
Journal of Parallel and Distributed Computing 61, 520�535 (2001)

Heterogeneous Distribution of Computations
Solving Linear Algebra Problems on

Networks of Heterogeneous Computers

Alexey Kalinov and Alexey Lastovetsky

Institute for System Programming, Russian Academy of Sciences, 25, Bolshaya Kommunisticheskaya str.,
Moscow 109004, Russia

E-mail: ka�ispras.ru, lastov�ispras.ru

Received December 21, 1998; revised April 3, 2000; accepted September 18, 2000

This paper presents and analyzes two different strategies of heterogeneous
distribution of computations solving dense linear algebra problems on heter-
ogeneous networks of computers. The first strategy is based on heterogeneous
distribution of processes over processors and homogeneous block cyclic distri-
bution of data over the processes. The second is based on homogeneous distribu-
tion of processes over processors and heterogeneous block cyclic distribution
of data over the processes. Both strategies were implemented in the mpC
language��a dedicated parallel extension of ANSI C for efficient and portable
programming of heterogeneous networks of computers. The first strategy was
implemented using calls to ScaLAPACK; the second strategy was implemented
with calls to LAPACK and BLAS. Cholesky factorization on a heterogeneous
network of workstations is used to demonstrate that the heterogeneous distribu-
tions have an advantage over the traditional homogeneous distribution.
� 2001 Academic Press

Key Words: parallel programming tools; parallel linear algebra software;
ScaLAPACK; heterogeneous computing; parallel languages.

1. INTRODUCTION

Nowadays, high-performance scientific computations concentrate mostly on
distributed��memory supercomputers consisting of identical processors. Therefore,
it is no wonder that the main efforts of developers of parallel numerical libraries
have been aimed at the achievement of the best performance on such machines. As
a rule, in computing on such homogeneous computer systems, a strategy of homo-
geneous distribution of computations over processors is used [1, 6, 9]. The strategy
will be referred to as the HoHo strategy, ``homogeneous distribution of processes
over processors�homogeneous distribution of data over the processes,'' with each

doi:10.1006�jpdc.2000.1686, available online at http:��www.idealibrary.com on

5200743-7315�01 �35.00
Copyright � 2001 by Academic Press
All rights of reproduction in any form reserved.

physical processor running one process and data being evenly partitioned among
the processes.

At the same time, progress in network technologies is making local and even
global networks of computers (in particular, networks of PCs and workstations)
more and more attractive for high-performance parallel computing. In developing
applications for such networks, it is necessary to take into account their hetero-
geneity as the main peculiarity of common networks that differentiates them from
supercomputers.

The heterogeneity is displayed at least in two forms��first in the form of hetero-
geneity of machine arithmetics of such parallel systems. Related challenges existing
in writing reliable numerical library software for heterogeneous computing environ-
ments have been analyzed in [5].

Second, heterogeneity is displayed in the form of both the performances of
individual processors and the speeds of data transfer between the processors. As a
rule, to solve linear algebra problems on a heterogeneous network of computers,
one uses numeric software originally developed for homogeneous distributed-memory
machines and later ported to the network. Let us see what happens when a parallel
linear algebra application, which provides a good distribution of computations and
communications (due to the HoHo strategy) while running in homogeneous environ-
ments, runs on a heterogeneous network of computers. Since volumes of computations
executed by different processors are approximately equal to each other, more powerful
processors will wait for the weakest one at synchronization points. Therefore, the total
time of computations will be determined by the time elapsed on the weakest processor.

We have done an experiment corroborating this statement. We considered two
local subnetworks of our local network: homogeneous abcd consisting of SUN
workstations a, b, c, and d of the same relative performance 1.9, and hetero-
geneous aefg consisting of SUN workstations a, e, f, and g of relative performances
1.9, 2.8, 2.8, and 7.1. The relative performances were estimated by a sequential
LAPACK [2] Cholesky factorization routine. One can see that the total power of
the heterogeneous subnetwork is about twice that of the homogeneous one. It could
be expected that, for example, the parallel ScaLAPACK Cholesky solver [6] would
be executed on the heterogeneous subnetwork about twice as fast as on the homo-
geneous one. But the real situation, shown in Fig. 1, turned out quite differently.

