
Journal of Parallel and Distributed Computing 60, 616�638 (2000)

On Task Relocation in Two-Dimensional Meshes
Seong-Moo Yoo

Department of Computer Science, Columbus State University,
Columbus, Georgia 31907

E-mail: syoo�colstate.edu

Hyunseung Choo

School of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Korea
E-mail: choo�ece.skku.ac.kr

and

Hee Yong Youn, Chansu Yu, and Younghee Lee

School of Engineering, Information and Communications University, Taejon, Korea
E-mail: youn�icu.ac.kr; cyu�icu.ac.kr; yhlee�icu.ac.kr

Received February 2, 1998; accepted October 5, 1999

In parallel computer systems with a number of processors, external
fragmentation is caused by continuous allocation and deallocation of proces-
sors to tasks which require exclusive use of several contiguous processors.
With this condition, the system may not be able to find contiguous proces-
sors to be allocated to an incoming task even with a sufficient number of free
processors. Relocation is an approach for alleviating this problem by
reassigning the running tasks to other processors. In this paper, we examine
two relocation schemes��full relocation and partial relocation scheme��for
two-dimensional meshes. The full relocation scheme is desirable when the
system is highly fragmented, while the partial relocation scheme is used
for minimizing the number of relocated tasks. For the relocation process, we
formally define and use two basic submesh movement operations��shifting
and rotating. Comprehensive computer simulation reveals that the proposed
schemes are beneficial when the relocation overhead is not high, which is
machine dependent. � 2000 Academic Press

Key Words: external fragmentation; full and partial relocation scheme;
mesh-connected systems; task allocation and deallocation; task relocation.

1. INTRODUCTION

Among several important interconnection topologies developed for parallel and
distributed computing, two-dimensional (2D) mesh topology has become popular
due to its simplicity and efficiency [1, 2]. There exist a number of commercial and
experimental parallel computer systems built or under being development based on
2D mesh. Typical examples are Intel Paragon [3] and Intel�DARPA Touchstone

doi:10.1006�jpdc.1999.1604, available online at http:��www.idealibrary.com on

6160743-7315�00 �35.00
Copyright � 2000 by Academic Press
All rights of reproduction in any form reserved.

Delta [4]. As in general parallel computer systems [5, 6], jobs submitted to a 2D
mesh computer system are first placed in a waiting queue. Here, each job requires
a submesh of a certain width and height for a certain time period. It is assumed that
there exists a separate host processor keeping and processing job dispatcher, which
consists of job scheduler and processor allocator. The job scheduler chooses the next
job to be processed from the waiting queue according to the scheduling policy.
The processor allocator finds a free submesh for the chosen job using a processor
allocation scheme. As the size of the mesh grows, however, the efficient submesh
allocation becomes an increasingly demanding task.

Li and Cheng [7] proposed a Buddy strategy for task allocation in 2D mesh
applicable to only square meshes, where the length of one side must be power of
2. The strategy thus has the problem of overallocation (internal fragmentation)
beyond what is actually needed because most jobs do not necessarily require square
meshes. To solve this problem, Chuang and Tzeng [8] proposed the frame sliding
(FS) strategy for meshes of arbitrary lengths and widths. The strategy allocates a
free submesh which exactly matches the size of the incoming task. Hence, it
eliminates the overallocation problem, but the searching process may result in
allocation misses; i.e., it cannot recognize a free submesh for an incoming task even
when one is available. Two schemes were proposed to solve this allocation miss
problem; Zhu [9] proposed the First Fit and the Best Fit strategies, and Ding and
Bhuyan [10] proposed the Adaptive Scan (AS) strategy. AS strategy not only
solves the allocation miss problem but also increases the system utilization by
employing an approach called Address Translation. Later, to improve the waiting
delay and allocation time incurred in AS strategy, two schemes were proposed by
Sharma and Pradhan [11] and Yoo et al. [12]. Lo et al. [13] also proposed
noncontiguous allocation schemes.

Similar to the fragmentation phenomenon in a conventional memory system,
however, continuous allocation and deallocation in the mesh system result in
fragmented meshes. Then, even though a sufficient number of nodes are available,
a submesh large enough for accommodating an incoming task may not be able to
be found. This is called external fragmentation. Irrespective of the allocation

FIG. 1. An example of external fragmentation.

617TASK RELOCATION IN 2D MESHES

FIG. 2. The allocation of T=(4, 7) after relocation.

strategy employed, the external fragmentation is unavoidable. Figure 1 shows an
example of a fragmented mesh where the free 54 nodes cannot form a submesh for
accommodating a task of only 4_7. If Tasks 2 and 3 are relocated to the left side,
as shown in Fig. 2, then a submesh can be allocated to the task.

It is clear that fragmentation leads to the poor utilization of the nodes in the
mesh. Ding and Bhuyan [10] showed from their experiment that the AS strategy
still suffers from external fragmentation resulting in an approximately 300 perfor-
mance degradation, even though it can be alleviated through Address Translation.
As the fragmentation problem in the memory system is handled by memory
compaction, task relocation can alleviate the external fragmentation problem in
parallel computer systems. It relocates active tasks at one side of the structure in
order to make a sufficiently large submesh at the other side for the incoming tasks.
The task relocation approach was proposed and examined experimentally for
hypercube in [14, 15].

In this paper we propose two relocation schemes for 2D meshes��full relocation
(FR) and partial relocation (PR) scheme. The full relocation scheme relocates all
previously allocated tasks, while the partial relocation scheme relocates only the
tasks required to be moved to render a submesh for the incoming task. The perfor-
mances of the proposed schemes are evaluated by computer simulation considering
the task relocation overhead. To identify the relative effectiveness of the relocation
schemes, the proposed relocation schemes are also compared with an efficient
allocation scheme [10]. The computer simulation reveals that the proposed
schemes improve the task completion time and processor utilization up to a certain
degree of relocation overhead which is machine dependent. It was also found
that the full relocation scheme outperforms the partial relocation scheme for most
cases.

The rest of the paper is organized as follows. In Section 2, definitions and notations
are introduced which will be used throughout the paper. In Section 3, we define and
solve the submesh relocation problem in 2D mesh architecture. The proposed full and
partial relocation schemes are presented in Section 4. In Section 5, the performances

618 YOO ET AL.

of the proposed schemes are evaluated by computer simulation for various practical
operational conditions. Finally, we conclude the paper in Section 6.

