
SIMPLE : A Methodology for ProgrammingHigh Performance Algorithms onClusters of Symmetric Multiprocessors (SMPs)(Preliminary Version)David A. Bader� Joseph J�aJ�ayInstitute for Advanced Computer StudiesUniversity of Maryland, College Park, MD 20742fdbader, josephg@umiacs.umd.eduMay 16, 1997AbstractWe describe a methodology for developing high performance programs running on clusters of SMP nodes.Our methodology is based on a small kernel (SIMPLE) of collective communication primitives that makee�cient use of the hybrid shared and message passing environment. We illustrate the power of our methodologyby presenting experimental results for sorting integers, two-dimensional fast Fourier transforms (FFT), andconstraint-satis�ed searching. Our testbed is a cluster of DEC AlphaServer 2100 4/275 nodes interconnectedby an ATM switch.Keywords: Cluster Computing, Symmetric Multiprocessors (SMP), ATM Networks, ParallelAlgorithms, Shared Memory, message passing (MPI), Experimental Parallel Algorithms, Parallel Per-formance.1 Problem OverviewWith the cost of commercial o�-the-shelf (COTS) high performance interconnects falling and the re-spective performance of microprocessors increasing, workstation clusters have become an attractivecomputing platform o�ering potentially a superior cost e�ective performance [23]. Indeed, this trendhighly leverages both workstation-focused technologies including systems software and networking in-frastructure, for example, COTS networks (e.g. Ethernet, Myrinet, FDDI, or ATM). In recent years,we have seen the maturing of Symmetric Multiprocessors (SMPs) technology (for example, hardware�The support by NSF CISE Postdoctoral Research Associate in Experimental Computer Science No. 96-25668 is gratefullyacknowledged.ySupported in part by NSF grant No. CCR-9103135 and NSF HPCC/GCAG grant No. BIR-9318183.1

support for hierarchical memory management, multithreaded operating system kernels, and optimizingcompilers), and the heavy reliance upon SMPs as the work-intensive servers for client/server applica-tions. It can be argued that 1) many future workstations will be SMPs with more than one processor,and 2) SMP nodes will be the basis of workstation clusters. There are already several examples ofclusters of SMPs, such as clusters of DEC AlphaServer [14], SGI Challenge/PowerChallenge [11], orSun Ultra HPC machines, and the IBM SP system with SMP \High" nodes [16, 13]. With the accep-tance of message passing standards such as MPI [19], it has become easier to design portable parallelalgorithms making use of these primitives. However, the focus of MPI is a standard for communicatingbetween shared-nothing processors, and although MPI programs run on clusters of SMPs, this is notnecessarily the optimal methodology for these platforms.
Programming

Message Passing

Simple
Programming

Shared Memory
Programming

"Shared Everything" "Shared Nothing"Figure 1: The SIMPLE methodology e�ciently combines shared memory programming on a node withmessage passing between nodes.This paper describes a methodology for programming clusters of SMP nodes (herein referred toas COSMOS 1) which aids in the design and implementation of e�cient high performance parallelalgorithms. We call this model SIMPLE , referring to the joining of the SMP andMPI-like messagepassing paradigms and the simple programming approach (see Figures 1 and 2).Programming methodologies for COSMOS fall into two categories. The �rst, distributed sharedmemory (DSM) systems (for example, TreadMarks [2] from Rice University, Multigrain Shared Mem-ory (MGS) [30] from MIT and Coherent Virtual Machine (CVM) [17] from University of Maryland),provides a software layer which simulates coherent shared memory between nodes by internally usingmessaging to move around speci�c data or referenced memory pages. The second, based on messagepassing primitives (for example, MPI [19]), enforces a shared-nothing paradigm between tasks, andall communication and coordination between tasks are performed through the exchange of explicitmessages, even between tasks on a node with physically shared memory. For example, the modelassumed in [26] is that each processor in the cluster will be assigned a message passing (MPI-level)1cosmos ('k�az-m�os) noun Greek kosmos c. 16501: an orderly harmonious systematic universe2: a complex orderly self-inclusive system3: Cluster Of Shared Memory Nodes 2

Communication Phase

Communication Phase

Computation Phase

Computation Phase

Message Passing Tasks

Message Passing Algorithm
Communication Phase

Communication Phase

SM
P A

lgorithm

SM
P A

lgorithm

SM
P A

lgorithm

SM
P A

lgorithm
SM

P A
lgorithm

SM
P A

lgorithm

SM
P A

lgorithm

SM
P A

lgorithm

Simple Methodology

Computation Phase

Computation PhaseSIMPLE AlgorithmFigure 2: On the left, we show a message passing algorithm where each task uses sequential code duringcomputation phases. On the right, the SIMPLE approach replaces each computation step with an optimalSMP algorithm.process, with lower latency communication between processes on the same SMP node than with in-ternode messages. However, our work di�ers from both of these approaches, in that we advocate ahybrid methodology which maps directly to underlying architectural aspects. As such, we combineshared memory programming on shared memory nodes with message passing communication betweenthese nodes.The main results of this paper are1. A programming methodology for COSMOS which is both e�cient and portable. This method-ology provides a path for optimizing message passing algorithms to clusters of SMPs.2. A small message passing kernel for clusters connected by ATM switches which is superior inperformance when compared with the known MPI implementations.3. High performance algorithms based on our methodology for sorting integers, constraint-satis�edsearching, and computing the two-dimensional FFT.The organization of this paper is as follows. Section 2 addresses our computation methodology andtarget parallel machine architectures. The design of algorithms for COSMOS is described in Section 3.3

Our SIMPLE communication primitives are described in Sections 2.1 and 2.2, which include collectivecommunication and computation operations as well as functions for spreading work among processorson a node, or across an entire cluster of machines. We present several examples of e�cient algorithmsusing the SIMPLE model for design, analysis, and empirical testing. The �rst algorithm, given inSection 5, sorts integers using a radix-based approach. The performance of this algorithm is comparedwith that of an e�cient MPI radix sort, highlighting the signi�cant improvement introduced by ourmethodology. Section 6 presents the second algorithm, two-dimensional FFT, which is the cornerstonecomputation in many applications. The third algorithm, an example of constraint-satis�ed searching,�nds all solutions to the n-queens problem and can be found in Section 7. Experimental results areprovided from implementations on a cluster of DEC AlphaServer 2100 4/275 nodes each with a DEC(OC-3c) 155.52 Mbps PCI card connected to a DEC Gigaswitch/ATM switch, and using the MPI(e.g., LAM 6.1 [22], MPICH 1.0.13 [12], or CHIMP 2.1.1c [1]) and POSIX threads (DECthreads [9] orfreely available pthreads implementations [25, 20]) packages. Finally, Section 9 presents a directionfor future work.2 The SIMPLE Parallel Computation MethodologyWe use a simple paradigm for designing e�cient and portable parallel algorithms. First we willdescribe characteristics of our target parallel machine architecture, followed in the next section by aset of SIMPLE communication and computation primitives which are implemented e�ciently andare intended as user level directives.
PP P P P PPP P P P P

p-10 1 2 3 4 5 6 7 p-2p-3p-4

Interconnection NetworkFigure 3: Cluster of processing elementsOur architecture consists of a collection of SMP nodes interconnected by a communication network(as shown in Figure 3) that can be modeled as a complete graph on which communication is subject tothe restrictions imposed by the latency and the bandwidth properties of the network. Each SMP nodecontains several identical processors, each typically with its own on-chip cache and a larger o�-chip4

cache, which have uniform access to a shared memory and other resources such as the network interface.We view a parallel algorithm as a sequence of local computation interleaved with communication steps.
L1L1