A natural solution to this problem is heterogeneous distribution of both processes
over the processors and�or data among the processes, taking into account differences
in performances of processors and speeds of communication links. As demonstrated in
[3], such distribution allows us to achieve much better distribution of computations
over processors of a heterogeneous computing network and hence to utilize its perfor-
mance potential more efficiently.

Such heterogeneous distribution is a complex problem whose solution needs
adequate tools. Designed especially to write efficient and portable parallel applica-
tions for heterogeneous networks of computers, the mpC language [12] is just such
a tool. This language is an ANSI C superset that allows applications to be written
that adapt to differences in performance of both processor and communication
links of any particular executing network. In order to make passible the employ-
ment of software written with other parallel programming systems, mpC provides

521HETEROGENEOUS DISTRIBUTION OF COMPUTATIONS

FIG. 1. Speedup achieved by the ScaLAPACK Cholesky solver on the heterogeneous network
relative to the homogeneous one. The networks consist of four workstations. One workstation of the
heterogeneous network belongs to the homogeneous one. Other workstations of the heterogeneous
network are more powerful.

interfaces to such systems. In particular, mpC provides an interface to ScaLAPACK.
More about mpC as well as the mpC free software can be found at http:��www.
ispras.ru�tmpc.

Different distribution strategies will be investigated using a typical linear algebra
problem��the Cholesky factorization of square dense matrices. The problem was
chosen as a well-known example of a practically important problem whose parallel
solution needs careful balancing of computations and communications. For all the
strategies, the same Cholesky factorization algorithm, namely the one implemented
in ScaLAPACK, will be used. This algorithm provides very good scalability and
even workload of processors and links for the traditional HoHo distribution on
homogeneous networks.

In this paper, we consider only the heterogeneity of processor performances and
represent an executing computer system as a set L of processors characterized by
a vector R(L) of relative processor performances. A running parallel program,
performing the Cholesky factorization of a processed matrix M, consists of a
number of processes with hl processes running on processor l # L. For each l # L
only el processes (el�hl) are involved in computations on the processed matrix M.
The set of all those involved processes is regarded as a process grid of P rows and
Q columns (�l # L el=P } Q).

522 KALINOV AND LASTOVETSKY

The paper considers only the following two extreme distribution strategies:

1. The HeHo strategy��heterogeneous distribution of involved P } Q processes
over processors with homogeneous block cyclic distribution of matrix M over the
processes. In this case, heterogeneous distribution of the involved processes is
performed by an mpC program, while the latter calls a parallel ScaLAPACK
function to perform the parallel Cholesky factorization itself.

2. The HoHe strategy��homogeneous distribution of involved P } Q processes
over processors with each process running on a separate processor and hetero-
geneous block cyclic distribution of matrix M over the processes. In this case, both
the distribution of the involved processes and the parallel Cholesky factorization
itself are performed by an mpC program calling BLAS [7] and LAPACK functions
for local computations. Note that in this case the parallel algorithm implemented
by the mpC program for Cholesky factorization itself is, in general, the same as that
implemented by the ScaLAPACK function for the HeHo strategy.

Section 2 describes the HeHo strategy. Section 3 introduces the heterogeneous
block cyclic matrix distribution and describes the HoHe strategy. Section 4 shortly
explains why we used the mpC language to implement the heterogeneous strategies.
In Section 5 we try to analyze the performance of the strategies. Section 6 gives
experimental results of Cholesky factorizations, using the heterogeneous strategies,
on a network of heterogeneous workstations.

2. HETEROGENEOUS PROCESS DISTRIBUTION WITH
HOMOGENEOUS DATA DISTRIBUTION

Let processor l of performance rl execute hl processes of the running parallel
program. Let the total number of processes that should be involved in computa-
tions be equal to P } Q; so �l # L h l�P } Q.

For the ScaLAPACK algorithm of Cholesky factorization [6] and matrix M
evenly distributed over the involved P } Q processes, each involved process executes
approximately the same volume of computations. Therefore, in this case, the
number el of processes, running on processor l and involved in computations,
should be proportional to the performance rl of the processor. Obviously, �I # L el

=P } Q and el�hl .
For example, if P=Q=4, card(L)=6, and R(L)=[6, 5, 4, 3, 2, 1], then the

distribution [e(l)] may look as follows: [5, 4, 3, 2, 1, 1].
The presented distribution strategy is based on the homogeneous two-dimen-

sional data distribution, which can be briefly defined in accordance with [6] as
follows.