2. DEFINITIONS AND NOTATION

A two-dimensional mesh, M(a, b), is an a_b rectangular grid consisting of ab
nodes, where a and b represent the width and height of the mesh, respectively. Each
node in the mesh refers to a processor and represented by the coordinate
(x, y)(1�x�a, 1�y�b). It is assumed that the column and row indices increase
from left to right and bottom to top starting from 1.

In our system, it is assumed that more than one process are allowed to arrive at
or leave a node simultaneously if they use different links. For example, in Fig. 3,
assume that a process p1 arrives at (i, j) from (i&1, j) , while another process
p2 does that from (i, j+1). If p1 moves to (i+1, j) , then p2 can move to either
(i&1, j) or (i, j&1) without a contention. If a contention occurs, the process
with the higher priority (the process with the longer relocation distance) moves
first.

Definition 1. Internal fragmentation is the ratio of the number of over-
allocated processors to that of actually required processors. External fragmentation
is the ratio of the number of available processors to the total number of processors
in the system, when allocation failure occurs even with a sufficient number of free
processors for the incoming task.

Definition 2. Let wS and hS denote the width and height of a submesh, S,
respectively. Let also ulS , urS , llS , and lrS denote the upper-left, upper-right, lower-
left, and lower-right corner of S, respectively. The address of S is a quadruple
(x, y, x$, y$), where (x, y) and (x$, y$) indicate llS and urS , respectively. Here
w=x$&x+1 and h=y$&y+1. The base of S refers to llS , while the area of a
submesh S(w, h) is the number of nodes in it, and clearly wS hS .

Definition 3. The node distance of two nodes (x, y) and (x$, y$) is defined
as |x&x$|+| y&y$|. Here |x&x$| and | y&y$| denote the horizontal and vertical
node distance, respectively.

Definition 4. Residence time of a task is the time between starting execution
and completion. The relocation overhead factor, :, is the ratio of the time required
for a process to be relocated from a node to a physically adjacent node to the

FIG. 3. Routing model.

619TASK RELOCATION IN 2D MESHES

residence time of the process. In other words, the time for moving a process one
position is obtained by multiplying : and the residence time. : is a function of
several factors dependent on the actual implementation, and thus it is given as an
input parameter.

For example, the peak unidirectional network bandwidth of Paragon [16] is 200
MB�s, which means that the time required for a process with 200 bytes of data to
be relocated is 1 +s. If the residence time of the process is 100 +s, then : is 0.01.

Definition 5. For the two same size submeshes, SS (xs , ys , xs , ys) and SD

(xd , yd , xd , yd) , the corresponding corner of ulSS , urSS , llSS , and lrSS is ulSD , urSD ,
llSD , and lrSD , respectively. The shortest matching corner is the corner for which the
node distance between the two corresponding corners is minimal among the four
corners. If wSS=wSD and hSS = hSD , then the four distances will be all the same.
In this case, ll is assumed to be the shortest matching corner.

For example, for SS and SD in Fig. 4, ll is the shortest matching corner since the
distances of corresponding corners are 6, 7, 5, and 6, respectively.

Definition 6. Assume two same size submeshes SS and SD at different loca-
tions. Shifting SS to SD is defined as the continuous movement of SS horizontally
(vertically) first and then vertically (horizontally) so that the shortest matching
corner of SS overlaps with that of SD . Assume the new shifted submesh is SID

(xid , yid , xid , yid). If the orientations of SS and SD are same, SID is same as SD and
the relocation is finished. Otherwise, rotating SID to SD is required to complete the
relocation.

For example, in Fig. 4, during shifting, each process in SS is moved to SID in
parallel which takes 5 time units (2 for horizontal and 3 for vertical movements).
Now each node in SID should be mapped to the corresponding node in SD , whose
procedure is defined as rotating.

Definition 7. Assume that a task was relocated from SS to SD . The relocation
distance between SS and SD , RD (SS , SD), is the maximum routing time between
all pairs of two corresponding nodes of SS and SD .

We next discuss two main submesh movement operations in 2D mesh structure
which are required in our task relocation scheme.

FIG. 4. The shortest matching corner.

620 YOO ET AL.

3. SUBMESH RELOCATION IN 2D MESHES

In this section two main submesh movement operations in a 2D mesh��shifting
and rotating��are studied. Here, all the processes of a task allocated to SS are
moved in parallel to the nodes in another submesh, SD . According to the orienta-
tions of SS and SD , the relocation involves shifting and sometimes rotating also as
mentioned above.

Both the shifting and rotating process consist of two steps��node mapping and
routing. Node mapping is a logical operation which maps each node in the source
submesh to the corresponding node in the destination submesh. Routing is the
actual movement of the processes to the destination nodes. Shifting is discussed
first.

3.1. Shifting

When the two meshes, SS and SD , have the same orientation, the node-mapping
is straightforward since the widths and the heights of the source and destination
submeshes are same. The node mapping, thus, for a source node in SS , (si , sj) , the
intermediate destination node in SID , (id i , idj) , and the destination node in SD ,
(di , dj) , is that di =idi =si +xd &xs and d j =idj =sj +yd &ys . The following is
the actual routing algorithm from (si , sj) to (di , dj) in the shifting process.

Algorithm-S: Shifting between two nodes.
i � si ; j � sj

vertical�movement()
horizental�movement()

Procedure vertical�movement()
repeat

if j<dj , move from (i, j) to (i, j+1) and j=j+1 �*up*�
else if j>dj , move from (i, j) to (i, j&1) and j=j&1 �*down*�
else stop

until (j=dj)

Procedure horizontal�movement()
repeat

if i<di , move from (i, j) to (i+1, j) and i=i+1 �*right*�
else if i>di , move from (i, j) to (i&1, j) and i=i&1 �*left*�
else stop

until (i=di)

For example, for the shifting from SS to SID in Fig. 4, the process of the source
node (2, 5) moves vertically down to (2, 2) , then horizontally to the destination
node (4, 2).

Lemma 3.1. No contention occurs between the processes of a task while they are
shifted.

Proof. According to Algorithm-S, all processes in our model move together in
only one direction in the pipelined fashion during shifting. Therefore, no more than

621TASK RELOCATION IN 2D MESHES

one process need to use the same link at the same time. Certainly, no contention
can occur.

Lemma 3.2. Shifting can be made either horizontally - first or vertically - first. In
either case, the routing time for one process is |xs&xd |+| ys&yd | assuming that the
routing time for a process from a node to a physically adjacent node is a unit time
when no contention exists for the link, and it is minimum.