L1 L1

L2 L2

L1

L2

L1

L2L2 L2

Shared Memory

Bus or Switching Network

Interface
Network

CPU 0 CPU 2 CPU r-2

CPU r-1CPU 3CPU 1

Figure 4: A typical symmetric multiprocessing (SMP) node used in a cluster. L1 is on-chip level-one cache,and L2 is o�-chip level-two cache.We use the parameter r to represent the number symmetric processors per node (see Figure 4 for adiagram of a typical node). Notice that each CPU typically has its own on-chip cache (L1) and a largero�-chip level two cache (L2), which can be tightly integrated into the memory system to provide fastmemory accesses and cache coherence. In practice, SMP con�gurations range between 2 and 36 CPUmodules attached to a shared bus and main memory. The shared memory programming of each SMPnode is based on threads which communicate via coordinated accesses to shared memory. Severalprimitives will be discussed in the following section which, for example, synchronize the threads ata barrier, enable one thread to broadcast data to the other threads, or calculate reductions acrossthe threads. In our methodology, only the CPUs from a certain node have access to that node'scon�guration. In this manner, there is no restriction that all nodes must be identical, and certainlyCOSMOS can be constructed from SMP nodes of di�erent sizes. Thus, the number of threads on aspeci�c remote node is not globally available. Because of this, our methodology supports only node-oriented communication, meaning we restrict communication such that, given any source node s anddestination node d, with s 6= d, only one thread on node s can send (receive) a message to (from) noded at any given time. We will show later that no performance loss will be incurred by this restriction.Next we describe the SIMPLE primitives which aid in the design of e�cient and portable parallelalgorithms. For ease of discussion, we separate the primitives into two categories, communication (inSection 2.1) and computation (in Section 2.2), where communication directs the ow of information5

between threads and computation refers to the control mechanisms among threads.2.1 Communication Primitives
Recv SendRecv

Barrier

Reduce

Broadcast

Barrier

Send

SMP Node LibraryInternode Communication Library

SIMPLE Communication Library

Barrier, Reduce, Broadcast, Allreduce,
Alltoall, Alltoallv, Gather, Scatter

Alltoall, Alltoallv, Gather, Scatter

Reduce, Broadcast, Allreduce,Figure 5: Hierarchy of SMP, message passing, and SIMPLE communication librariesThe communication primitives are grouped into three modules: Internode Communication Library(ICL), SMP Node, and SIMPLE . The ICL communication library provides a small kernel forinternode communication, similar to MPI, but with less overhead than several of the freely availableimplementations of MPI (for example, MPICH, LAM, or CHIMP), and is based upon a reliable,application-layer send and receive primitive, as well as a send-and-receive primitive which handlesthe exchanging of messages between sets of nodes where each participating node is the source anddestination of one message. The library also provides a barrier operation based upon the send andreceive which halts the execution at each node until all nodes check into the barrier, at which time,the nodes may continue execution. In addition, ICL includes collective communication primitives, forexample, reduce, broadcast, allreduce, alltoall, alltoallv, gather, and scatter. The SMP NodeLibrary contains three important primitives for an SMP node: barrier, broadcast, and reduce,whereby on a single node, barrier synchronizes the threads, broadcast ensures that each thread hasthe most recent copy of a shared memory location, and reduce performs a reduction operation with abinary associative operator (for example, addition, multiplication, maximum, minimum, bitwise-AND,and bitwise-OR) with one datum per thread. Finally, the SIMPLE communication library, built ontop of ICL and SMP Node, includes the primitives for the SIMPLE model: barrier, reduce,broadcast, allreduce, alltoall, alltoallv, gather, and scatter. These hierarchical layers of ourcommunication libraries are pictured in Figure 5.The SMP Node, ICL, and SIMPLE libraries are implemented at a high-level, completely in userspace (see Figure 6). Because no kernel modi�cation is required, these libraries easily port to newplatforms. 6

Message Passing
(e.g. MPI, ICL)

SMP Node Library

Kernel

User Libraries

Kernel Space

User Space

POSIX threads

SIMPLE

User Program

Figure 6: User code can access SIMPLE , SMP, message passing, and standard user libraries. Note thatSIMPLE operates completely in user space.Parameter DescriptionNODES = p Total number of nodes in the cluster.MYNODE My node rank, from 0 to NODES� 1.THREADS = r Total number of threads on my node.MYTHREAD The rank of my thread on this node, from 0 to THREADS� 1.TID Total number of threads in the cluster.ID My thread rank, with respect to the cluster, from 0 to TID � 1.Table I: The local context parameters available to each SIMPLE thread.As mentioned previously, the number of threads per node can vary, along with machine size.Thus, each thread has a small set of context information which holds such parameters as the numberof threads on the given node, the number of nodes in the machine, the rank of that node in themachine, and the rank of the thread both 1) on the node and 2) across the machine. Table I describesthese parameters in detail.Because the design of the communication libraries is modular, it is easy to experiment with di�erentimplementations. For example, the MPI libraries o�er a more robust communication suite than ourICL Library, at a signi�cant cost. However, the lower-level ICL and SMP Node primitives canbe replaced by vendor-supplied MPI and SMP primitives. We ran a simple experiment whereby amessage is sent between two nodes and plotted the results. Figure 7 shows the communication timeand respective bandwidth for sending a message between two DEC AlphaServer 2100 nodes, using theDigital Gigaswitch/ATM and OC-3c adapter cards, which have a peak bandwidth rating of 155.52Mbps.The results, summarized in Table II, reect the latency and bandwidth characteristics of point-to-point messages between a pair of DEC AlphaServer 2100 nodes, using the Internode CommunicationLibrary (ICL) and the best MPI implementation (MPICH). The theoretical raw peak bandwidth is7

Time

BandwidthFigure 7: Internode Communication Performance8

Communication Library Latency BandwidthICL 170�s 132 MbpsMPI (MPICH) 400�s 75 MbpsTable II: The latency and bandwidth characteristics of point-to-point messages between a pair of DECAlphaServer 2100 nodes, with ATM OC-3c adapters, using both the Internode Communication Library(ICL) and MPI (MPICH).155.52 Mbps, and our application level measurement �nds the ICL library achieving 132 Mbps, whileMPI/MPICH only reaches about half of that. In addition, our latency measurements are less thanhalf of that incurred using MPI/MPICH. The SIMPLE library can use either MPI or ICL for passingmessages between the nodes, taking into account the following two important considerations. First,ICL is not a replacement for MPI. The ICL library o�ers only a small subset of the functionalityavailable in MPI, for example, ICL uses only a single communication group, specializes the implemen-tation for an ATM network instead of implementing communication on an abstract channel device,restricts the number of outstanding communication events, and provides less status information andno additional debugging hooks. Second, ICL provides both weak support for multithreading wherethe user is responsible for maintaining mutually exclusive use of communication channels via implicitalgorithmic design or explicit locks, and strong support where internal locking mechanisms automat-ically protect the user from corrupting the communication layer. However, the MPI implementationmust be thread-safe. Thus, the ICL communication library achieves the higher performance for twomain reasons, �rst latency is reduced because, by purpose, ICL is not as generalized as MPI, andsecond, bandwidth is increased in ICL by optimizing the network parameters for an ATM switch.2.1.1 Implementation of the SMP Node LibraryAs Figure 6 shows, the SMP Node library can be implemented on top of a portable threads layer,such as POSIX threads (pthreads), or if available, via possibly faster native primitives. Our SMPNode library is based upon pthreads, and thus, is portable to POSIX standard platforms. The threeSMP Node primitives which we require for SIMPLE are reduce, barrier, and broadcast. Forexample, if the number of threads is small, each thread entering a reduce primitive �rst acquires alock, stores the reduction of its element with the shared element, and increases the counter of waitingthreads. If it is not the last to enter, the thread releases the lock and blocks waiting for a condition.If in fact the thread is the last to enter, it resets the operation and uses a condition broadcast towake up the other threads. Finally, all threads return the result. For a larger number of threads, thereduce primitive can be implemented with an e�cient parallel k-ary tree for a suitable value of k.The pthreads standard requires primitives for synchronization with condition variables and mutualexclusion locks, but does not include a primitive for barrier synchronization. The barrier primitive9

can be implemented similarly to reduce, since all threads must enter before each thread can continue.Since a side e�ect of the pthreads locking mechanism is an SMP memory coherence barrier, the threadwith data to broadcast writes this information in a shared memory location, and then all threadsenter a barrier. Afterwards, each thread reads this shared memory location which is guaranteed tobe consistent.Now that the basics of the communication system and node library have been presented, we areready to describe some of the SIMPLE communication primitives.2.1.2 The Alltoall primitiveOne of the most important collective communication events is the Alltoall (or transpose) primitivewhich transmits regular sized blocks of data between each pair of nodes. More formally, given acollection of p nodes each with an n element sending bu�er, where p divides n, the Alltoall operationconsists of each node i sending its jth block of np data elements to node j, where node j stores thedata from i in the ith block of its receiving bu�er, for all (0 � i; j � p � 1). An e�cient messagepassing implementation ofAlltoall would be as follows. The notation \vari" refers to memory location\var+ (np � i)", and src and dst point to the source and destination arrays, respectively.� Step (1): Copy the appropriate np elements from srcMYNODE to dstMYNODE .� Step (2): For i = 1 to NODES� 1 do{ A) Set k =MYNODE� i;{ B) Send np elements from srck to node k, andReceive np elements from node k to dstk.To implement this algorithm, we use multiple threads per node. The local memory copy in Step(1) trivially can be performed concurrently by one thread while the remaining threads handle theinternode communication as follows. The p � 1 iterations of the loop in Step (2) are partitioned ina straightforward manner to the remaining threads. Each thread has the information necessary tocalculate its subset of loop indices, and thus, this loop partitioning step requires no synchronizationoverheads.In Figure 8, we compare the performance of three Alltoall primitives, using the MPI, ICL ,and SIMPLE communication libraries on four and eight DEC AlphaServer 2100 4/275 nodes. In allcases, the SIMPLE primitive is the fastest, typically by a factor or two or three over MPI. Now,with only a single network interface per node, why would one expect a performance improvement byusing multiple threads? Our algorithm exploits two main sources of parallelism. The �rst is task levelconcurrently exhibited by one thread performing the local memory copy while other threads utilizingthe network. The second form of parallelism is less obvious, but nonetheless an important observation.10

