining the expected number of cycles
before state X is entered for all possible congestion start states. By definition, A ∈ Mj−1,t holds
for a module state at the start of congestion and X = Mj−1,t+tc is the module state at the end of
congestion, while X 6= Mj−1,τ for t ≤ τ < t + tc, where tc is the congestion duration. The states
at the start of congestion are computed assuming that before congestion starts both the number of
packets in the feeding queues as well as their destinations are independent. The probabilities that
a feeding queue will be in states A, B, and E are (1−p0,j−1)/m, (1−p0,j−1)(m−1)/m, and p0,j−1

respectively. Since the queues are assumed independent at this point the probability of the possible
congestion start conditions, {A,A}, {A,B}, and {A,E}, are ((1− p0,j−1)/2)2, 2((1 − p0,j−1)/2)2,
and 2((1−p0,j−1)/2)p0,j−1, respectively for an (n, 2, d) basic network. The initial state probabilities
for stage j−1 module states {A,A}, {A,B}, and {A,E}, given that a queue which they are feeding
is in the congestion start condition are then (1 − p0,j−1)/(3 + p0,j−1), 2(1 − p0,j−1)/(3 + p0,j−1),
and 4p0,j−1/(3 + p0,j−1), respectively.

The expected congestion duration is computed by finding the expected number of cycles
before absorption given the initial state distribution and the transition probabilities. This same
computation also yields the arrival rate to the congested queue, denoted rc,j−1. Let mS,j−1,t =
P [Mj−1,t = S], the probability that a module will be in state S at cycle t. Let ~mj−1,t =
(m{A,A},j−1,t,m{A,B},j−1,t,m{A,E},j−1,t,m{B,B},j−1,t,m{B,E},j−1,t,m{E,E},j−1,t,mX,j−1,t) be the
state distribution for the module at cycle t for an (n, 2, d) network. Then if congestion starts at
t = 0 with state distribution

~mj−1,0 =
(

(1− p0,j−1)
(3 + p0,j−1)

,
2(1 − p0,j−1)
(3 + p0,j−1)

,
4p0,j−1

(3 + p0,j−1)
, 0, 0, 0, 0

)
,

the state distribution of the module at cycle t is ~mj−1,t = Tt
M ~mj−1,0, where Tt

M is the module
transition matrix raised to the power t. The expected number of cycles to absorption in stage j,
tc,j , (the same as the expected congestion duration) is then

tc,j =
∞∑
τ=1

τ(mX,j−1,τ−1 −mX,j−1,τ). (1)

The arrival rate during congestion is given by

rc,j =
1
tc,j

∞∑
τ=0

mA,j−1,τ ,
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FIG. 3. State transition diagram for a queue in stage j using the sticky model. The congested state, c,
indicates that the queue has zero or one slots free. Symbol tc,j denotes the expected congestion duration
(determined using the module chain).

where mA,j−1,τ = m{A,A},j−1,τ +m{A,B},j−1,τ +m{A,E},j−1,τ .

3.4 The Queue Model

The queues are modeled using Markov chains. The chains for stages 1 through n − 1,

which will be referred to as the sticky queues or queues for brevity, each have d + 2 states. The

states are labeled {c, 0, 1, . . . , d}, where c is a symbol indicating the congested state. Let Qj denote

the state of a queue in stage j. If the queue is in state Qj ∈ {0, 1, . . . , d} then it contains Qj items

and is not congested. If it is in state c then it is congested and may contain d or d− 1 items.

The state transition diagram for the queue appears in Figure 3; for clarity the self loops

are omitted. The chain has one more state, c, than an M/M/1/d queue model; that state is entered

if there is an arrival when the queue is full, the amount of time in the state is determined by the

expected congestion duration, tc,j , described above. By definition, at the last cycle of congestion

there are d − 1 items in the queue, so the first state after congestion would be for d − 2 or d − 1

items, depending upon whether the head packet of the queue completes service. The queue in the

first stage is modeled as in Yoon’s analysis.