A one-dimensional block cyclic data distribution is defined by the mapping ig [
(p, b, il) of a global index, ig , where p is the logical process number, b is the block
number in process p, and il is the local index within block b to which ig is mapped.

523HETEROGENEOUS DISTRIBUTION OF COMPUTATIONS

FIG. 2. Example of a homogeneous block cyclic distribution of a 12_12 matrix over 2_3 process
grid with the block size 2_2��(a) matrix distribution over grid and (b) distribution from processor
point of view.

Thus, if the number of processes is P, and the block size is m, then the block cyclic
data distribution may be written as

ig [�s mod P, \ s
P� , ig mod m�,

where s=w
ig
mx .

Suppose we have a set of processes considered as a logical process grid with P
rows and Q columns and a block-partitioned matrix with block size m_n. Then the
two-dimensional block cyclic distribution of the matrix can be regarded as a com-
bination of two such one-dimensional block cyclic distributions: one that distributes
the rows of the matrix over P processes and another that distributes the columns
over Q processes. That is, the matrix element indexed globally by (ig , jg) can be
written as

(ig , jg) [((p, q), (bp , bq), (il , jl)).

The distribution partitions the matrix into generalized blocks of size (m } P)_(n } Q),
each partitioned into (P } Q) blocks of the same size, going to a separate process.

Figure 2 shows an example of the homogeneous block cyclic distribution of a
12_12 matrix, block-partitioned with the block size 2_2 (m=2, n=2), over a
2_3 process grid (P=2, Q=3). In this case, generalized blocks are of size 4_6.

3. HOMOGENEOUS PROCESSES DISTRIBUTION WITH
HETEROGENEOUS DATA DISTRIBUTION

Let card(L)�P } Q. Let P } Q processes be distributed over P } Q most powerful
processors in such a way that just one process goes to each of these processors and

524 KALINOV AND LASTOVETSKY

let matrix M be distributed over the processes in accordance with the heterogeneous
two-dimensional block cyclic distribution presented below.

Suppose that a positive real number is associated with each processor to characterize
its relative performance. Then in addition to four numbers P, Q, m, and n parameteriz-
ing the homogeneous block cyclic distribution, the heterogeneous one is parameterized
also by a P_Q matrix R=[rij], elements of which characterize relative performances
of the corresponding processors. Its main difference from the homogeneous distribution
lies in heterogeneous data distribution inside a generalized block. As in the case of
the homogeneous distribution, a generalized (m } P)_(n } Q) block is partitioned
into (P } Q) blocks. But in the case of the heterogeneous distribution, the blocks are
not of the same size, but their sizes mij_nij depend on the performance of the
processors. In general,

mij =,(i, j, m, P, R), :
P&1

i=0

mij =m } P for all j,

nij =�(i, j, n, Q, R), :
Q&1

j=0

nij =n } Q for all i,

and m_n is the average size of the uneven blocks.
In the paper, we consider the simplest form of functions , and � deduced from

the assumption that the part of matrix M processed by a separate processor is
proportional to its performance. That is,

mij } nij=
m } P } n } Q } rij

�P&1
i=0 �Q&1

j=0 rij
.

FIG. 3. Example of a heterogeneous block cyclic distribution of a 12_12 matrix over 2_3
processor grid with the average block size 2_2��(a) matrix distribution over grid and (b) distribution
from processor point of view.

525HETEROGENEOUS DISTRIBUTION OF COMPUTATIONS

In particular, the above condition can be satisfied by the following choice of mij

and nij :

nij=nj=
�P&1

i=0 rij } n } Q
�P&1

i=0 �Q&1
j=0 rij

, mij=
rij } m } P
�P&1

i=0 rij
.

Figure 3 shows an example of the heterogeneous block cyclic distribution of a
12_12 matrix over a 2_3 processor grid (P=2, Q=3) with the average block size
2_2 (m=2, n=2), the generalized block size 4_6, and the matrix of processor
performances

R=\6
5

4
3

2
1+ .