Four Nodes

Eight NodesFigure 8: Comparison of Alltoall (Transpose) Primitives11

Unlike clusters of workstations where each network interface is closed coupled to a single processor'scommunication stream, on an SMP node, the operating system is itself capable of internal parallelism(via multi-threaded kernel routines) and can more e�ciently pipeline requests between the processorsand the network interface.2.2 Computation PrimitivesIn the previous section, we provided an overview of our communication library. Next we will explorethe set of user level directives, called SIMPLE computation primitives, which do not communicatedata but a�ect a thread's execution through 1) loop parallelization, 2) restriction, or 3) shared memorymanagement. Basic support for data parallelism, that is, \parallel do" concurrent execution of loopsacross processors on one or more nodes, is discussed �rst. Next we describe the control primitiveswhich restrict (or contextualize) thread execution, for example, to some subset of threads or nodes.Lastly, we cover a few shared memory management directives which make it easier for the user todevelop portable shared memory code by standardizing the interface for allocating and deallocatingshared memory locations.2.2.1 Data ParallelThe SIMPLE methodology contains several basic \pardo" directives for executing loops concurrentlyon one or more SMP nodes, provided that no dependencies exist in the loop. Typically, this is usefulwhen an independent operation is to be applied to every location in an array, for example, in theelement-wise addition of two arrays. Pardo implicitly partitions the loop to the threads without theneed for coordinating overheads such as synchronization or communication between processors. Bydefault, pardo uses block partitioning of the loop assignment values to the threads, which typicallyresults in better cache utilization due to the array locations on left-hand side of the assignment beingowned by local caches more often than not. However, SIMPLE explicitly provides both block andcyclic partitioning interfaces for the pardo directive.Similar mechanisms exist for parallelizing loops across aCOSMOS . The all pardo cyclic (i, a, b)directive will cyclically assign each iteration of the loop across the entire collection of processors. Forexample, i = a will be executed on the �rst processor of the �rst node, i = a + 1 on the secondprocessor of the �rst node, and so on, with i = a+ r � 1 on the last processor of the �rst node. Theiteration with i = a + r is executed by the �rst processor on the second node. After r � p iterationsare assigned, the next index will again be assigned to the �rst processor on the �rst node. A similardirective called all pardo block, which accepts the same arguments, assigns the iterations in a blockfashion to the processors, thus, the �rst b�arp iterations are assigned to the �rst processor, the nextblock of iterations are assigned to the second processor, and so forth. With either of these SIMPLE12

directives, each processor will execute at most l nrpm iterations for a loop of size n.2.2.2 ControlThe second category of SIMPLE computation primitives control which threads can participate in thecontext by using restrictions. Control Primitivesmax number of MYNODE MYTHREADPrimitive De�nition participating restriction restrictionthreadson one thread only one thread per node p 0on one node all threads on a single node r 0on one only one thread on a single node 1 0 0on thread(i) one thread (i) per node p ion node(j) all threads on node j r jTable III: Subset of SIMPLE Control Primitives.Table III de�nes each control primitive and gives the largest number of threads able to execute theportion of the algorithm restricted by this statement. For example, if only one thread per node needsto execute a command, it can be preceded with the on one thread directive. Suppose data has beengathered to a single node. Work on this data can be accomplished on that node by preceding thestatement with on one node. The combination of these two primitives restricts execution to exactlyone thread, and can be shortcut with the on one directive.2.2.3 Memory ManagementFinally, shared memory allocations are the third category of SIMPLE computation primitives. Twodirectives are used:1. node malloc for dynamically allocating a shared structure, and2. node free for releasing this memory back to the heap.The node malloc primitive is called by all threads on a given node, and takes as a parameter thenumber of bytes to be allocated dynamically from the heap. The primitive returns to each thread avalid pointer to the shared memory location. In addition, a thread may allow others to access localdata by broadcasting the corresponding memory address. When this shared memory is no longerrequired, the node free primitive releases it back to the heap.Thus, we have described the fundamental elements of the SIMPLE methodology and can nowpresent a high-level approach for designing algorithms on COSMOS .13

3 SIMPLE Algorithmic DesignIn this section we describe the SIMPLE programming model as seen by the user and the runtimesupport for executing SIMPLE code.3.1 Programming ModelThe user writes an algorithm for an arbitrary cluster size p and SMP size r (where each node canassign possibly di�erent values to r at runtime), using the parameters from Table I. SIMPLE expectsa standard main function (called SIMPLE main()) that, to the user's view, is immediately up andrunning on each thread in the COSMOS . Thus, the user does not need to make any special calls toinitialize the libraries or communication channels. SIMPLE makes available the rank of each threadon its node or across the cluster, and algorithms can use these ranks in a straightforward fashion tobreak symmetries and partition work. The only argument of SIMPLE main() is \THREADED,"a macro pointing to a private data structure which holds local thread information. If the user'smain function needs to call subroutines which make use of the SIMPLE library, this information iseasily passed via another macro \TH" in the calling arguments. After all threads exit from the mainfunction, the SIMPLE code performs a shut down process.3.2 Runtime SupportWhen a SIMPLE algorithm �rst begins its execution on a COSMOS , the SIMPLE runtime supporthas already initialized parallel mechanisms such as barriers and established the network-based intern-ode communication channels which remain open for the life of the program. The various librariesdescribed in Section 2 have runtime initializations which take place as follows.The runtime startup routines for a SIMPLE algorithm are performed in two steps. First, the ICLinitialization expands computation across the nodes in a cluster by launching a master thread on each ofthe p nodes and establishing communication channels between each pair of nodes. Second, each masterthread launches r user threads, where each node is at least an r-way SMP2. It is assumed that the rCPUs concurrently execute the r threads. The thread ow of an example SIMPLE algorithm is shownin Figure 9. As mentioned previously, our methodology supports only node-oriented communication,that is, given any source node s and destination node d, with s 6= d, only one thread on node s cansend (receive) a message to (from) node d during a communication step. Also note that the masterthread does not participate in any computation, but sits idle until the completion of the user code, atwhich time it coordinates the joining of threads and exiting of processes.2A rule of thumb in practice is to use r threads on an r + 1-way SMP node, which allows operating system tasks to fullyutilize at least one CPU 14

M
as

te
r

T
hr

ea
d

1

M
as

te
r

T
hr

ea
d

p-
1

M
as

te
r

T
hr

ea
d

0

T
hr

ea
d

(0
, 0

)

T
hr

ea
d

(0
, 1

)

T
hr

ea
d

(0
, r

-1
)

T
hr

ea
d

(1
, 0

)

T
hr

ea
d

(1
, 1

)

T
hr

ea
d

(1
, r

-1
)

T
hr

ea
d

(p
-1

, 0
)

T
hr

ea
d

(p
-1

, 1
)

T
hr

ea
d

(p
-1

, r
-1

)

Node 0 Node 1 Node p-1

Communication Phase

Node Barrier

(Collective)