A closed form expression for the stationary distribution of queue state probabilities is

readily obtained using standard balanced flow techniques. (See [5,8] for a description of these

techniques.) Let symbol pi,j for 0 < j < n and 0 ≤ i ≤ d denote P [Qj = i], the probability of

a queue containing i items and not being congested. The symbol pc,j will denote P [Qj = c], the

probability of a queue being congested. As with Yoon’s analysis, pi,0 will denote P [Q0 = i] for

0 ≤ i ≤ d, the probability that the queue in stage 0 contains i items. Let rl,j denote the probability

of arrival to a queue in stage j when the queue is neither empty nor congested. Then stationary

distribution of queue states is given by
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p0,j =
[
1− r0,j

rl,j(1− vj)
+
r0,jtc,j (rl,j(rl,j + 2/tc,j)(vj − 1)− vj/tc,j)ωjd−2

vj (2rl,jvj − rl,j − vj)

r0,j

(
1− ωjd−1

)
rl,j (1− vj) (1− ωj)

]−1

pS,j =



r0,jωj
ip0,j

rl,j(1−vj) , if 0 < S < d− 1;
r0,j(−rl,j−vj+rl,jvj)ωjd−2p0,j

vj(−rl,j−vj+2rl,jvj)
, if S = d− 1;

rl,jr0,j(vj−1)ωj
d−2p0,j

vj(−rl,j−vj+2rl,jvj)
, if S = d;

tc,jrl,j
2r0,j(vj−1)ωj

d−2p0,j
vj(−rl,j−vj+2rl,jvj)

, if S = c;

(2)

for 0 < j < n where ωj = rl,j(1−vj)
vj(1−rl,j) .

In the queue chain congestion is modeled as one state; it will be important to distinguish
between a queue being congested with one slot free and being congested while full. These two
conditions will be referred to as substates, denoted c1 and c0 and their respective probabilities
will be denoted pc1,j and pc0,j for a queue in stage j. These probabilities can be approximated by
assuming that congestion duration is infinite. In that case and with a non-zero service rate there
will be balanced flow between c1 and c0 and so pc1,j(1− vj) = pc0,jvj . This equation makes use of
the fact that in a congested queue at all but the last cycle of congestion there will always be an
arrival in state c1. Solving this equation yields

pc0,j = (1− vj)pc,j
pc1,j = vjpc,j .

From the second of these equations it can be seen that the probability of a queue having one slot
free given that it is congested is approximately vj . Finally, let pf,j = pd,j + pc0,j , denote the
probability that a queue in stage 0 < j < n is full.

3.5 State and Rate Relationships

The arrival rate when a queue is empty, r0,j , 0 < j < n, is computed taking into account
the knowledge that there was no arrival at the previous cycle. Let a queue in stage j be empty
at cycle t : Qj,t = 0. For an (n, 2, d) basic network the state of the module which feeds the queue
must be one of {{A,A}, {A,E}, {E,E}}, where a feeding queue in this module would be in state
B if it had a packet bound for the empty queue. Let M ′ be the state of a module, similar to M but
without the absorbing state. In each case, the probability that the module would have a packet
which is to pass through the empty queue at the next cycle, P [B ∈ M′

j−1,t | M ′j−1,t−1], can be
computed. Assume that the states of the queues making up the module are independent. Then r0,j

is a sum of these probabilities weighted by the probability of each of the corresponding states. The
probabilities for an (n, 2, d) network appear in the table below. The first column shows a module
state for each row, the second column gives the conditional probability of the row’s module state,
and the third column shows the probability that there will be a packet bound for B in the next
cycle given the row’s state.
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TABLE II

States of a Module Feeding an Empty Queue

M ′j−1,t−1 P [M′
j−1,t−1 | B 6∈M′

j−1,t−1] P [B ∈M′
j−1,t |M ′j−1,t−1]

{A,A} (1−p0,j−1)2

4
4

(1+p0,j−1)2
(1− pf,j)αj−1/2

{A,E} 2p0,j−1(1− p0,j−1)1
2

4
(1+p0,j−1)2

1−
(
1− r0,j−1

2

) (
1− (1− pf,j)αj−1

1
2

)
{E,E} p2

0,j−1
4

(1+p0,j−1)2
1−

(
1− r0,j−1

2

)2

The resulting arrival rate is

r0,j =
∑

S∈{{A,A},{A,E},{E,E}}
P [M′

j−1,t−1 = S | B 6∈M′
j−1,t−1 ] P [B ∈M′

j−1,t |M′
j−1,t−1 = S ]

=
[
αj−1 (1− pf,j) (1− p0,j−1)

2

8

+ (1− p0,j−1) p0,j−1

(
1−

(
1− αj−1 (1− pf,j)

2

) (
1− r0,j−1

2

))
+ p0,j−1

2

(
1−

(
1− r0,j−1

2

)2
)

]
4

(1 + p0,j−1)
2 .