4. IMPLEMENTATION OF HETEROGENEOUS DISTRIBUTION OF
COMPUTATIONS IN MPC

While implementing the heterogeneous strategies we need to operate with such
quantitative characteristics as relative speeds of processes. Traditional high-level
tools for parallel programming networks, which we know of, do not provide facilities
allowing the programmer to do so. Low-level tools, such as PVM and MPI, allow the
programmer to write parallel applications adaptable to performances of processors.
But the writing of such PVM�MPI applications is not supported directly by the tools
and is extremely complex, tedious, and error-prone just due to their low level.

Therefore, we implemented the heterogeneous strategies in mpC [12]��a dedicated
parallel language aimed at efficient portable modular programming heterogeneous
networks of computers. It provides language constructs allowing the programmer to
specify requirements on resources, necessary for efficient execution of the parallel
application, and the mpC programming system tries to satisfy the requirements taking
into account peculiarities of any particular heterogeneous network of computers.

The main idea underlying mpC is that an mpC application explicitly defines a
dynamic abstract heterogeneous computing network and distributes data, computa-
tions, and communications over the network. The mpC programming system uses
this information at run time to map the abstract computing network to any real
executing network of computers in such a way that ensures efficient running of the
application on this real network.

The mpC language is an ANSI C superset that introduces a new kind of managed
resource, computing space, defined as a set of virtual processors of different perfor-
mances connected with links of different communication speeds. At run time, the
virtual processors are represented by actual processes of the particular running
parallel application. The programmer manages the computing space by means of
creating and discarding regions of the computing space, named network objects, just
like he�she manages storage, creating and discarding data objects (regions of
storage). At any moment of program execution, just a set of defined network
objects represents the abstract computing network.

526 KALINOV AND LASTOVETSKY

Our mpC implementation of the HeHo strategy uses dedicated parallel means of
mpC for automatic process distribution while Cholesky factorization itself is performed
by ScaLAPACK processes. More details about the implementation of the HeHo
strategy can be found in [10].

The implementation of the HoHe strategy uses means of the mpC language both
for process distribution and for Cholesky factorization itself with calls to LAPACK
and BLAS routines for standard serial computations. More details about the
implementation of the HoHe strategy can be found in [11].

5. PERFORMANCE ANALYSIS

For performance analysis of a parallel algorithm solving a problem of size n on
p processors we use parallel efficiency E(n, p) defined in [8] as

E(n, p)=
Tseq(n)

pT(n, p)
,

where T(n, p) is the run time of the parallel algorithm, and Tseq(n) is the run time
of the best sequential algorithm on a processor. A parallel algorithm is said to be
scalable if its parallel efficiency depends on the problem size and the number of
processes only through their ratio.

To estimate the times of local computations, we use a very rough approximation.
It is assumed that the run time of the sequential Cholesky factorization on a
processor with performance s is given by N3�3s, and the time of local computations
is calculated in a manner similar to the time of sequential computations. This
means that if p processors of performance s are involved in parallel computations
then the time of local computations is given by N3�3ps. For the HoHo strategy, the
time tHoHo

comp of local computations is determined by the time of local computations
on the slowest processor having performance smin , tHoHo

comp =N3�3psmin . For the
HeHo strategy, the time of local computations tHeHo

comp is determined by the time of
local computations on the slowest process having performance s$min , tHeHo

comp =
N3�3ps$min . The process performance is calculated as s�e, where s is the performance
of the processor on which the process runs, and e is the number of processes
involved in computations. For a very heterogeneous network s$min is greater than
smin , because the HeHo strategy tries not to involve processes running on slower
processors in computations. For the HoHe strategy, the volume of data processed
by every processor is proportional to its performance. Therefore, the time tHoHe

comp of
local computations is the same for all involved processes, tHoHe

comp =N3�3psaver , where
saver is the average processor performance.

Ideally, if concurrent overheads could be neglected, speedups provided by the heter-
ogeneous strategies as compared to the homogeneous one would be approximated
as is presented in Table 1.