Proof. In shifting, the paths between every source and destination node are the
shortest paths. Due to Lemma 3.1, no delay occurs due to contention. Therefore,
the routing time is the node distance of the shortest matching corners.

Theorem 3.1. The routing of nodes in Algortihm-S is deadlock free.

Proof. There is no circular wait in the paths because all processes move
together in only one direction in the pipelined fashion.

Let d be the distance between the two corresponding nodes of SS and SD where
wSS=wSD and hSS=hSD . As a direct consequence of Lemmas 3.1 and 3.2 and
Theorem 3.1, it is clear that all processes in SS can be relocated to SD in d time
units. We next consider the rotating process.

3.2. Rotating

When the orientations of SS and SD are different from each other, first an
optimal shifting needs to be found. Assume an upright shape (w<h) SS and thus
the lying shape (w�h) SD . Then, according to the relative position of SD with
respect to SS , there exist four different cases as shown in Fig. 5. For the lying shape
SS and upright shape SD , there exist another four different combinations. For each
of these eight different combinations, the source submesh is shifted first such that
the shortest matching corners overlap each other. Table I lists the eight combina-
tions and the corresponding shortest matching corners. It also lists the corresponding
(di , dj) 's where (idi , idj) denotes the node before rotation and (x, y) denotes the
shortest matching corner of SD . Here idi=si+xd&xs and idj=sj+yd&ys as
mentioned in Section 3.1. Once the shortest matching corners overlap, next the
shifted submesh, SID , needs to be rotated to complete the relocation. Here an
optimal rotation is achieved by rotating the submesh toward the destination mesh
as shown in Fig. 6.

FIG. 5. Relative location of destination submesh.

622 YOO ET AL.

TABLE I

The Shortest Matching Corners For Eight Different Combinations of
the Relative Location of SS and S D

Location Shape of The shortest
Type of SD source task matching corner di dj

1 lr w�h ll x+y+h&1&idj y&x+idi

2 ll w�h lr x&y&h+1+idj x+y&idi

3 ur w�h ul x&y+h&1+idj x+y&idi

4 ul w�h ur x+y&h+1&idj y&x+idi

5 lr w>h ur x&y+idj x+y&w+1&idi

6 ll w>h ul x+y&idj y&x&w+1+idi

7 ur w>h lr x+y&idj y&x+w&1+idi

8 ul w>h ll x&y+idj x+y+w&1&idi

Theorem 3.2. For Type 1 of Table I, a source node (si , sj) is mapped to
(di , dj) where di=x+y+h&1&idj and dj=y&x+idi .

Proof. (si , sj) is mapped to (idi , idj) after shifting. Refer to Fig. 7. Since SID

is rotated 90% counter-clockwise, it is easy to see that di=(x+h&1)&(idj&y)=
x+y+h&1&idj , and dj=y+(idi&x)=y&x+idi .

Assume SS=(2, 5, 3, 7) and SD=(4, 2, 6, 3) as in Fig. 4. It is Type 1, and thus
SID=(4, 2, 5, 4) and (x, y)=(4, 2) . The node-mappings are (2, 5) � (4, 2)
from shifting, then (6, 2) from rotating. This is because di=4+2+3&1&2=6
and dj=2&4+4=2. (di , dj) for other seven types are obtained by the same way,
and they are also listed in Table I.

Now consider an exceptional case shown in Fig. 8. Observe that the shortest
matching corner between SS (2, 1, 3, 7) and SD (4, 4, 10, 5) is ul, which is P in
the figure. In a 2D mesh where no end-around links exist, SS cannot be shifted to
SID1 because SID1 is out of bound. In this case, SS is shifted to only one direction
to SID2 . Table II lists the adjusted destination nodes of Table I considering this

FIG. 6. Eight rotating types.

623TASK RELOCATION IN 2D MESHES

FIG. 7. Node mapping of Type 1.

condition, where d is the distance of two corresponding shortest matching corners
between SS and SID . Note that this exceptional case is irrelevant to a 2D torus.

After the node-mapping, actual routing of each process is done according to the
following algorithm.

Algorithm-R: Rotating between two nodes.
if (Type=1, 4, 5, or 8)

if (di�si and dj�sj) or (di<si and dj<sj)
horizontal�movement()
vertical�movement()

else
vertical�movement()
horizontal�movement()

else �* Type=2, 3, 6, or 7 *�
if (di �si and dj�sj) or (di<si and dj<sj)

vertical�movement()
horizontal�movement()

else
horizontal�movement()
vertical�movement()

Lemma 3.3. No contention occurs between the processes of a task while they are
rotated.

Proof. Here only Type 1 is considered since all eight types are symmetric. The
main property of Algorithm-R is that the nodes in the source submesh move along

FIG. 8. Example of out-of-mesh-bound.

624 YOO ET AL.

TABLE II

Adjustment of Destination Nodes in Table I
in Exceptional Cases

Type di dj

1 x+y+h&1&idj &d y&x+idi &d
2 x&y&h+1+idj+d x+y&idi &d
3 x&y+h&1+idj &d x+y&idi +d
4 x+y&h+1&idj+d y&x+idi+d
5 x&y+idj+d x+y&w+1&idi+d
6 x+y&idj&d y&x&w+1+idi+d
7 x+y&idj+d y&x+w&1+idi &d
8 x&y+idj&d x+y+w&1&idi&d

the disjoint paths as shown in Fig. 9. Therefore, no contention can occur. The same
property holds for the out-of-bound case as shown in Fig. 10.

Theorem 3.3. All processes in SID can be rotated to SD in max (w&1, h&1)
time units.

Proof. In rotating phase, the process movement requiring the longest time is
clearly due to the nodes at boundaries. Observe from Fig. 9 that ulSID , which is
mapped to llSD , is one of such nodes. Clearly the distance is h&1. Due to Lemma
3.3, no contention occurs during rotating, and all processes in Type 1, 2, 3, and 4
can be rotated in h&1 (>w&1) time units. Similarly, the maximum rotating time
for Type 5, 6, 7, and 8 is w&1 (>h&1). Therefore, the rotating time is max
(w&1, h&1). A similar proof can be applied to the out-of-bound case.

Theorem 3.4. The routing of nodes in Algorithm-R is deadlock free.

Proof. Due to Lemma 3.3, no contention occurs during rotating. Therefore,
there is no circular wait in the paths.

We next present the proposed relocation schemes which are based on these two
basic routing processes.