(3)

The arrival rate to a queue is state dependent. An overall arrival rate, denoted rj , will be
needed. It is defined to be the unconditional probability of a packet being ready to enter a queue
in stage j. By definition, it can be found in terms of the queue state distribution and the other
arrival rates:

rj = r0,jp0,j + rl,j(1− p0,j − pc,j) + rc,jpc,j . (4)

Since the service rate for a queue is independent of the state of the queues it feeds the overall arrival
rate can be found using only the probability that a feeder queue is empty, as in Yoon’s analyses.
Thus,

rj =

{
1−

(
1− 1−p0,j−1

m

)m
, if 0 < j < n;

λ, if j = 0,
(5)

where λ is the arrival rate to the network. Note that the queue state distribution is a function of
r0,j , rl,j , tc,j , and, vj . The rate rl,j can be determined given r0,j , tc,j , vj , rj , and expressions for
p0,j and pc,j .
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Define the flow rate to be the expected number of packets that pass through a link per
cycle. For the basic network and the sticky model at equilibrium flow rate and throughput are the
same, otherwise they may differ. The flow rate in the sticky model can be found by summing the
arrival rates over queue states, except states in which the queue is full. Let ρj be the flow rate into
a queue in stage j > 0, then

ρj = r0,jp0,j + rl,j(1− p0,j − pc,j − pd,j) + (1− 1/(tc,jvj))pc1,j .

This equation is similar to (4), the difference being that cases where the queue is full are not
considered. For the first stage the flow rate is given by ρ0 = λ(1− pd,0).

It will be shown that the arrival rate to a queue in the congested state with one slot
free is 1 − 1/(tc,jvj). Since vj is approximately the fraction of time a congested queue has one
slot free, tc,jvj is the expected number of cycles a queue will have one slot free during a period of
congestion. As long as the queue is congested and not in the congestion end condition there will
be an arrival whenever one slot is free whereas in the congestion end condition there will not be
an arrival. The expected number of arrivals is thus tc,jvj − 1. Dividing by tc,jvj yields the arrival
rate to a one-slot-free congested queue, 1− 1/(tc,jvj).

Recall that αj denotes the probability that a queue in stage j is not empty in a cycle,
given that a packet left that queue in the previous cycle. It can be found by considering the
probability that the queue would be empty: (1 − rl,j)p1,j/(1 − p0,j). Then considering balanced
flow between a queue’s empty and other states:

αj = 1− (1− rl,j)p1,j

1− p0,j
for 0 < j < n.

The service rate for a queue is independent of the state of the queue. It is computed
based upon the state distribution of the queues which it feeds and the other queues in the module.
One way of finding the service rate is by dividing the flow rate computed at the following stage by
the occupancy probability,

vj =
ρj+1

(1− p0,j)
, (6)

for 0 ≤ j < n− 1. For the last stage the service rate equation used by [1,17] is used:

vn−1 =

(
1−

(
1− 1−p0,n−1

m

)m)
1− p0,n−1

. (7)

3.6 Computation of Equilibrium State

The equations above describe the sticky model at equilibrium; they can also be used
to find the equilibrium state given only the network description and arrival rate. The system is
initialized with the queues in the empty state and all arrival rates zero, except r0 = λ. First, the
overall arrival rate is computed using (5) using the queue state distributions from the previous
iteration (or the initial queue state distributions at the first iteration). Similarly, the service rate
is computed using (6,7) as appropriate. To approach equilibrium under certain circumstances this
quantity will have to be damped; let vj be the service rate computed at the t’th iteration and v′j ,
ρ′j+1, and p′0,j be the respective quantities computed at iteration t− 1. Then

vj =

ρ′j+1
(1−p′0,j)

+ v′j

2
;
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note that at equilibrium this is equivalent to (6).
Next the previously computed queue state distributions and a previously computed value

of r0,j−1 (or r0 for the second stage) is used to compute r0,j using (3) for 0 < j < n. The expected
congestion duration, tc,j , is found using the previously computed state distributions and the new
values of r0,j−1 and vj , and rl,j−1 for 0 < j < n using (1).

Finally, the new queue state distributions and rl,j are found using (2,4) for 0 < j < n.
This could be solved in closed form for certain d, but the results presented in the paper were
computed numerically. For the first stage, which is the same as the corresponding stage in Yoon’s
analysis, standard equations such as

p0,j =
(

1 +
1− ωjd

(1− ωj) (1− vj)
− 1

1− vj
+
rj ωj

d−1

vj

)−1

,

pq,j =

 p0,j
ωq
j

1−vj , if 0 < q < d;

p0,j
ωd−1
j

1−vj
rj(1−vj)

vj
, if q = d;

where ωj = rj(1−vj)
vj(1−rj) , can be used.