The overwhelming majority of local networks are Ethernet based. Therefore, our
estimation of communication overheads is based on the assumption that com-
munications between processors are purely sequential, which is very typical for

527HETEROGENEOUS DISTRIBUTION OF COMPUTATIONS

TABLE 1

Ideal Speedups Provided by the Heterogeneous Strategies as Compared
to the Homogeneous One

Strategy Speed-up

HoHe saver �smin

HeHo s$min �smin

a shared Ethernet. In addition, we approximate the time to transfer a message
between two processors by a linear function a+bL, where a is the time to prepare
the message for transfer (communication latency) and bL is the time to transfer L
doubles.

Cholesky factorization factors a symmetric, positive definite matrix A into a
product of a lower triangular matrix L and its transpose; i.e., A=L } Lt. One can
partition the matrices A, L, and Lt and write the system as

_A11

A21

A t
21

A22&=_L11

L21

0
L22& } _L t

11

0
L t

21

Lt
22 &=_L11L t

11

L21L t
11

L11Lt
21

L21Lt
21+L22L t

22& .

If L11 , the lower triangle Cholesky factor of A11 , is known, then the block equations
can be rearranged as

L21 � A21(L t
11)&1,

A22 � A22&L21 L t
21=L22L t

22 .

The factorization can be done by recursively applying the step outlined above to
the updated matrix A22 . The computations involve the following operations:

1. The largest A11 belonging to one process is selected and this process
computes L11 ;

2. L11 is broadcast to other processes of the grid column and the grid column
processes compute L21 ;

3. L21 is broadcast to processes of the other grid columns;

4. L21 is transposed using the broadcast values of the L21 on the grid
columns;

5. All processes update A22 .

This leads us to the estimate of the time of the communication

tcomm=t2+t3+t4 ,

where ti is the communication time of the i th operations. For the sake of simplicity
we assume that P=Q, n=m, and N is divided by nP without a remainder. During
the estimation of the HoHe strategy communication overhead we will proceed from
the two obvious statements:

528 KALINOV AND LASTOVETSKY

1. It takes not more than P2 steps of the algorithm to decrease the dimension
of the matrix A22 to nP (for the HoHo and HeHo strategies it takes P steps);

2. At every step of the L21 ring broadcast, not more than 2P&1 messages are
required (for the HoHo and HeHo strategies P&1 messages are required).

Thus the communication times of the HoHe strategy can be majored as

t2=(P&1) :
N�(nP)

i=1

(nP)2

2
b+P2a

=(P&1) NP \n
2

b+
1
n

a+;

t3=(P&1) :
N�(nP)

i=1

(N&(i&0.5) nP) nPb+P2(2P&1) a

=(P&1) N \N
2

b+
P(2P&1)

n
a+;

t4=(P&1) :
N�(nP)

i=1

(N&(i&0.5) nP) nPb+P2(P&1) a

=(P&1) N \N
2

b+
P(P&1)

n
a+ .

If P is large enough, the communication overhead can be approximated as

tHoHe
comm &PN2 \b+

3P2

Nn
a+ .

A similar analysis gives the estimate of communication overheads for the HoHo
and HeHo strategies as

tHoHo
comm & tHeHo

comm &PN 2 \b+
2P
Nn

a+ .

They are the same in the case of MPI using only one protocol for communications
between all processes. If a more efficient protocol is used for communication
between processes running on the same processor, then tHoHo

comm>tHeHo
comm .

For simplicity, we assume that T(n, p)=tcomp(n, p)+tcomm(n, p). Let sseq be the
performance of a processor on which sequential factorization has been carried out.
Thus the estimated parallel efficiency for different strategies is presented in Table 2.

In our case, the problem size n=N2 and the number of processors p=P2. This
means that for the algorithms to be scalable, their parallel efficiency should depend
on the matrix dimension N and the grid dimension P only through their ratio. It
is not true for all the considered strategies; hence these parallel algorithms are not
scalable for Ethernet-like networks.