T
im

e

Irregular Communication

using sends and receives

Figure 9: Example of a SIMPLE algorithm ow of master and compute-based user threads. Note thatthe only responsibility of each master thread is only to launch and later join user threads, but never toparticipate in computation or communication.Our model is simply implemented using a portable thread package called POSIX threads (pthreads),which is a standard (IEEE Std. 1003.1c), supplied with POSIX 1.c ([24, 27]). Note that pthreadsare also available in the \standard" Distributed Computing Environment (DCE) used in operatingsystems such as OSF [10] and AIX [15].A Possible ApproachThe latency for message passing is an order of magnitude higher than accessing local memory.Thus, the most costly operation in a SIMPLE algorithm is internode communication, and algorithmicdesign must attempt to minimize the communication costs between the nodes. Since this is a similaroptimization criterion used when designing e�cient message passing algorithms [3], it is bene�cial to�rst design an e�cient message passing algorithm on a COSMOS , and then adapt the algorithm forthe SIMPLE paradigm.Given an e�cient message passing algorithm, an incremental process can be used to design ane�cient SIMPLE algorithm. The computational work assigned to each node is mapped into ane�cient SMP algorithm. For example, independent operations such as those arising in functional15

parallelism (for example, independent I/O and computational tasks, or the local memory copy in theSIMPLE Alltoall primitive presented in the previous section) or loop parallelism typically can bethreaded. For functional parallelism, this means that each thread acts as a functional process for thattask, and for loop parallelism, each thread computes its portion of the computation concurrently. Notethat we may need to apply loop transformations to reduce data dependencies between the threads.Thread synchronization is a costly operation when implemented in software and, when possible, shouldbe avoided.4 Example: SIMPLE PermutationAs mentioned briey in the previous section, more complex communication algorithms can be devel-oped from the primitives described in Section 2. For example, the SIMPLE Alltoallv communicationprimitive handles the case where the messages for each destination are already collected into a con-tiguous block of an array holding all of the messages, and the messages to be received from the othernodes likewise will appear in contiguous blocks in another array. Suppose instead that each nodecontains a set of messages, each message holding a destination tag, such that no node sends or re-ceives more than h messages [28]. The resulting h-relation personalized communication [5] is a usefulcommunication routine used in a variety of parallel algorithms. Each node determines the number ofits keys to be sent to every other node, announces these counts to the destination nodes, rearrangesthe input elements into a single send bu�er such that all keys for the destination node j are in con-tiguous memory and appear before the keys for node j+1, routes the all-to-all communication event,and �nally, unpacks each received element into the correct destination position. A description of thealgorithm is as follows.� Step (1): For each node i, count the number of keys labeled with destination node j, for(0 � j � p� 1). On each node, each of r threads{ A) histograms 1r of the input concurrently, and{ B) merges these r histograms into a single array (sendCount) for the node.� Step (2): Using sendCount and the arrays generated in Step (1A), rearrange the inputelements into a single send bu�er such that all keys with destination node j are in contiguousmemory and appear before keys with destination j + 1. On each node, each of r threads place1r of the elements concurrently.� Step (3): Apply the SIMPLE Alltoall primitive to the sendCount array using the block size1. Hence, at the end of this step, each node will know the number of keys it will receive fromevery other node (recvCount). 16

� Step (4): Route the all-to-all communication event (with the SIMPLE Alltoallv communica-tion primitive) using the send, sendCount, and recvCount arrays.� Step (5): Each node unpacks its received elements and places each in the correct array position.Since this is a permutation routing, no collisions will occur in the �nal array, and r threads caneach unpack 1r of the array concurrently into shared memory.This algorithm relies on e�cient implementations of the Alltoall and Alltoallv primitives andassumes that the number of messages exchanged between each pair of nodes is fairly balanced. How-ever, if signi�cant imbalance exists, an alternative algorithm might replace the one-phase data routingin Step (4) with a two-phase routing approach using balanced Alltoall primitives in each phase(see [5]). Similarly, other complex communication algorithms can be developed using the SIMPLEmethodology. The above permutation algorithm minimizes the number of communication steps, whichis optimal on our COSMOS testbed where communication is expensive compared with local compu-tation. Next, we show an example of an algorithm for sorting which makes use of a special case of theh-relation personalized communication, where the number of messages to be sent and received are thesame.5 RadixsortConsider the problem of sorting n integers spread evenly across a cluster of p shared-memory r-waySMP nodes, where n � p2. Fast integer sorting is crucial for solving problems in many domains, and assuch, is used as a kernel in several parallel benchmarks such as NAS3 [6] and SPLASH [29]. We presentan e�cient sorting algorithm based on our SIMPLE methodology. We chose the technique of radixsort since it is well known for sequential programming, but e�cient methods for solving this problemon clusters of SMPs are not. The SIMPLE approach for radix sort is similar to our e�cient messagepassing algorithm [5], except when applicable, shared memory computation replaces sequential nodework, and communication uses the improved SIMPLE communication library.Consider the problem of sorting n integer keys in the range [0;M � 1] that are distributed equallyin the shared memories of a p-node cluster of r-way SMPs. Radix sort decomposes each key intogroups of �-bit digits, for a suitably chosen �, and sorts the keys by applying a counting sort routineon each of the �-bit digits beginning with the digit containing the least signi�cant bit positions [18].Let R = 2� � p. Assume (w.l.o.g.) that the number of nodes is a power of two, say p = 2k, and henceRp is an integer = 2��k � 1.3Note that the NAS IS benchmark requires that the integers be ranked and not necessarily placed in sorted order.17

5.1 SIMPLE Counting Sort AlgorithmCounting Sort algorithm sorts n integers in the range [0; R� 1] by using R counters to accumulatethe number of keys equal to the value i in bucket Bi, for 0 � i � R� 1, followed by determining therank of each key. Once the rank of each key is known, we can move each key into its correct positionusing a permutation (np -relation) routing [4, 5], whereby no node is the source or destination of morethan np keys. Counting Sort is a stable sorting routine, that is, if two keys are identical, their relativeorder in the �nal sort remains the same as their initial order.We present an overview of the original message passing Counting Sort algorithm and follow thiswith the adaptations to the algorithm using our SIMPLE methodology. In a practical integer sortingproblem, we expect R � nr2p . The pseudocode for our Counting Sort algorithm uses six major stepsand can be described as follows.� Step (1): For each node i, (0 � i � p� 1), count the frequency of its np keys; that is, computeHi[k], the number of keys equal to k, for (0 � k � R� 1).� Step (2): Apply the Alltoall primitive to the H arrays using the block size Rp . Hence, at theend of this step, each node will hold Rp consecutive rows of H .� Step (3): Each node locally computes the pre�x-sums of its rows of the array H .� Step (4): Apply the (inverse) Alltoall primitive to the R corresponding pre�x-sums aug-mented by the total count for each bin. The block size of the Alltoall primitive is 2Rp .� Step (5): On each node, compute the ranks of the np local elements using the arrays generatedin Steps (1) and (4).� Step (6): Perform a personalized communication of keys to rank location using an np -relationalgorithm.We can adapt this message passing algorithm to our SIMPLE methodology with the followingchanges. In Step (1), the computation can be divided evenly among the threads. Thus, on each node,each of r threads A) histograms 1r of the input concurrently, and B) merges these r histograms intoa single array for node i. For the pre�x-sum calculations on each node in Step (3), since the rowsare independent, each of r threads can compute the pre�x-sum calculations for Rrp rows concurrently.Also, the computation of ranks on each node in Step (5) can be handled by r threads, where eachthread calculates nrp ranks of the node's local elements. Communication can also be improved byreplacing the message passing Alltoall primitive used in Steps (2) and (4) with the appropriateSIMPLE primitive.The h-relation used in the �nal step of Counting Sort is a permutation routing since h = np , andwas given in the previous section. 18

5.2 SIMPLE Radix Sort AlgorithmThe message passing Radix Sort algorithm makes several passes of the previous message passingCounting Sort in order to completely sort integer keys. Counting Sort can be used as the intermediatesorting routine because it provides a stable sort. Let the n integer keys fall in the range [0;M � 1],and M = 2b. Then we need b� passes of Counting Sort; each pass works on �-bit digits of the inputkeys, starting from the least signi�cant digit of � bits to the most signi�cant digit. Radix Sort easilycan be adapted for clusters of SMPs by using the SIMPLE Counting Sort routine.5.3 PerformanceWe now provide empirical performance results for the Radix Sort algorithm on various platforms. We�rst graph the performance of the SIMPLE Radix Sort on a cluster of SMPs and show that indeed,our implementation is e�cient. Next, we show results of a good MPI Radix Sort on an IBM SP-2,and compare this code with that of a shared memory sort on a single SMP node. Finally, we comparethe SIMPLE Radix Sort with that of DSM and MPI Radix Sorts on a cluster of SMPs.