FIG. 9. Routing paths of processes in Type 1.

625TASK RELOCATION IN 2D MESHES

FIG. 10. Routing paths of processes in Type 1 for out-of-bound case.

4. PROPOSED RELOCATION SCHEMES

In this section, two proposed relocation schemes��full and partial reloca-
tion��are introduced. Full relocation is the relocation involving all tasks in the
mesh, and thus it is desirable when the system is highly fragmented. Assume,
however, that allocation of an incoming task becomes possible by relocating only
a portion of allocated tasks. In this situation, it may be preferable to relocate only
those tasks. This is called partial relocation. We first introduce the full relocation.

4.1. Full Relocation

For the task relocation in 2D mesh structures, three steps are involved: they are

(i) submesh-mapping from the source submesh to the destination submesh,

(ii) node-mapping between the nodes in the source submesh and the
destination submesh, and finally

(iii) task movement through the shortest deadlock-free paths. The submesh
mapping and node mapping are logical steps for finding the new locations of the
previously allocated tasks, while the actual task relocation takes place in the final
step of task movement. For submesh mapping, c-list and r-list are maintained.

Definition 8. c-list is an ordered list which keeps the task id and the x-coor-
dinate of the base of the submesh allocated to the task by the increasing order of
x-coordinates. r-list is based on y-coordinate. For example, c-list of Fig. 1 is (1, 1),
(2, 5), (3, 8), and r-list is (2, 2), (1, 3), (3, 3) assuming Task 3 was allocated later
than Task 1. An entry is made and deleted from them at the allocation and
deallocation time, respectively.

The following explains each of the three steps required in the full relocation
scheme. In the submesh-mapping step, all tasks are shifted (of course logically) to
the left (bottom) if the height of the incoming task is greater (smaller) than the
width. Then it is checked if a submesh large enough to accommodate the incoming
task is available. If not, they are shifted to the bottom (left), and then the
availability is checked again. This process is repeated until the desired size submesh
is obtained or no more movement can be possible. We call this interleaved rowwise

626 YOO ET AL.

FIG. 11. The allocation of T=(7, 3) after down movement.

and columnwise shift interleaved compaction. For example, in Fig. 1, assume that
T=(4, 7) has arrived. As the height of it is greater than the width, all tasks are
moved left as shown in Fig. 2. c-list now contains (1, 1), (2, 3), (3, 4). After the
movements, the system finds a submesh (7, 1, 10, 7) which is large enough to
accommodate T=(4, 7). Instead of T=(4, 7), assume that T=(7, 3) was arrived.
Then all tasks are moved down as shown in Fig. 11. r-list is updated as (2, 1),
(1, 1), (3, 1). The system can find a submesh (3, 6, 9, 8) large enough to accom-
modate T=(7, 3). If the incoming task was T=(7, 5), even with the movements of
Fig. 11, the required size submesh is not available yet. Thus all the tasks are then
moved left as shown in Fig. 12. Now the system finds a submesh (4, 4, 10, 8) . As
mentioned above, these are logical operations for finding the submesh mapping of
each task.

Now we will show a case in which more than one horizontal and one vertical
movement occur. In Fig. 13 a, assume that T=(10, 2) has arrived. Since no task
can be initially moved down, left movement is initiated. First, Tasks 3 and 4 are
moved left. Second, only Task 3 is moved down. Third, Task 4 is moved left. Next,
Task 4 is moved down. Now the system can find a submesh (1, 7, 10, 8) for
accommodating T=(10, 2) as shown in Fig. 13b. Here Tasks 1 and 2 are not
moved. In this example two horizontal and two vertical movements occurred.

FIG. 12. The allocation of T=(7, 5) after left movement.

627TASK RELOCATION IN 2D MESHES

FIG. 13. (a) An allocation of T=(10, 2) before task movement, (b) an allocation of T=(10, 2)
after task movement.

Note that only shifting is necessary for full relocation. Therefore, once the source
and destination submeshes are determined from the submesh mapping step, node
mapping and finally Algorithm-S presented in Section 3 are used for completing the
relocation of the submeshes. The following is the procedure of full relocation for
incoming task T=(w, h).

PROCEDURE: FULL RELOCATION

v Step 1: �* Step 1�4: Decision of relocatability *�
direction=(down, left)
list=(c-list, r-list)
if w>h

then direction � down and list � r-list
else direction � left and list � c-list

prev-move � true

v Step 2: Move all tasks toward direction using list. If no task has been
moved, go to Step 4.

v Step 3:
Check whether a submesh can be allocatable to the incoming task.

�*use original allocation scheme*�
If allocatable

then go to Step 5
else prev-move � true, change direction and list, and go to Step 2.

v Step 4:
If prev-move is true

then prev-move � false, change direction and list, and go to Step 2
else go to Step 6.

v Step 5: Node-mapping; Task movement by shifting; Allocation of the
submesh to the incoming task. Stop.

v Step 6: No relocation can be made. Stop.

It is intuitively clear that the proposed interleaved compaction scheme always results
in a larger submesh than either column-wise-only compaction or row-wise-only

628 YOO ET AL.

compaction. The following theorem determines the relocation time of the full
relocation scheme.

Theorem 4.1. Suppose that n tasks, T1 , T2 , T3 , ..., Tn , are relocated. Let RTi be
the relocation time of Ti with no contention. Then max (RT1 , RT2 , ..., RTn) is the
time for completing the full relocation.

Proof. If no contention occurs between any two tasks, the proof is trivial
because all tasks are relocated in parallel. Thus we need to show the case when
contentions occur among the tasks. In the full relocation scheme, each submesh is
mapped into a distinct submesh, and the tasks are relocated through the shifting
operation. Recall that the shifting operations in Algorithm-S are all downward first
and then leftward while the source and destination submesh pairs are all disjoint.
Refer to Fig. 14, where n=2. Note that no more than two submeshes can overlap
at the same time. Let SS1(xs1 , ys1 , x$s1 , y$s1) and SD1(xd 1 , yd 1 , x$d 1 , y$d 1) be the
source and destination submeshes for T1, respectively. Similarly, SS2(xs2 , ys2 ,
x$s2 , y$s2) and SD2(xd 2 , yd 2 , x$d 2 , y$d 2) are for T2 . In our scheme, a contention
occurs when a task changes the direction of its movement from downward to
leftward while the other task continuously moves leftward and the two intermediate
submeshes for the two tasks become overlapped. Let SID1(xid1 , yid1 , x$id1 , y$id1) and
SID2(xid2 , yid2 , x$id2 , y$id2) be the intermediate submeshes for T1 and T2 , respec-
tively, when a contention just occurs. Without the loss of generality, assume that
RT1 <RT2 . Then if RT $1 and RT $2 are the remaining relocation time of T1 and T2