The results obtained are iterated until the difference between the results computed on
subsequent iterations is sufficiently small, using some criteria. The criteria used for this study was
that p0,n−1 had to vary by less than 1% (after the first n − 1 cycles in which it would remain at
one). For the results reported here only 50 to 60 iterations were necessary to yield almost three
digits of precision. The accuracy of the results will be discussed below.

4 Analysis Results

The predictions of Yoon’s analysis, Mun’s analysis, and sticky state analysis are compared
with data taken from simulation. The simulator perfectly simulates the basic network; simulations
were performed for 40,000 or more cycles, confidence intervals were computed for severe parameter
sets (large queue and network sizes and heavy traffic) and were much smaller than the differences
with the analytical models. For example, the 95% confidence interval for the throughput of (8, 2, 50)
networks at λ = .90 based on three runs was [.7186, .7190]. Similarly, there was only insignificant
differences in queue state “probabilities” between simulator runs.

The sticky state model was motivated by the observation that the state distribution of
queues in simulated basic networks have peaks at 1 and d − 1 items. The peaks can be seen at
occupancy 7 in Figure 4(a) where the queue state distributions in each stage of a simulated (5, 2, 8)
network are plotted. The ability of the sticky analysis to model these peaks is shown in Figure 4(c)
where the peaks also appear. Distributions for Yoon’s and Mun’s model appear in Figure 4(b) and
(d); the peaks are not evident.

The sticky model is less effective at predicting the low end of queue state distributions
in congested networks. This can be seen in Figure 4 where the sticky model and Yoon’s model
underpredict. Mun’s model, in contrast, overpredicts the low end of the distribution, especially in
the last stages of the network. The sticky model is better at predicting the queue-empty state than
Yoon’s model, which is important in determining throughput.

Queue state distributions in moderately loaded networks, arrival rate .7, appear in Fig-
ure 5. In these plots the effectiveness of using a different arrival rate based on an empty queue
can be seen: The distributions obtained using the sticky model and simulation closely match. The
distribution in all stages obtained using Yoon’s model are identical.
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FIG. 4. Queue occupancy (number of items in queue) distributions in each stage of an (5,2,8) basic
network offered traffic at rate .9 obtained from (a) simulation; (b) analysis using Yoon’s model, (c)
analysis using the sticky model, and (d) using Mun’s model

Note that the distributions obtained for the first stage using simulation, sticky, and Yoon’s
models are similar. In all analyses the arrivals to the first stage are Bernoulli, in both the sticky and
Yoon’s analyses service in the first stage is geometric. The closely matching distributions suggest
that geometric service is a good approximation. The moderate traffic state distributions predicted
using Mun’s model less resemble simulation than the others, nevertheless the throughput prediction
of Mun’s and the other models are very accurate at moderate and low arrival rates.

The effect of network size can be seen in Figure 6, where state distributions in (3, 2, 8),
(5, 2, 8), and (8, 2, 8) networks offered traffic at .9 determined by each of the analyses are plotted.
The distributions for the same stages in corresponding networks are similar (e.g., the distribution
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FIG. 5. Queue occupancy (number of items in queue) distributions in all stages of an (8,2,30) basic
network offered traffic at rate .7 obtained from (a) simulation; (b) analysis using Yoon’s model, (c)
analysis using the sticky model, and (d) using Mun’s model

in stage 1 is similar in (3, 2, 8), (5, 2, 8), and (8, 2, 8), networks). At higher stage numbers the
distribution is skewed increasingly towards the one-slot-filled state. This effect is underestimated
by sticky and Yoon’s analysis and is overestimated by Mun’s.1 The sticky model captures the
congestion effect at each size.

The effect of queue size can be seen in Figure 7 where state distributions in (8, 2, 3),
(8, 2, 8), and (8, 2, 30) networks offered traffic at .9 determined by each of the analyses are plotted.

1 To eliminate the possibility that the high slot-one occupancy probabilities are due to an insufficient
number of iterations, the states were initialized so that all states (except zero) had equal probability; the
distributions were the same.
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FIG. 6. Queue occupancy (number of items in queue) distribution comparisons of (3, 2, 8), (5, 2, 8), and
(8, 2, 8) networks offered traffic at rate .9.

The change in empty-state probability with stage in simulated networks is apparent at all sizes.
This effect is not captured using Yoon’s or the sticky analysis where the queue states are more
evenly spread. Mun’s analysis underestimates the change in early stages and overestimates it in
later stages. The congestion effect is captured by the sticky model at all queue sizes illustrated
(this is difficult to see at size 3).