Figure 10: Execution Time of SIMPLE Radix Sort with r = 4 and p = 1; 2; 4; and 8 nodes.The performance of the SIMPLE Radix Sort algorithm on a COSMOS of DEC AlphaServernodes is given in Figure 10. In this experiment, we use four user threads per node, and vary both theproblem size and the number of nodes used. Here, the SIMPLE code shows linear speedups whenusing multiple nodes of a COSMOS platform. 19

DEC AlphaServer 2100 4/275 IBM SP-2-TNFigure 11: Percentage of execution time of radix sort spent in the Alltoallv communication primitive usedin Step (4) of the permutation routing on clusters of DEC and IBM nodes.In Figure 11 we have plotted the percentage of the running time of radix sort spent performing theAlltoallv communication primitive used in Step (4) of the permutation algorithm for various IBMand DEC cluster sizes. After each key is ranked during the Counting Sort, this step sends each keyto its destination. For moderately sized inputs on the DEC cluster, roughly a third of the executiontime is spent in this communication step, and for larger problems, more than half the time is spentin this step. In comparison, for most inputs, the IBM SP-2-TN spends less than 30 percent of itsexecution time for in the corresponding step. These performance graphs indicate that radix sort islargely communication bound on the DEC Cluster, while computation bound on the IBM SP-2-TN.These results are expected, as the IBM SP-2 has a faster network but less processing power on eachnode than the DEC cluster.As we claim in the introduction, software distributed shared memory and message passing algo-rithms are not optimal for COSMOS platforms. For instance, we ported an e�cient SMP radixsort code into a software distributed shared memory package called Coherent Virtual Machine (CVM,version 0.1) [17] which is an extension of the commercial TreadMarks [2] DSM implementation. Theperformance of this DSM radix sort is given in Figure 14. In addition, we took an e�cient messagepassing code for radix sort (the reader is referred to [5] for a complete analysis of the algorithm andits performance) whose performance on an IBM SP-2 is shown in Figure 12. The IBM SP-2 containsuniprocessor nodes interconnected by a fast switch. On this platform, the message passing algorithm20

Figure 12: Performance of MPI Radix Sort on an IBM SP-2-TN with p = 1; 2; 4; 8; and 16 thin nodes.performs very well. That is, for a �xed machine size, when the problem size is halved, the performanceroughly is cut in half as well. In addition, for a �xed problem size, when twice as many processors areused to solve a given sorting problem, as expected the time is again halved.An analysis of the di�erence in raw performance between the IBM SP-2 and the DEC cluster showsthe following. When computation dominates, the DEC platform is faster in raw execution time,however, as communication increases, the imbalance of communication bandwidth to computationspeed on the DEC cluster becomes more pronounced, and the IBM SP-2 is the faster platform. Forexample, consider the problem of sorting one million keys. A single node of the DEC AlphaServercluster sorts these keys in approximately 2.3 seconds, whereas one node of an IBM SP-2-TN requiresmore than four seconds. However, when p = 8 nodes, both the DEC cluster and the SP-2 requireroughly a half a second, even though the DEC cluster is using four times as many processors.In Figure 13 we plot the execution of the MPI radix sort code on a single DEC AlphaServer 21004/275 (4-way SMP) node using one, two, and four threads of execution. For large inputs, notice thatthe performance improves slightly when more threads are used, but still there is no great di�erencewhen using multiple threads on a single node. In this same �gure, following the SIMPLE methodology,we plot the performance of a shared memory radix sort of the same input on this 4-way SMP node. Inaddition to being almost an order of magnitude faster, unlike the message passing code, the SIMPLEalgorithm shows signi�cant speedups when using multiple threads.21

Figure 13: Comparison of MPI (MPICH) and SIMPLE Radix Sort with r = 1; 2; and 4 with p = 1 node.

Four Nodes Eight NodesFigure 14: Comparison of DSM, MPI, and SIMPLE Radix Sort on a cluster of DEC AlphaServer 21004/275 nodes. Note that we tested the DSM/CVM radix sort implementation using one to four processes pernode, and the MPI/MPICH implementation using both one and four MPI tasks per node. The SIMPLEimplementation uses r = 4 threads per node, and p = 4 and p = 8 nodes on the left and right, respectively.22

Figure 14 provides a summary of the performance of the SIMPLE methodology with DSM/CVMor MPI/MPICH on our testbed. In this experiment, we compare the performance of a SIMPLE radixsort code using both four and eight 4-way SMP nodes with that of both DSM/CVM and MPI/MPICHcode for various cases, such as using one or multiple threads of execution per node. In all situationson the cluster of SMPs testbed, the SIMPLE algorithm substantially outperforms that of both thedistributed shared memory and the message passing implementations.6 Two-Dimensional Fast Fourier TransformFourier transforms are at the heart of many computations in medical image analysis, computationaluid dynamics, speech recognition, seismic analysis, image and signal processing, and detecting surfacedefects in manufacturing. The straightforward and well-known FFT takes a one-dimensional signaland transforms it into a one-dimensional vector of frequency components. However, when the inputis a two-dimensional digital image, a corresponding two-dimensional FFT (2D-FFT) can be usedsimilarly to transform the image into its two-dimensional frequency image. A 2D-FFT computationcan be reduced to 1D-FFT's by �rst performing 1D-FFT's across the rows, followed by 1D-FFT'sdown the columns, similar to the FFT algorithms in [7, 8] which performs an all-to-all transpose ofthe data between two phases of local computation. In fact, a k-dimensional transform can be formedby performing k (k � 1)-dimensional FFTs along each axis.In Figure 15, we illustrate the major steps of the two-dimensional FFT algorithm. Assume thatan n � n image is originally partitioned in strips among the p nodes such that each node originallyholds np rows of the image.� Step (1): Each node performs np n-point 1-D FFTs across the rows of its local image strip.� Step (2): Locally rearrange the image such that each np � np block of the image is transposed.Thus, for each block, each column of data is gathered into contiguous memory in preparationfor the following step.� Step (3): Apply the Alltoall primitive to transpose the blocks.� Step (4): Locally rearrange the data such that each node holds np columns of the image incontiguous memory.� Step (5): Each node performs np n-point 1-D FFTs down the columns4 of its local image strip.Note that the 2-D FFT algorithm above is valid for both the message passing and SIMPLEparadigms. The SIMPLE optimization assigns nrp rows and columns in Steps (1) and (5), respec-tively, to each thread, and substitutes the SIMPLE Alltoall primitive in Step (3). (Note that the4In fact, the image strip is transposed, so the 1-D FFTs are performed physically across rows of memory.23

local rearrangements in Steps (2) and (4) similarly can be optimized for shared memory threads oneach node.)

Figure 15: The Two-dimensional FFT Algorithm with blocks of rows initially distributed across the nodes:(top left) performs local one-dimensional FFTs across the rows, (top right) locally rearranges data, (bottomleft) transposes the image such that each node holds a block of columns, and (bottom right) performs localone-dimensional FFTs across the columns.We begin with an e�cient message passing algorithm for the FFT. The one-dimensional FFTused in the �rst and last steps is a benchmark kernel from netlib [21]. As shown in Figure 16, themessage passing implementation performs very well on the IBM SP-2. When we �x a problem sizeand double the number of processors, the execution time scales appropriately. Also, when the imagesize is increased four-fold (say, from 512�512 to 1024�1024 pixels), on a given number of processors,again as expected, the execution time follows the predicted complexity of the FFT algorithm.24

Figure 16: MPI Code for Two-dimensional FFT on an IBM SP-2-TNWithout any modi�cations, we ran the message passing code on both a cluster of DEC AlphaServer2100 4/275 nodes (with only one task per node) and using message passing solely on a single node (seethe left and right plates of Figure 17, respectively). For a �xed image size, the performance does notscale well with four more more nodes. In addition, the code running on one, two, and four, processorsof a single node shows very little gain by using more than a single CPU per node. Compare theseresults with the SIMPLE execution times presented in Figure 18 for a variety of con�gurations (fromone to eight nodes and from one to four CPUs per node) and image sizes (128� 128 to 1024� 1024pixels). For instance, on a 1024 � 1024 pixel image, using just a single node and four tasks, themessage passing implementation takes approximately 3.3 seconds, while the SIMPLE approach isabout a second faster, or equivalently, two-thirds the execution time. We see an improvement forusing multiple CPUs on a node, even at our largest available machine con�guration of eight nodes.
25

cluster nodeFigure 17: MPI Code for Two-Dimensional FFT. On the left, we show the performance on a cluster ofDEC AlphaServer nodes. On the right, multiple processors on a single DEC AlphaServer 2100 4/275 areused.
26