529HETEROGENEOUS DISTRIBUTION OF COMPUTATIONS

TABLE 2

Estimated Parallel Efficiencies for Various Strategies

Strategy Parallel efficiency

HoHo \sseq \ 1
smin

+P2 V \P
N

b+
2
n \P

N+
2

+++
&1

HeHo \sseq \ 1
s$min

+P2 V \P
N

b+
2
n \P

N+
2

+++
&1

HoHe \sseq \ 1
saver

+P2 V \P
N

b+
3P
n \P

N+
2

+++
&1

The HoHe strategy concentrates on the difference in processor performance and
would be most effective on small networks. The main disadvantage of this strategy
is that it leads to non-Cartesian data distribution. This increases the number of
algorithm steps in P times and leads to nonscalability even in the case of networks
with parallel communications. The situation can be improved by restrictions on
possible choices of nij and mij so that they construct a real 2D grid [4] (nij=nj ,
mij=mi). In this case it takes no more than 2P&1 steps of the algorithm to
decrease the dimension of the matrix A22 to nP, the number of algorithm steps
increases only by two times, and the algorithm becomes scalable for networks with
parallel communications. But in the case of fast and relatively small networks this
restriction can lead to a loss of a possible speedup.

Strange as it may seem, the straightforward and easy-to-accomplish HeHo
strategy turns out to be very attractive. It provides the same scalability of the
algorithm as HoHo. Compared to the HoHo strategy its communication overheads
are not greater and its time of local computation can be shorter. But there is a
pitfall in a straightforward implementation of this strategy. The point is that this
strategy does not take into account processor memory size. For a small application,
the total size of which does not exceed the size of main memory, it works quite well.
But for an application dealing with big matrices it can cause swapping, which in
turn causes a slowing down in the parallel application. Therefore to use this
strategy it is necessary to restrict the number hl of processes running on l th
processors in accordance with the estimated size of the application and the main
memory available.

6. EXPERIMENTAL RESULTS

We compared three distribution strategies:

v The HeHo strategy��heterogeneous distribution of processes over proces-
sors�homogeneous distribution of data over the processes implemented in mpC
with calls to ScaLAPACK.

530 KALINOV AND LASTOVETSKY

TABLE 3

Relative Performances of Processors Demonstrated on Serial Cholesky Factorization

1 2 3 4 5 6 7 8

1.9 1.9 1.9 1.9 1 2.8 2.8 7.1

v The HoHo strategy��homogeneous distribution of processes over proces-
sors�homogeneous distribution of data over the processes, the traditional distribu-
tion strategy implemented in ScaLAPACK.

v The HoHe strategy��homogeneous distribution of processes over proces-
sors�heterogeneous distribution of data over the processes implemented in mpC
with calls to BLAS and LAPACK.

The comparison was performed for the Cholesky factorization on a network of
workstations. In our experiments we used different parts of a local network consist-
ing of eight uniprocessor Sun workstations of different performances interconnected
via 10 Mbit Ethernet. MPICH 1.0.13 was used as a particular communication
platform. All workstations executed the same copy of code. Relative performances
of the workstations, obtained by means of execution of the LAPACK routine
dpotf performing serial Cholesky factorization, are shown in Table 3. In our
experiments we used free BLAS and LAPACK.

FIG. 4. Speedup achieved by the HeHo and HoHe distribution strategies relative to the
homogeneous one on the heterogeneous networks consisting of four workstations, 1, 2, 5, and 6, 2_2
grid.

531HETEROGENEOUS DISTRIBUTION OF COMPUTATIONS

FIG. 5. Speedup achieved by the HeHo and HoHe distribution strategies relative to the homo-
geneous one on the heterogeneous networks consisting of six workstations, 1, 2, 3, 4, 5, and 6, 2_3
grid.

We compared speedups achieved by the heterogeneous strategies as compared to
the homogeneous one on the following three heterogeneous networks:

v network 1-2-5-6 consisting of four workstations 1, 2, 5, and 6, 2_2 grid;

v network 1-2-3-4-5-6 consisting of six workstations 1, 2, 3, 4, 5, and 6,
2_3 grid;

v network 1-2-3-4-5-6-7-8 consisting of all eight workstations of the
local network, 2_4 grid.

Figures 4, 5, and 6 present the experimental results. While experimenting, we
used the block sizes found experimentally to provide better run time: n=m=6 for
the HoHo and HeHo strategies and n=m=20 for the HoHe strategy. For the
HeHo strategy two processes were running on each processor.