respectively when the contention occurs, RT $1<RT $2 since the tasks have spent the
same time so far. Therefore, T2 has the higher priority, and T1 should wait until T2

passes, i.e., until SID1 does not overlap SID2 any more. The overlap occurs if either
xid1�xid2�x$id1 or xid1�x$id2�x$id1. In either case, the maximum contention time
(overlapping time) is x$id2&xid1+1 which represents the time for the right-hand
side of T2 passes the left-hand side of T1 . Now we show that RT $1+(x$id2&xid1+1)
�RT $2 . RT $1+(x$id2&xid1+1) = (xid1&xd1)+(x$id2&xid1+1) = x$id2&(xd1&1).
Since RT $1<RT $2 , xd1&1�x$id2 . Therefore, x$id2&(xd1&1)�x$id2&x$d 2=RT $2 .
Consequently, the task requiring the longer routing time determines the time for the
full relocation.

FIG. 14. Contention between two tasks.

629TASK RELOCATION IN 2D MESHES

FIG. 15. Range of relocation array for T=(4, 7).

4.2. Partial Relocation

In full relocation, all tasks in the mesh are involved. Thus some tasks may be
relocated unnecessarily. For example, in Fig. 1, assume that T=(4, 7) has arrived.
To find a free submesh for T, full relocation has relocated Task 2 (5 processes) and
Task 3 (9 processes) as shown in Fig. 2. However, the system can find a free sub-
mesh if only Task 1 is relocated as shown in Fig. 16b. The basic idea of partial
relocation is that tasks are relocated such that the number of processes relocated
is minimized. For this, relocation array is manipulated for finding such submesh.

Definition 9. In a mesh M(a,b), for every incoming task T=(w, h) requiring
relocation of already allocated submesh, SA , a relocation array R is formed.
Here, R [i, j] (1�i�a&w+1, 1�j�b&h+1) represents the total number of
processors required to be relocated when T is allocated to candidate submesh
SC (i, j, i+w&1, j+h&1) .

Refer to Fig. 15, and assume that T=(4, 7) arrives. Observe that the shaded
region denotes the nodes on which the base of the submesh for T can be put. If the
task is allocated to candidate submesh (2, 1, 5, 7) , Task 1 and 2 should be
relocated. Therefore, R [2, 1] is 17 because the area of submesh (1, 3, 2, 8) for
Task 1 is 12 and the area of submesh (5, 2, 5, 6) for Task 2 is 5. The relocation
array for T is thus as follows.

R=_12 17 5 5 14 9 9
12 17 5 5 14 9 9&

R is set up as explained below.

PROCEDURE: CONSTRUCT-R

R[i, j] (1�i�a&w+1, 1� j�b&h+1) � 0.
For each i

For each j
Construct SC for T
For each SA

630 YOO ET AL.

If SA overlaps with SC

Add area of SA to R[i, j]

Once the relocation array is constructed, the base (i, j) is chosen for which R
[i, j] is minimum. If R [i, j]�wh, no relocation is allowed. This is for guaranteeing
that any task which is larger than or equal to the incoming task is not relocated.
If there exist multiple (i, j) 's with the same minimal values, choose the (i, j) of the
smallest value of i+j. The purpose of this is to minimize the fragmentation by
putting the submesh at one side (actually the lower left side).

For the example of Fig. 15 and the relocation array above, the minimum value
is 5, which is smaller than 28 (the size of the incoming task). Any of the four nodes,
(3, 1) , (4, 1) , (3, 2) , or (4, 2) , can be the base, but (3, 1) is chosen as
explained above. Fig. 16a shows that submesh (3, 1, 6, 7) is selected to be
allocated to the incoming task. Task 2 then needs to be relocated. Using the
original task allocation scheme, a submesh (7, 1, 7, 5) can be allocated to Task 2
as shown in Fig. 16b. Thus, the submesh (7, 1, 7, 5) is the destination for Task 2
to be relocated. As can be seen in this example, when all the tasks overlapped with
the incoming task can be successfully allocated to other submeshes using the
original task allocation scheme, then the actual relocation of them is started. If the
allocation is not possible, the relocation is not allowed. When the submesh map-
ping is finished for the overlapped submeshes, the subsequent operation is exactly
the same as for the full relocation scheme. The only difference here is that rotating
is also required in addition to shifting when the orientations of the source and
destination submeshes are different. The following is the procedure for partial
relocation for an incoming task T=(w, h).

PROCEDURE: PARTIAL RELOCATION

v Step 1. flag � false. �* the flag representing the orientation *�

v Step 2. Decide the orientation of T as follows. If (f lag=false), then T � T
(w, h), else T � T(h, w).

v Step 3. Based on current SA 's and T, construct R as explained above.

v Step 4. Choose the base of the candidate submesh as explained above.
If minimum R [i, j]�wh

if (f lag=false)
then f lag � true and go back to Step 2
else go to Step 7.

v Step 5. Submesh mapping of the submeshes overlapped with the incoming
task using the allocation mechanism. If any of them cannot be mapped, go
to Step 7.

v Step 6. Node-mapping; Task movement by shifting and�or rotation;
Allocation of the submesh to the incoming task. Stop.

v Step 7. No relocation is allowed. Stop.

We next evaluate the performance of the proposed schemes.

631TASK RELOCATION IN 2D MESHES

FIG. 16. An allocation for T=(4, 7): (a) before relocation, (b) after relocation.

5. PERFORMANCE EVALUATION

In this section, the proposed schemes are evaluated in terms of task completion time
and processor utilization. The study is done first by evaluating the time complexity of
the proposed schemes. Then computer simulation evaluates the performance. We also
compare our schemes with a well-known task allocation scheme [10].

5.1. Time Complexity of Relocation

Assume that NA is the number of allocated submeshes in M(a, b). The time com-
plexity of the task allocation of AS scheme is O(abNA) and that of QA scheme is
O(bNA) as analyzed in [12].