Figure 18: Two-dimensional FFT on a cluster of DEC AlphaServer 2100 nodes using the SIMPLE method-ology 27

7 Constrained Search Algorithm: The n-Queens Prob-lemA classic puzzle used in benchmarking and performance analysis is the n-queens problem. Here,the objective is to place n queens on an n � n chessboard such that none of the queens can attackeach other. For those readers unfamiliar with the game of chess, this restricts the placement of thequeens such that no two queens share the same rank (or row), column, or diagonal. Since there aren2Cn = n2!n!(n2�n)! ways to place n queens on an n�n board, a brute force algorithm which checks eachof these candidate solutions is infeasible. If we limit the search space to include just those candidateswhich have exactly one queen per rank, then we reduce the search space to nn possible candidates,which is still too large. Therefore, the most desirable search method aggressively eliminates sets ofcandidate solutions which do not satisfy the constraints.Our algorithm uses a tree-based backtracking approach where queens are placed one by one oneach rank until all n queens are placed. If a constraint is not met, or a solution is found, the lastqueen placed on the board is removed and re-placed in the next column position. This is equivalentto a depth-�rst search with pruning of branches where the constraints are not met. Note that we arenot taking into consideration the special topological properties and symmetries of the chessboard, forexample, rotating known solutions by 90�, 180�, and 270�, to discover similar solutions, or reectingsolutions about the horizontal, vertical, or diagonal axes.
0 1 2 n-1

0 n 2n (n-1)n

0 n 2n

0 n 2n

rank 0

rank n-1

rank 2

rank 1

C
olum

n 2

C
olum

n n-1

C
olum

n 0

C
olum

n 1

2 2(n-1)n

n-1 n-1 n-1
(n-1)n

2

Figure 19: Encoding of the chessboardA parallel n-queens constraint-satisfaction search algorithm with p processors uses distributedsearch tree approach as follows. First, the algorithm enumerates a set of independent search-tree seed28

Search Space

k = n

k = 2

k = 1

Figure 20: Search Tree for a constrained search, e.g. the nqueens problem.nodes and partitions these to the processors. Suppose we generate all possible queen placements onthe �rst k ranks of an n� n chessboard. There will be nk of these placements, uniquely encoded intothe integers from 0 to nk � 1 by summing a term from each queen placed on rank i, (0 � i < k),and column j, (0 � j < n), equal to jni. For clarity, Figure 19 shows the value of each positionon the chessboard. Note that this is equivalent to converting to decimal a base n number with digiti, (0 � i < k), representing the column position of queen i. These nk partial placements can thenbe partitioned evenly among the processors and 1) checked for validity, and 2) used as a root nodefor a sequential depth-�rst search of the remaining n � k queen positions from that starting point.Figure 20 contains an example of this search tree for k = 2. The algorithm which decodes the arrayof k column positions from a partial solution �, with (0 � � < nk), is as follows.� For i = 0 to k � 1 docolumni = j�modni+1ni k ;We have looked at three approaches, and in each, running time is directly proportional to themaximum of the number of solutions found on each of the threads. The �rst uses a block partitioning ofthe nk search nodes to the p processors (using the all pardo block() SIMPLE computation primitive),such that processor i searches nodes nkp i through nkp (i+1)�1, inclusive. The second approach cycliclyassigns the nk integers to p processors (using the all pardo cyclic() SIMPLE computation primitive).29

Thread Block Partitioning Cyclic Partitioning Random Partitioningk = 1 k = 2 k = 3 k = 4 k = 1 k = 2 k = 3 k = 4 k = 1 k = 2 k = 3 k = 40 69516 98156 118964 149691 69516 0 178944 191446 69516 106100 140601 1350961 98156 114216 135201 144279 98156 0 156055 161157 98156 114545 137452 1392662 122763 145221 136293 143107 122763 183946 135110 149503 206294 126311 143181 1434733 157034 156914 143439 137485 157034 186905 132685 126341 98156 214920 144096 1410314 175296 173634 146298 140338 175296 174349 120073 145543 218738 164550 136209 1431135 201164 173914 148253 138769 201164 180358 130586 118268 69516 149524 136999 1390126 206294 185820 143268 133407 206294 161023 123294 142711 157034 194000 162541 1452407 218738 183434 167876 152516 218738 171347 130816 127433 175296 156660 147198 1544688 206294 185820 167876 152516 206294 163328 123294 145826 206294 136476 140263 1449149 201164 173914 143268 133407 201164 171347 130586 127433 175296 159105 146169 13955510 175296 173634 148253 138769 175296 161023 120073 142711 201164 131564 147724 15063711 157034 156914 146298 140338 157034 180358 132685 118268 122763 107366 147410 13542412 122763 145221 143439 137485 122763 174349 135110 145543 157034 138129 136104 13832313 98156 114216 136293 143107 98156 186905 156055 126341 201164 113832 142321 13953014 69516 98156 135201 144279 69516 183946 178944 149503 122763 133500 143905 14378415 0 0 118964 149691 0 0 194874 161157 0 132602 127011 146318Time 16.9 15.5 16.1 17.4 16.9 18.6 17.2 19.5 17.1 18.2 15.5 15.5Minimum 0 0 118964 133407 0 0 120073 118268 0 106100 127011 135096Maximum 218738 185820 167876 152516 218738 186905 194874 191446 218738 214920 162541 154468Mean 142449 142449 142449 142449 142449 142449 142449 142449 142449 142449 142449 142449s.d. 60766 47177 129365 5937 60766 68910 22684 18320 60766 29248 7409 5030Table IV: Number of solutions found by each thread (p = 4, r = 4) with n = 15. The total number ofsolutions is 2; 279; 184. Execution time is directly proportional to the maximum of the number of solutionsfound on each of the threads.Thread Block Partitioning Cyclic Partitioning Random Partitioningk = 1 k = 2 k = 3 k = 4 k = 1 k = 2 k = 3 k = 4 k = 1 k = 2 k = 3 k = 40 69516 48064 48367 64565 69516 0 86650 92328 69516 30660 60804 635331 98156 50092 70668 85126 98156 0 82838 83235 98156 75440 78318 715632 122763 65617 42749 51616 122763 92491 61969 78043 0 54679 72288 719523 157034 51709 92705 92663 157034 96691 69895 65095 0 59866 66643 675374 175296 94422 34981 45751 175296 87165 59263 87157 206294 55658 86526 729185 201164 57701 104058 97394 201164 92174 64779 59152 98156 92309 56655 703326 206294 108539 43044 59387 206294 80770 64782 86489 0 99647 69981 714457 218738 62155 104974 78264 218738 86558 62832 64557 0 93617 74115 695868 206294 121031 68014 80932 206294 81664 64782 72913 218738 71139 66679 685209 201164 70033 78725 59660 201164 84789 64779 62876 69516 93411 68194 7459310 175296 115750 76729 77287 175296 80253 59263 56222 0 76422 66288 6705111 157034 84305 67782 61761 157034 88184 69895 59116 0 73102 72047 7196112 122763 110912 82248 75105 122763 87184 61969 58386 157034 97628 86697 7646313 98156 99262 64747 57565 98156 90214 82838 61246 175296 96372 75844 6877714 69516 91717 87375 84361 69516 91455 86650 71460 0 60505 71980 8047315 0 118457 72426 68155 0 0 97437 77922 0 96155 75218 7399516 0 74368 81102 69324 0 0 92294 99118 206294 87107 66234 7348417 0 125687 96401 84266 0 0 73217 77922 175296 49369 74029 7143018 0 57608 58643 58214 0 91455 73141 71460 0 94060 67937 7349119 0 133456 90875 75735 0 90214 62790 61246 0 65045 78232 6606420 0 48125 63805 60803 0 87184 60810 58386 201164 53108 69590 7462421 0 122569 77657 77572 0 88184 65807 59116 122763 78456 78134 7601322 0 43567 72994 57980 0 80253 58512 56222 0 63597 74931 6907923 0 108556 77330 82511 0 84789 67984 62876 0 43769 72479 6634524 0 38927 84213 76685 0 81664 58512 72913 157034 48804 76942 7576425 0 78399 57598 60312 0 86558 65807 64557 201164 89325 59162 6255926 0 39281 104906 97457 0 80770 60810 86489 0 70117 64149 6938027 0 58875 31883 45055 0 92174 62790 59152 0 43715 79542 7015028 0 0 94351 93558 0 87165 73141 87157 122763 50358 76532 7333129 0 0 34744 50429 0 96691 73217 65095 0 83142 67298 7045330 0 0 76056 86123 0 92491 92294 78043 0 57216 68441 7291031 0 0 37034 63568 0 0 97437 83235 0 75386 57275 73408Time 16.9 10.0 9.49 9.63 16.9 9.32 8.64 10.7 17.1 9.39 8.59 8.05Minimum 0 0 31883 45055 0 0 58512 56222 0 30660 56655 62559Maximum 218738 133456 104974 97457 218738 96691 97437 99118 218738 99647 86697 80473Mean 71224.5 71224.5 71224.5 71224.5 71224.5 71224.5 71224.5 71224.5 71224.5 71224.5 71224.5 71224.5s.d. 83182 38795 21037 14675 83182 34483 11822 11913 83182 18967 7227 3774Table V: Number of solutions found by each thread (p = 8, r = 4) with n = 15. The total number ofsolutions is 2; 279; 184. Execution time is directly proportional to the maximum of the number of solutionsfound on each of the threads.
30