One can see that the two heterogeneous strategies provided very good speedups.
For our network the HoHe strategy appeared more efficient than the HeHo one.
Just as it was predicted by our performance analysis, the advantage of HoHe over
HeHo as well as both of them over HoHo fell off as the network size grew. For a
small network the run time is determined by the time of local computations. As the
network size grows the contribution of communications in the total run time
increases and the profit of the heterogeneous strategies decreases because it is due
to better distribution of computations the weight of which lowers.

532 KALINOV AND LASTOVETSKY

FIG. 6. Speedup achieved by the HeHo and HoHe distribution strategies relative to the homo-
genous one on the heterogeneous networks consisting of eight workstations, 1�8, 2_4 grid.

While estimating these results, it is necessary to take into account that the
ScaLAPACK implementation of the Cholesky factorization is more efficient than
the mpC one. For example, on the homogeneous network of workstations 1, 2, 3,
and 4, the ScaLAPACK application is about 100 faster than the mpC one. Note,
that the result is not due to the non-Cartesian nature of the heterogeneous block
cyclic matrix distribution, because the same result is also obtained for a pure mpC
application (that is, without calls to ScaLAPACK) implementing the homogeneous
block cyclic matrix distribution. So it could be explained by a more rational
communication pattern used in ScaLAPACK.

7. CONCLUSION

This paper has presented two different strategies of heterogeneous distribution of
computations for linear algebra problems taking into account processor performances.
It has been shown that for heterogeneous parallel environments the heterogeneous
strategies are more efficient than the traditional homogeneous strategy.

The HoHe strategy (homogeneous distribution of involved processes over
processors with each process running on a separate processor and heterogeneous
block cyclic distribution of data over the processes) has turned out to be more
efficient than the HeHo strategy (heterogeneous distribution of involved processes

533HETEROGENEOUS DISTRIBUTION OF COMPUTATIONS

over processors with homogeneous block cyclic distribution of data over the processes)
on the networks on which we experimented. The main disadvantage of the HoHe
strategy is non-Cartesian nature of the data distribution. This leads to additional
communications that can be essential in the case of large networks. Moreover the
non-Cartesian nature leads to nonscalability of the linear algebra algorithms
scalable in case of Cartesian data distribution and networks provided parallel
communications. Note that on Ethernet-like networks all these algorithms are not
scalable even in the case of Cartesian data distributions.

The HeHo strategy is easy to accomplish. It allows us to utilize a lot of high-quality
software, such as ScaLAPACK, developed for homogeneous distributed memory
systems in heterogeneous environments and to obtain a good speedup with minimal
expenses.

Implementation of the heterogeneous strategies was facilitated by the mpC language
which supported an advanced approach to the problem of distribution of computations
over processors in heterogeneous parallel environments. In particular, mpC provided
means for rather easy and handy distribution of both processes involved in computa-
tions over processors and data over the processes taking into account their performances.

Profit of the heterogeneous strategies depends on ratios of the network equip-
ment speed and processor performances. The faster network and the slower
processors, the more profitable the heterogeneous strategies are. Since the trend is
that the increase of network equipment speed surpasses the increase of processor
performance, in the future, fast network expediency of the heterogeneous strategies
will be warranted.

ACKNOWLEDGMENTS

We thank Jack Dongarra and Antoine Petitet for their valuable ideas and useful comments on
preliminary versions of the paper.

REFERENCES

1. P. Alpatov, G. Baker, C. Edwards, J. Gunnels, G. Morrow, J. Overfelt, R. van de Geijn, and Y.-J. J. Wu,
PLAPACK: Parallel linear algebra libraries design overview, in ``Proc. of the SC97 Conference,'' ACM,
San Diego, CA, 1997.

2. E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,
S. McKenney, S. Octrouchov, and D. Sorensen, ``LAPACK Users' Guide,'' 2nd ed., SIAM, Philadelphia,
1995.

3. D. Arapov, A. Kalinov, A. Lastovetsky, I. Ledovskih, and T. Lewis, A programming environment
for heterogeneous distributed memory machines, in ``Proceedings of the Sixth Heterogeneous
Computing Workshop (HCW'97),'' pp. 32�45, IEEE Comput. Soc., Geneva, Switzerland, 1997.

4. O. Beaumont, V. Boudet, A. Petitet, F. Rastello, and Y. Robert, ``Data Allocation Strategies for
Dense Linear Algebra Kernels on Heterogeneous Two-Dimensional Grids,'' Technical Report
RR-99-31, LIP, ENS, Lyon, 1999.