First, we analyze the time complexity of full relocation scheme. Clearly Steps 1,
4, and 6 take only 3(1), respectively. Step 2 takes O(NA) because all allocated sub-
meshes are moved in the worst case. Step 3 takes O(bNA) when the QA scheme is
used as the original allocation scheme. Step 5 takes O(ab) because ab is the number
of nodes to be mapped and shifted in the worst case. Since Step 5 dominates, the
time complexity of full relocation scheme is O(ab).

Next, we analyze the time complexity of partial relocation scheme. Steps 1, 2, and
7 take only 3(1), respectively. Step 3 takes O(abNA) to construct R because i=a
and j=b in the worst case. Step 4 takes O(ab) to choose the best base. Step 5 takes
O(bN 2

A) when the QA scheme is used as the original allocation scheme because
each extracted task should check the possibility to find a free submesh elsewhere
and the number of extracted task is NA in the worst case. Step 6 takes O(ab)
because ab is the number of nodes to be mapped and shifted in the worst case. Since
Step 5 dominates, the time complexity of partial relocation scheme isO(bN 2

A). Since
NA=ab in the worst case, the time complexity of partial allocation scheme in the
worst case is O(a2b3).

Note that the time complexity of full relocation scheme is much lower than that
of partial relocation scheme.

5.2. Simulation Result

In this subsection the proposed two schemes are evaluated by computer simula-
tion for various operational conditions. Since the AS scheme [10] is one of the

632 YOO ET AL.

most efficient allocation schemes, it is employed as the allocation scheme. Simula-
tions are conducted for the meshes ranging from 4_4 to 64_64. All the simulation
use 950 confidence level with an error range of \30. The simulator was
developed in C language running on a Sun 4�490. Two different relocation schemes
are studied; the full relocation scheme with the parallel task-relocation (FR-p) and
the partial relocation scheme with the sequential task-relocation (PR-s). Notice
that, due to the possibility of contention, sequential movement is assumed for the
partial relocation.

The time for a task relocation [14] consists of the time for message startup,
suspending�resuming the tasks, synchronization, forwarding in-transit messages,
and context switch. The time for suspending�resuming a task and context switch
is negligible compared to the time for actual task relocation. The relocation time is
thus determined by the routing time from the original to the new sites which is
obtained by multiplying the routing distance and the time for one position movement.
As mentioned earlier, the time for one position movement is machine dependent,
which is obtained by the product of the relocation overhead factor (:) and the
residence time. The performance of our relocation schemes is evaluated for several
different values of : as others do [14]. The relocation time is added to the task
service time (residence time) when the overall performance is evaluated. The reloca-
tion may result in the increase of the performance by decreasing the external
fragmentation, or degradation because of the excessive relocation overhead.

We employ the same simulation model used in [8, 10, 12, 14, 15]. Task alloca-
tion is carried out by a separate processor which functions as a task dispatcher.
Initially the entire mesh is free, and 1000 tasks are generated and queued at the task
dispatcher. Each task has a residence time requirement, which is assumed to be
uniformly distributed between 5 to 10 time units. The tasks are assumed to arrive
at each time unit. The time unit is large enough such that the time needed for task
dispatcher to scan the whole mesh plane is negligible. The side lengths (width or
height) of incoming tasks are assumed to follow one of the four distributions:
uniform, exponential, decreasing, and increasing. For the uniform distribution, the
side lengths of incoming tasks are uniformly distributed between 1 and the side
length of the mesh (L). For the exponential distribution, the mean is selected as the
half of L. Those values outside the range [1, side length+1) were discarded. For
the decreasing distribution, the probability that a side length of an incoming task
falls into the range [1, L�8] is 0.4, [L�8+1, L�4] is 0.2, [L�4+1, L�2] is 0.2, and
[L�2+1, L] is 0.2. For example, the probability that a side length falling into the
range [s1 , s2] of M(16, 16), denoted as P[s1, s2] is distributed as follows; P[1, 2]=
0.4, P[3, 4]=0.2, P[5, 8]=0.2, and P[9, 16]=0.2. For the increasing distribution, the
distributions are the opposite of the decreasing distribution. For M(16, 16), again,
P[1, 8]=0.2, P[9, 12]=0.2, P[13, 14]=0.2, and P[15, 16]=0.4. The widths and heights
of tasks are generated separately based on the above distributions.

The task dispatcher is assumed to follow the First-Come-First-Serve (FCFS)
discipline, i.e., the dispatcher always tries to find a free submesh for the first task
in the queue. If it fails to find a free submesh, the dispatcher simply waits for a
submesh to be released to allow the allocation. After a task is assigned to a
submesh, it is removed from the queue and the next task in the queue is served in

633TASK RELOCATION IN 2D MESHES

the next time unit. Simulation is done for various values of : from 0.01 to 0.05. For
every relocation, the routing time between the two submeshes is computed. Then
the relocation time, the routing time multiplied by :, is added to the remaining
residence time of the task.

We collect the following five performance metrics: (i) the allocation completion
time (Tc), (ii) the average processor utilization over Tc , (iii) the number of reloca-
tions done, (iv) average number of tasks relocated per relocation occurred, and
(v) average size of relocated task in terms of the number of processors. Table III
compares the proposed relocation schemes and AS scheme under various values
of :. Note that := 0 for AS scheme since it does not involve any relocation. From
it, we observe the following.

v FR-p outperforms AS scheme (no relocation) when :�0.03. It means that
the relocation schemes are effective only for smaller relocation overhead factors.

TABLE III

Performance Comparisons under Various Values of : of M (16, 16)
Scheduling: FCFS, T=1000

Side length Performance
:

distribution measure Scheme 0 0.01 0.02 0.03 0.04 0.05

Uniform Task AS 3482
completion FR-p 3365 3394 3421 3449 3476

time PR-s 3343 3410 3504 3584 3625

Processor AS 61.36
utilization FR-p 63.39 62.85 62.35 61.85 61.36

(0) PR-s 63.81 62.56 60.97 59.62 58.85

Exponential Task AS 1740
completion FR-p 1652 1688 1719 1749 1782

time PR-s 1650 1767 1905 2095 2254

Processor AS 60.90
utilization FR-p 64.11 62.75 61.64 60.58 59.45

(0) PR-s 64.19 59.96 55.63 50.59 46.99

Decreasing Task AS 1235
completion FR-p 1163 1192 1226 1250 1287

time PR-s 1174 1352 1561 1749 2003

Processor AS 60.49
utilization FR-p 64.23 62.70 60.93 59.75 58.09

(0) PR-s 63.65 55.25 47.88 42.74 37.31

Increasing Task AS 5899
completion FR-p 5855 5867 5879 5891 5903

time PR-s 5851 5867 5882 5898 5914

Processor AS 69.91
utilization FR-p 70.44 70.30 70.15 70.01 69.87

(0) PR-s 70.48 70.29 70.11 69.92 69.73

Note. Residence time distribution: Uniform [5, 10].