Thread Block Partitioning Cyclic Partitioning Random Partitioningk = 1 k = 2 k = 3 k = 4 k = 1 k = 2 k = 3 k = 4 k = 1 k = 2 k = 3 k = 40 1005759 569531 736363 892999 436228 436228 436228 436228 436228 593592 757035 8599871 1629362 705788 840988 936350 569531 569531 569531 569531 436228 826866 806923 8908212 2211042 876866 904770 947433 736363 736363 736363 736363 569531 728812 915866 8986353 2540093 1006695 948304 906130 892999 892999 892999 892999 569531 850266 922600 9220464 2540093 1124437 977349 925816 1050762 1050762 1050762 1050762 736363 885655 969374 8867835 2211042 1201779 986811 935033 1160280 1160280 1160280 1160280 736363 894789 903152 9047866 1629362 1263315 1002574 919284 1249262 1249262 1249262 1249262 892999 972658 908905 9062187 1005759 1275690 1010651 923211 1290831 1290831 1290831 1290831 892999 861916 933833 9303628 0 1263315 1010843 923211 1290831 1290831 1290831 1290831 1050762 787536 976046 9494149 0 1201779 1003088 919284 1249262 1249262 1249262 1249262 1050762 833993 957054 92857710 0 1124437 986725 935033 1160280 1160280 1160280 1160280 1160280 963988 943920 89857211 0 1006695 975143 925816 1050762 1050762 1050762 1050762 1160280 1011439 957437 94612612 0 876866 946296 906130 892999 892999 892999 892999 1249262 1063841 967246 93356413 0 705788 895153 947433 736363 736363 736363 736363 1249262 1133237 929616 96732814 0 569531 836553 936350 569531 569531 569531 569531 1290831 1177960 927971 98131415 0 0 710901 892999 436228 436228 436228 436228 1290831 1185964 995534 967979Time 224 111 108 122 112 112 112 112 114 118 107 107Minimum 0 0 710901 892999 436228 436228 436228 436228 436228 593592 757035 859987Maximum 2540093 1275690 1010843 947433 1290831 1290831 1290831 1290831 1290831 1185964 995534 981314Mean 923282 923282 923282 923282 923282 923282 923282 923282 923282 923282 923282 923282s.d. 1011654 336066 92958 16301 298327 298327 298327 298327 298327 158726 59589 32538Table VI: Number of solutions found by each thread (p = 4, r = 4) with n = 16. The total number ofsolutions is 14; 772; 512. Execution time is directly proportional to the maximum of the number of solutionsfound on each of the threads.Thread Block Partitioning Cyclic Partitioning Random Partitioningk = 1 k = 2 k = 3 k = 4 k = 1 k = 2 k = 3 k = 4 k = 1 k = 2 k = 3 k = 40 436228 303358 323941 402890 436228 217768 217768 217768 436228 552009 500912 4194891 569531 266173 412422 490109 569531 277797 277797 277797 736363 581228 494622 4404982 736363 496440 349598 389175 736363 376922 376922 376922 0 676677 480094 4434523 892999 209348 491891 547175 892999 419521 419521 419521 0 509287 435772 4785944 1050762 713628 370444 383931 1050762 557733 557733 557733 1290831 272181 445361 4756425 1160280 247671 535567 563502 1160280 531864 531864 531864 569531 613474 498559 4111416 1249262 768939 394648 363676 1249262 678243 678243 678243 0 434395 429612 4921347 1290831 381293 561055 542454 1290831 584709 584709 584709 0 529593 500004 4758458 1290831 708831 392371 379652 1290831 706122 706122 706122 569531 412643 426575 4775369 1249262 563088 595454 546164 1249262 571019 571019 571019 436228 414223 496025 46859010 1160280 633290 398378 375148 1160280 628416 628416 628416 0 267860 441639 45607711 1050762 694077 594582 559885 1050762 493029 493029 493029 0 325732 534407 43474412 892999 640607 408346 360188 892999 473478 473478 473478 892999 295767 463286 44183713 736363 657162 596332 559096 736363 359441 359441 359441 1290831 491769 494151 46294914 569531 740196 412638 426046 569531 291734 291734 291734 0 532633 455468 46277315 436228 495278 595000 497165 436228 218460 218460 218460 0 478806 453437 46758916 0 768037 502178 497165 0 218460 218460 218460 1249262 506323 454545 46382717 0 450243 501376 426046 0 291734 291734 291734 1160280 466335 352378 46475018 0 751536 590947 562698 0 359441 359441 359441 0 427939 464503 49111219 0 455587 409638 356586 0 473478 473478 473478 0 300873 502743 45830220 0 668850 672143 568540 0 493029 493029 493029 1160280 388994 427591 50167621 0 508096 321274 366493 0 628416 628416 628416 1050762 461272 541783 46565222 0 529472 718747 554693 0 571019 571019 571019 0 436813 476970 49001023 0 531973 267438 371123 0 706122 706122 706122 0 457976 480084 44355424 0 348402 685339 551356 0 584709 584709 584709 736363 437003 365216 45721825 0 531095 268064 354774 0 678243 678243 678243 1249262 424913 391819 44135426 0 202094 623428 572286 0 531864 531864 531864 0 541040 476390 47818827 0 465160 275840 375147 0 557733 557733 557733 0 522801 451581 42803028 0 42588 566593 554186 0 419521 419521 419521 892999 753166 527933 48824929 0 0 256061 382164 0 376922 376922 376922 1050762 424794 375219 49306530 0 0 485257 496786 0 277797 277797 277797 0 349677 448865 44031131 0 0 195522 396213 0 217768 217768 217768 0 484316 484968 458324Time 112 76.4 65.6 68.5 112 59.5 59.5 59.5 114 65.0 55.5 54.2Minimum 0 0 195522 354774 0 217768 217768 217768 0 267860 352378 411141Maximum 1290831 768939 718747 572286 1290831 706122 706122 706122 1290831 753166 541783 501676Mean 461641 461641 461641 461641 461641 461641 461641 461641 461641 461641 461641 461641s.d. 507555 235508 138282 83552 507555 153618 153618 153618 507555 108400 45395 22253Table VII: Number of solutions found by each thread (p = 8, r = 4) with n = 16. The total numberof solutions is 14; 772; 512. Execution time is directly proportional to the maximum of the number ofsolutions found on each of the threads.
31

Both the block and cyclic partitioning schemes can be performed implicitly without the need for anyexplicit inter-processor communication. The third method, however, will require communication, butbecause it more evenly distributes the computational load (see the standard deviation of the numberof solutions found by each thread in Tables IV{VII), we �nd that it is superior in performance to the�rst two methods. Algorithm n CPUs Time (s)p rNetlib 14 1 36.336SIMPLE 14 1 1 38.8SIMPLE 14 1 4 10.0SIMPLE 14 4 4 2.73SIMPLE 14 8 4 1.32Netlib 15 1 237.080SIMPLE 15 1 1 255.SIMPLE 15 1 4 66.4SIMPLE 15 4 4 15.5SIMPLE 15 8 4 8.05Netlib 16 1 1646.131SIMPLE 16 1 1 1785.SIMPLE 16 1 4 455.SIMPLE 16 4 4 107SIMPLE 16 8 4 54.2Table VIII: n-Queens Performance Summary.The third approach randomizes the integers from 0 to nk � 1, and assigns 1pth of these to eachprocessor. The overhead for randomization and communication is minimal compared with the fastercompletion time due to improved load balance. See Tables IV and V for a comparison of these threealgorithms when n = 15, on p = 4 and p = 8 nodes, each an r = 4-way SMP, varying k from 1to 4. Similar results for n = 16 are given in Tables VI and VII. Because of the special topologyinherent in this search problem, the block and cyclic partitioning schemes are inferior to a randomizedapproach. Table VIII gives the performance of our SIMPLE algorithm compared to the standardnetlib \queens" benchmark results for n = 14; 15; and 16. Because our algorithm is generalized forCOSMOS , it takes slightly longer to compute on a single processor, but scales linearly with the totalnumber of processor used.8 Experimental PlatformOur experimental platform consists of a cluster of DEC AlphaServer 2100 4/275 nodes each with aDEC (OC-3c) 155.52 Mbps PCI card connected to a DEC Gigaswitch/ATM switch, and using the32