5. L. S. Blackford, A. Cleary, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling, A. Petitet, H. Ren,
K. Stanley, and R. C. Whaley, ``Practical Experience in the Dangers of Heterogeneous Computing
UT,'' Technical Report CS-96-330, University of Tennesee, 1996.

534 KALINOV AND LASTOVETSKY

6. J. Choi, J. J. Dongarra, S. Ostrouchov, A. P. Petitet, D. W. Walker, and R. C. Whaley, ``The Design
and Implementation of the ScaLAPACK LU, QR, and Cholesky Factorization Routines,'' Technical
Report CS-94-246, University of Tennesee, 1994.

7. J. Dongarra, J. Du Croz, I. Duff, and S. Hammarling, A set of level 3 basic linear algebra subprograms,
ASM Trans. Math. Software 16, No. 1 (1990), 1�17.

8. G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker, ``Solving Problems on
Concurrent Processors,'' Vol. 1, Prentice�Hall, Englewood Cliffs, NJ, 1988.

9. B. Hendrickson and D. Womble, The torus-wrap mapping for dense matrix calculations on massively
parallel computers, SIAM SSC 15, No. 5 (1994).

10. A. Kalinov and A. Lastovetsky, mpC+ScaLAPACK=Efficient solving linear algebra problems on
heterogeneous networks, in ``Proceedings of the 5th International Euro-Par Conference,'' Lecture
Notes in Computer Science, Vol. 1685, pp. 1024�1029, Springer-Verlag, Toulouse, 1999.

11. A. Kalinov and A. Lastovetsky, Heterogeneous distribution of computations while solving linear
algebra problems on networks of heterogeneous computers, in ``Proceedings of the 7th International
Conference on High Performance Computing and Networking Europe (HPCN Europe'99),'' Lecture
Notes in Computer Science, Vol. 1593, pp. 191�200, Springer-Verlag, Amsterdam, 1999.

12. A. Lastovetsky, ``The mpC Programming Language Specification,'' Technical Report, ISPRAS,
Moscow, 1994.

ALEXEY YA. KALINOV is a senior researcher at the Institute for System Programming, Russian
Academy of Sciences. His research interests are in parallel and distributed programming in hetero-
geneous environments, compilers, and computer modeling of human-steering vehicles. He received his
MS in mathematics and engineering from the Moscow Aviation Institute in 1980 and his Ph.D. in
engineering from the Institute for Research and Development of Tractors in 1990.

ALEXEY L. LASTOVETSKY is a leading researcher at the Institute for System Programming,
Russian Academy of Sciences. His research interests include parallel and distributed programming,
programming languages, compilers, and theory of programming languages. He received his MS in
mathematics and engineering and Ph.D. in computer science from the Moscow Aviation Institute in
1980 and 1985, respectively, as well as his Doctor of Sciences in physics and mathematics from the
Institute for System Programming in 1997. He has previously developed an algebraic approach to
semantics of programming languages and an ANSI C superset for vector and superscalar computers. He
teaches at the Moscow State University and at the Moscow Institute for Physics and Technology. He
is on the editorial board of Programmirovanie (a journal of the Russian Academy Sciences on computer
science also distributed as Programming and Computer Software by Plenum Publishing). He was on the
advisory committee of the software track of HICSS'30 and HICSS'31 and on the program committee
of PDPTA'99.

535HETEROGENEOUS DISTRIBUTION OF COMPUTATIONS

	1. INTRODUCTION
	FIG. 1

	2. HETEROGENEOUS PROCESS DISTRIBUTION WITH HOMOGENEOUS DATA DISTRIBUTION
	FIG. 2

	3. HOMOGENEOUS PROCESSES DISTRIBUTION WITH HETEROGENEOUS DATA DISTRIBUTION
	FIG. 3

	4. IMPLEMENTATION OF HETEROGENEOUS DISTRIBUTION OF COMPUTATIONS IN MPC
	5. PERFORMANCE ANALYSIS
	TABLE 1
	TABLE 2

	6. EXPERIMENTAL RESULTS
	FIG. 4
	TABLE 3
	FIG. 5
	FIG. 6

	7. CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