The effect of arrival rate can be seen in Figure 8 where state distributions in (8, 2, 8)
networks offered traffic at arrival rates .6, .65, .7, and .8 are plotted. At rate .6 the four analyses
give similar distributions, with sticky analysis closest to simulation. As arrival rate and congestion
increase the peaks at d− 1 become apparent. As in the other cases, Mun’s analysis overestimates
low occupancy states while the sticky and Yoon’s analysis underestimate them.
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FIG. 7. Queue occupancy (number of items in queue) distribution comparisons of (8, 2, 3), (8, 2, 8), and
(8, 2, 30) networks offered traffic at rate .9.
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FIG. 8. Queue occupancy (number of items in queue) distribution comparisons of (8, 2, 8), networks
offered traffic at rates .6, .65, .7, and .8.
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TABLE III
Throughput and Latency of Simulations and Analyses

Queue Arrival Simulation Fully Ind. Sticky

Size Rate Thpt. Lat. Thpt. Lat. Thpt. Lat.

3 .90 .48 20.2 .62 19.9 .58 20.4

5 .90 .56 28.0 .68 30.4 .65 30.5

7 .90 .60 35.9 .71 41.3 .68 40.8

10 .90 .64 47.8 .72 57.9 .70 56.6

20 .90 .69 87.0 .74 113.6 .73 109.4

30 .90 .70 124.0 .74 169.5 .73 162.4

4 .10 .10 9.3 .10 9.2 .10 9.2

4 .30 .30 10.3 .30 10.1 .30 10.1

4 .48 .48 13.6 .48 11.9 .48 12.3

4 .60 .53 20.0 .60 15.2 .59 16.9

4 .72 .53 22.6 .66 22.3 .62 23.6

4 .80 .53 23.4 .66 24.1 .62 24.7

4 .99 .53 24.4 .66 25.4 .63 25.7

TABLE IV
Throughput v. Network Size

Network Simulation Fully Ind. Sticky Mun’s

Size Analysis Analysis Analysis

3 .62 .69 .66 .66

4 .59 .68 .65 .65

5 .57 .67 .64 .63

6 .55 .67 .63 .62

7 .54 .67 .63 .61

8 .53 .66 .63 .61

The values of throughput obtained with the sticky model more closely match the simulated
values than Yoon’s analysis. This is true over a variety of queue sizes, network sizes, and offered
traffic rates. The throughput and latency for (8, 2, 4) networks with various arrival rates and queue
sizes obtained through simulation and with Yoon’s and sticky analyses appears in Table 3. The
throughput obtained with the sticky model is closer to simulated values than Yoon’s model for all
simulations performed. The latency found for some networks having small queue sizes using Yoon’s
model is closer to simulated values than the sticky model. As can be seen by inspection of Figure 8
this overestimate is due in part to underestimating the fraction of time a queue will have few items.

Throughput versus network size obtained from simulation, the sticky model, Yoon’s
model, and Mun’s model is tabulated in Table 4. The sticky model outperforms Yoon’s analy-
sis for each case, although Mun’s analysis gives the same or slightly closer predictions.
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5 Conclusion

Better predictions of queue state distributions notwithstanding, the difference between the
sticky model and simulations is significant and increases with network size. Based upon examination
of simulation results and other analysis methods the author believes that the lower throughput in
simulated systems is due to congested queues inducing congestion in queues for several stages
towards the inputs. The belief is based on the observation that at the onset of congestion in a
queue the queue which it feeds is congested more frequently than average. This effect was partially
incorporated into a model by determining the service rate for a queue feeding a congested queue
and a correlation between congested queues in adjacent stages; from this adjusted service rates
were found. See [9]. Although the results were better (at some cost in complexity) correlation of
congestion between adjacent stages did not match simulations to a satisfying degree.

The sticky model yields much better results than presented here if a slower service rate is
used in the module chain. As of yet the slower service rate has not been quantified using a plausible
model, so presentation of these better results will be omitted.

Another observed effect which might be exploited is the variation in service and arrival
rates with queue occupancy. In simulations of the basic network, arrival rate, after zero items,
slowly increases with queue occupancy. Similarly, service rate slowly drops, with a sharp drop
when the queue is full. If such rates could be suitably modeled (without adding states as described
above) a relatively simple yet accurate network model might result.

The effect of nonuniform traffic, including hotspots, can be analyzed by straightforward
modification of the sticky model. In such analyses offered traffic to an N -input, N -output net-
work is specified using an N ×N load matrix which specifies the arrival rate of messages at each
input destined to each output [7]. Each queue in the network is modeled (rather than a single
representative queue for each stage), arrival and service rates are computed separately for each
link.
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