634 YOO ET AL.

v Among the four distributions, the decreasing distribution is the most
sensitive to the value of :, and the increasing distribution is the least.

v Compared to the full relocation scheme, the partial relocation scheme per-
forms worse if :>0.01. This is because the relocation overhead is more significant
than the reduced number of process relocation.

From Table IV, which studies the schemes for various size meshes when :=0.01,
we observe the following.

v Our relocation schemes are relatively more effective for smaller size meshes.
Notice that the performance difference between ours and AS scheme gets smaller as
the size of mesh increases.

v The full relocation scheme outperforms the partial relocation scheme for
relatively large meshes. This is because the relocation distance of partial relocation
is longer than that of full relocation in the worst case.

TABLE IV
Performance Comparisons for Various Sizes When :=0.01

Scheduling: FCFS, T=1000

Side length Performance
Mesh size

distribution measure Scheme 4_4 8_8 16_16 32_32 64_64

Uniform Task AS 3987 3625 3482 3358 3356
completion FR-p 3940 3530 3365 3336 3288

time PR-s 3892 3467 3343 3343 3378

Processor AS 73.49 65.59 61.36 58.96 58.21
utilization FR-p 74.5 67.09 63.39 59.95 59.00

(0) PR-s 75.42 68.31 63.81 59.83 57.42

Number of FR-p 30 54 70 76 79
recolation occured PR-s 55 90 96 102 106

Number of FR-p 1.16 1.35 1.39 1.39 1.50
tasks relocated PR-s 1.05 1.15 1.20 1.20 1.21

Size of tasks FR-p 3.85 12.65 45.48 178.61 701.95
relocated PR-s 2.58 7.90 27.53 110.73 391.04

Exponential Task AS 2291 1864 1775 1677 1626
completion FR-p 2207 1774 1652 1610 1638

time PR-s 2137 1700 1650 1692 1961

Processor AS 74.66 66.20 60.67 57.58 56.13
utilization FR-p 77.48 69.55 64.11 59.97 55.73

(0) PR-s 80.03 72.57 64.19 57.03 46.55

Number of FR-p 67 93 103 113 122
relocations occured PR-s 135 177 171 174 187

Number of FR-p 1.61 2.04 2.31 2.49 2.82
task relocated PR-s 1.15 1.35 1.40 1.51 1.51

Size of tasks FR-p 2.65 7.84 28.61 109.55 401.08
relocated PR-s 1.86 4.77 16.64 61.97 233.22

Note. Residence time distrubution: Uniform [5, 10].

635TASK RELOCATION IN 2D MESHES

v FR-p requires fewer relocations than PR-s. This is expected since the partial
relocation scheme does not fully compact the array.

v As expected the average number of relocated tasks per relocation and the size
of tasks relocated of partial relocation are much smaller than that of full relocation.

To check the effect of the side lengths in the two relocation schemes, we have
simulated two more cases. In the first case, all requests are squares whose side
lengths are power of two and uniformly distributed. For example, in M(16, 16), side
length is 1, 2, 4, 8, or 16, and those five numbers are uniformly distributed. In the
second case, all requests are rectangles whose side lengths are power of two and
also uniformly distributed. The other conditions are same as the previous simula-
tions. However, in these two cases, we do not observe any particular difference from
the above-mentioned observations.

In addition, another simulation is conducted in order to study the external
fragmentation. The simulation results for mesh systems of various sizes follow a
similar trend, and thus we report the simulation results for only the 16_16 mesh
system. The simulation uses a 900 confidence level with an error range of \50.
Task residence time and interarrival time are assumed to have the exponential
distribution with the means of MTRT (mean task residence time) and MIAT (mean
task interarrival time), respectively. Here system load is defined as (n_MTRT)�
(N_MIAT) where n is the average size of the requested submesh in terms of the
number of processors and N is the total number of processors in the 2D mesh
system. In the simulation, we fix MTRT to be 7.5 time units and adjust MIAT
according to the desired load.

Figure 17 plots the external fragmentation of the studied relocation schemes
under different workloads of M(16, 16) when :=0.01 for exponential distribution
of side lengths. We observe the following from the simulation result.

v Regardless of the system load, both relocation schemes decrease the external
fragmentation. For example, under the system load of 0.5, the external fragmentation

FIG. 17. External fragmentation versus offered system load.

636 YOO ET AL.

without relocation is 50.20, whereas those under the full relocation and the partial
relocation are 45.80 and 43.40, respectively.

v As expected, the partial relocation scheme decreases the external fragmenta-
tion more than the full relocation scheme. This agrees with the information in
Table IV, where the number of relocations occurred in the partial relocation
scheme is much higher than that in the full relocation scheme.

6. CONCLUSION

In this paper, we have presented two relocation schemes��full relocation and
partial relocation��for enhancing the performance of 2D mesh architecture by
reducing external fragmentation. The partial relocation scheme tries to minimize the
relocated tasks while the full relocation scheme involves simple shift operations of
all tasks. For general relocation processes, we also developed and modeled two
basic submesh relocation operations��shifting and rotating. Simulation results
show that both schemes increase the performance of the system in terms of task
completion time and system utilization up to a certain value of relocation overhead
factor which is machine dependent. The full relocation scheme demonstrated better
performance than the partial relocation scheme for relatively large meshes and
relocation overhead. The relocation scheme is also useful when high�priority jobs
arrive but are not allocatable in a real-time environment. The performance of a
mesh system is expected to be further enhanced if every task allocation is deter-
mined such that the external fragmentation is less likely. This issue is currently
being investigated.

REFERENCES

1. P. Muzumdar, Evaluation of on-chip static interconnection networks, IEEE Trans. Comput. 36
(March 1987), 365�369.

2. G. Randade and S. L. Johnsson, The communication efficiency of meshes, boolean cubes and
cube connected cycles for wafer scale integration, in ``Proc. of the International Conf. on Parallel
Processing,'' pp. 477�482, Aug. 1987.

3. ``Paragon XP�S Product Overview,'' Intel Corporation, 1991.

4. ``A Touchstone DELTA System Description,'' Intel Corporation, 1991.