MPI (e.g., LAM 6.1, MPICH 1.0.13, or CHIMP 2.1.1c) and pthreads (DECthreads) packages. EachDEC AlphaServer 2100 4/275 node is a symmetric multiprocessor with four 64-bit, dual-issue, DEC21064A (EV4) Alpha RISC processors clocked at 275 MHz. Each Alpha chip has two separate dataand instruction on-chip caches. Both on-chip caches are 16 KB, but the instruction cache is directmapped, while the data cache is two-way set-associative. In addition, each CPU has a 4 MB backup(L2) cache. [14] All CPUs communicate via a 128-bit system bus which connects the four CPUmodules to a shared memory up to 2 GB in size.9 Future WorkThe future research directions of the SIMPLE project can be categorized into two areas: methodologyand algorithmics. In methodology, we plan an extension of the SIMPLE kernel to handle morecommunication events. Also, in a cluster of SMPs, it is not always the case that nodes are homogeneousin size, memory, speed, load, or even architecture. We are currently researching load sharing insideSIMPLE algorithms such that a problem initially is distributed across the cluster such that eachnode no longer has 1pth of the input but a portion of the input directly proportional to each node'scurrent ability to solve the task. In addition, tasks may migrate across nodes during runtime to reectchanging conditions in the cluster, or to redistribute work when the current pool of nodes shrinksor grows. For the second area, algorithmics, we are examining various experimental data sets forbenchmarking algorithms on clusters of SMPs, and are implementing high performance applicationcodes using the SIMPLE methodology.10 Release NotesPlease see http://www.umiacs.umd.edu/research/EXPAR for additional performance information. Inaddition, all the code used in this paper is freely available for interested parties from our anonymousftp site, ftp://ftp.umiacs.umd.edu/pub/EXPAR.References[1] R. Alasdair, A. Bruce, J.G. Mills, and A.G. Smith. CHIMP/MPI User Guide. Edin-burgh Parallel Computing Centre, The University of Edinburgh, 1.2 edition, June 1994.http://www.epcc.ed.ac.uk/epcc-projects/CHIMP/.[2] C. Amza, A.L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, W. Yu, and W. Zwaenepoel.TreadMarks: Shared Memory Computing on Networks of Workstations. IEEE Computer,29(2):18{28, 1996. 33

[3] D.A. Bader. On the Design and Analysis of Practical Parallel Algorithms for CombinatorialProblems with Applications to Image Processing. PhD thesis, University of Maryland, CollegePark, Department of Electrical Engineering, April 1996.[4] D.A. Bader, D.R. Helman, and J. J�aJ�a. Practical Parallel Algorithms for Personalized Commu-nication and Integer Sorting. CS-TR-3548 and UMIACS-TR-95-101 Technical Report, UMIACSand Electrical Engineering, University of Maryland, College Park, MD, November 1995.[5] D.A. Bader, D.R. Helman, and J. J�aJ�a. Practical Parallel Algorithms for Personalized Com-munication and Integer Sorting. ACM Journal of Experimental Algorithmics, 1(3):1{42, 1996.http://www.jea.acm.org/1996/BaderPersonalized/.[6] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum, R. Fatoohi, S. Fineberg,P. Frederickson, T. Lasinski, R. Schreiber, H. Simon, V. Venkatakrishnan, and S. Weeratunga.The NAS Parallel Benchmarks. Technical Report RNR-94-007, Numerical Aerodynamic Simula-tion Facility, NASA Ames Research Center, Mo�ett Field, CA, March 1994.[7] W.P. Brown. Parallel Computation of Atmospheric Propagation. Technical report, Maui HighPerformance Computing Center and Phillips Laboratory, Kihei, Maui, HI, 1995.[8] D.E. Culler, R.M. Karp, D.A. Patterson, A. Sahay, K.E. Schauser, E. Santos, R. Subramonian,and T. von Eicken. LogP: Towards a Realistic Model of Parallel Computation. In Fourth ACMSIGPLAN Symposium on Principles and Practice of Parallel Programming, May 1993.[9] Digital Equipment Corp. Guide to DECthreads. Maynard, MA, July 1994.[10] Digital Equipment Corporation, Maynard, MA. Digital UNIX (formerly OSF/1), v3.2c edition,July 1995.[11] M. Galles and E. Williams. Performance optimizations, implementation, and ver-i�cation of the SGI Challenge multiprocessor. Technical report, Silicon Graph-ics Computer Systems, Mountain View, CA, May 1994. 10 pp. Available fromftp://ftp.sgi.com/sgi/whitepaper/challenge paper.ps.Z.[12] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A High-Performance, Portable Implementation ofthe MPI Message Passing Interface Standard. Technical report, Argonne National Laboratory,Argonne, IL, 1996. http://www.mcs.anl.gov/mpi/mpich/.[13] C. Harris. Node Selection for the IBM RS/6000 SP System. Version 2.1. IBM RS/6000 Division,November 1996.[14] F.M. Hayes. Design of the AlphaServer Multiprocessor Server Systems. Digital Technical Journal,6(3):8{19, Summer 1994.[15] IBM Corporation. AIX DCE Base Services/6000 Version 1.2, 7 edition, October 1993.34

[16] IBM Corporation. RS/6000 SP System. RS/6000 Division, 1997.[17] P. Keleher. CVM: The Coherent Virtual Machine. University of Maryland, 0.1 edition, November1996.[18] D.E. Knuth. The Art of Computer Programming: Sorting and Searching, volume 3. Addison-Wesley Publishing Company, Reading, MA, 1973.[19] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard. Technical report,University of Tennessee, Knoxville, TN, June 1995. Version 1.1.[20] F. M�uller. A Library Implementation of POSIX Threads under UNIX. In Proceed-ings of the 1993 Winter USENIX Conference, pages 29{41, San Diego, CA, January 1993.http://www.informatik.hu-berlin.de/~mueller/projects.html.[21] Netlib Repository for mathematical software, papers, and databases. University of Tennessee andOak Ridge National Laboratory. http://www.netlib.org/.[22] Ohio Supercomputer Center. LAM / MPI Parallel Computing. The Ohio State University,Columbus, OH, 1995. http://www.osc.edu/lam.html.[23] G.F. P�ster. In Search of Clusters. Prentice Hall, Englewood Cli�s, NJ, 1995.[24] Portable Applications Standards Committee of the IEEE. Information technology { PortableOperating System Interface (POSIX) { Part 1: System Application Program Interface (API),1996-07-12 edition, 1996. ISO/IEC 9945-1, ANSI/IEEE Std. 1003.1.[25] C. Provenzano. Proven Pthreads. WWW page., 1995.http://www.mit.edu/people/proven/pthreads.html.[26] W. Saphir, A. Woo, and M. Yarrow. The NAS Parallel Benchmarks 2.1 Results. Report NAS-96-010, Numerical Aerodynamic Simulation Facility, NASA Ames Research Center, Mo�ett Field,CA, August 1996.[27] Sun Microsystems, Inc. POSIX Threads. WWW page., 1995.http://www.sun.com/developer-products/sig/threads/posix.html.[28] L.G. Valiant. A Bridging Model for Parallel Computation. Communications of the ACM,33(8):103{111, 1990.[29] S.C. Woo, M. Ohara, E. Torrie, J.P. Singh, and A. Gupta. The SPLASH-2 Programs: Charac-terization and Methodological Considerations. In Proceedings of the 22nd Annual InternationalSymposium on Computer Architecture, pages 24{36, June 1995.[30] D. Yeung, J. Kubiatowicz, and A. Agarwal. MGS: A Multigrain Shared Memory System. InProceedings of the 23rd Annual International Symposium on Computer Architecture, Philadelphia,PA, May 1996. 35