5. J. Kim, C. R. Das, and W. Lin, A top-down processor allocation scheme for hypercube computers,
IEEE Trans. Parallel Distrib. Systems 2 (Jan. 1991), 21�30.

6. P. J. Chuang and N. F. Tzeng, A fast recognition-complete processor allocation strategy for
hypercube computers, IEEE Trans. Comput 41, 4 (April 1992), 467�479.

7. K. Li and K. H. Cheng, A two-dimensional buddy system for dynamic resource allocation in a
partitionable mesh connected system, J. Parallel Distrib. Comput. 12 (May 1991), 79�83.

8. P. J. Chuang and N. F. Tzeng, An efficient submesh allocation strategy for mesh computer systems,
in ``Proc. of the International Conf. on Distributed Computing Systems,'' pp. 256�263, Aug. 1991.

9. Y. Zhu, Efficient processor allocation strategies for mesh-connected parallel computers, J. Parallel
Distrib. Comput. 16 (Dec. 1992), 328�337.

10. J. Ding and L. N. Bhuyan, An adaptive submesh allocation strategy for two-dimensional mesh
connected systems, in ``Int'l Conf. on Parallel Processing,'' pp. II-193�200, Aug. 1993.

637TASK RELOCATION IN 2D MESHES

11. D. D. Sharma and D. K. Pradhan, Job scheduling in mesh multicomputers, IEEE Trans. Parallel
Distrib. Systems (Jan. 1998), 57�70.

12. S. M. Yoo, H. Y. Youn, and B. Shirazi, An efficient task allocation scheme for 2D mesh architectures,
IEEE Trans. Parallel Distrib. Systems (Sep. 1997), 934�942.

13. V. Lo, K. J. Wndish, W. Liu, and B. Nitzberg, Non-contiguous processor allocation algorithms for
mesh-connected multicomputers, IEEE Trans. Parallel Distrib. Systems (July 1997), 712�726.

14. C. H. Huang and J. Y. Juang, A Partial compaction scheme for processor allocation in hypercube
multiprocessors, in ``Int'l Conf. on Parallel Processing,'' pp. I-211�217, 1990.

15. M. S. Chan and K. G. Shin, Subcube allocation and task migration in hypercube multiprocessors,
IEEE Trans. Comput. 39, 9 (Sep. 1990), 1146�1155.

16. K. Hwang and H. Xu, ``Scalable Parallel Computing: Technology, Architecture, Programming,''
WCB�McGraw�Hill, Boston, 1998.

SEONG-MOO YOO received the B.A. in economics from Seoul National University, Seoul, Korea,
and the M.S. and Ph.D. in computer science from The University of Texas at Arlington in 1989 and
1995, respectively. He is currently an assistant professor in the Department of Computer Science,
Columbus State University, Columbus, Georgia. His research interests include parallel computing,
multiprocessor systems, computer security, and mobile computing. Dr. Yoo is a member of the Associa-
tion for Computing Machinery and the IEEE Computer Society.

HYUNSEUNG CHOO received the B.S. in mathematics from Sungkyunkwan University, Suwon,
Korea in 1988, the M.S. in computer science from the University of Texas at Dallas, Richardson, TX
in 1990, and the Ph.D. in computer science from the University of Texas at Arlington (UTA), Arlington,
TX in 1996. In 1997, he was a faculty associate of the Department of Computer Science and Engineering
at UTA. From 1997 to 1998, he was a patent examiner at Korean Industrial Property Office, Seoul,
Korea. Dr. Choo is currently an assistant professor of the School of Electrical and Computer Engineer-
ing at Sungkyunkwan University, Suwon, Korea. His research interests include networking, ATM
switching, system performance evaluation, parallel and distributed computing, and design of algorithms.

HEE YONG YOUN received the B.S. and M.S. in electrical engineering from Seoul National Univer-
sity, Seoul, Korea, in 1977 and 1979, respectively, and the Ph.D. in computer engineering from the
University of Massachusetts at Amherst, in 1988. From 1979 to 1984, he was on the research staff of
Gold Star Precision Central Research Laboratories, Korea. He is an associate professor in the Depart-
ment of Computer Science and Engineering, The University of Texas at Arlington, Arlington, Texas. He
is currently on a leave of absence to Information and Communications University, Korea. He received
the Outstanding Paper Award from the 1988 International Conference on Distributed Computing
Systems and 1992 Supercomputing, respectively. He also served as a lecturer of the ACM Lectureship
Series from 1993 to 1997. His research interests include parallel and distributed computing, mobile com-
puting, performance modeling and evaluation, and fault-tolerant computing. Dr. Youn is a senior mem-
ber of the IEEE Computer Society.

CHANSU YU received the B.S. and M.S. in electrical engineering from Seoul National University,
Seoul, Korea in 1982 and in 1984, respectively. He worked as a research engineer at GoldStar Company
until 1989. He received the Ph.D. in computer engineering from the Pennsylvania State University in
1994. Since 1997, he has been an assistant professor with the School of Engineering, Information and
Communications University, Taejon, Korea. His areas of interest are computer architecture, parallel and
cluster computing, performance evaluation, and mobile systems. Dr. Yu is a member of the IEEE and
IEEE Computer Society.

YOUNGHEE LEE received B.S. and M.S. in electronics from Seoul National University, Korea, in
1976 and 1980, respectively and Ph.D. in computer science from Universite� de Technologie de
Compiegne, France in 1984. Since he joined Electronics and Telecommunications Research Institute
(ETRI), Korea in 1984, he has been working on the fields of high speed networks, CCS systems, ATM,
gigabit networks, and next generation Internet. He is currently Professor of Information and
Communications University in Korea. He also serves as one of the vice chairmen of SG 7 in ITU-T. His
research interests include parallel processing, next generation Internet technologies, and high-speed
networks.

638 YOO ET AL.

	1. INTRODUCTION
	FIG. 1
	FIG. 2
	FIG. 3

	2. DEFINITIONS AND NOTATION
	FIG. 4

	3. SUBMESH RELOCATION IN 2D MESHES
	FIG. 5
	FIG. 6
	TABLE I
	FIG. 7
	FIG. 8
	FIG. 9
	FIG. 10

	4. PROPOSED RELOCATION SCHEMES
	FIG. 11
	FIG. 12
	FIG. 13
	FIG. 14
	FIG. 15
	FIG. 16

	5. PERFORMANCE EVALUATION
	TABLE III
	TABLE IV
	FIG. 17

	6. CONCLUSION
	REFERENCES

