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A tree-based multicast algorithm for wormhole-switched networks which makes

use of multiple edge-disjoint spanning trees is presented. The disjoint spanning-tree

multicast, or DSTM, algorithm provides deadlock-free multicast routing that is fully

compatible with unicast. Application of the DSTM algorithm to 2-dimensional torus

networks is considered. A family of constructions of two spanning trees in the torus

is given along with a formal proof of their edge-disjointness. Two constructions from

this family are selected and shown to produce diameters no greater than twice that of

the torus. Flit-level simulation results are presented to show that DSTM outperforms

the best single spanning tree multicast approach by up to a factor of two. The DSTM

algorithm is also simulated for different spanning tree constructions. The results

show that our novel tree construction is significantly better for multicast than those

produced by a general tree construction method that applies to arbitrary-topology

networks [16]. Finally, two approaches to providing single link fault tolerance with

DSTM are presented and evaluated.
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1. INTRODUCTION

Multicast communication in a multicomputer system involves one node sending a mes-
sage to a subset of the other nodes in the system. Multicast can be used to build many
useful operations such as barrier synchronization, cache invalidation in distributed shared
memory systems, and collective communication as defined in MPI. Since these operations
are widely used, low communication latency and small latency variation for multicast
messages are extremely important.

Among the existing switching techniques, wormhole switching has proven to be the
most practical low-latency communication technique for multiprocessor systems and cluster
computing applications [14, 15]. Recent research has begun to investigate how to implement
deadlock-freemulticast efficiently with wormhole switching. Most of this work has focused

�This research was supported by the National Science Foundation under Grant CCR-9803741.

1



2 WANG AND BLOUGH

on path-based approaches that use multidestination worms [10, 13, 15, 20]. Path-based
approaches suffer from either extremely long paths (leading to high latency and large
latency variation) or multiple costly message startups.

Research on tree-based approaches [7, 11] has proposed variants of up-down routing on
a globally-agreed spanning tree. In basic up-down routing, a spanning tree is constructed
and is known to all nodes. A message is first transmitted along up links which lead the
message towards the root, and is then sent along down links which lead the message away
from the root. If messages are confined to using only the links of the spanning tree, then the
root of the tree becomes a severe bottleneck. Gerla [7] and Libeskind-Hadas [11] provide
variations of up-down routing for multicast that allow off-tree links to be used in some
cases but their approaches still result in unbalanced traffic in the network. With most of
the traffic concentrating on tree links, congestion problems still occur, especially at the tree
links close to the root.

In this paper, a tree-based multicast algorithm, referred to as disjoint spanning tree
multicast (DSTM), is proposed. DSTM uses multiple edge-disjoint spanning trees in a
network and makes use of modified up-down routing to provide deadlock-free multicast
independently within each tree. In this paper, we focus on implementation and evaluation
of DSTM in 2-dimensional (2-D) torus networks.

A scalable header scheme for single-tree multicast is first introduced, followed by the
routing algorithm which makes use of a combination of source routing and distributed
routing. A construction of two edge-disjoint spanning trees in 2-D torus networks is then
given, leaving only two links unused in the entire network. Each unicast message is
routed using the shorter of the paths in the two spanning trees. Each multicast message is
assigned completely to one of the two trees at random. Since all but two links are used
as tree links, traffic is better balanced throughout the network as compared to single tree
approaches. Both analytic and simulation results demonstrate that significant performance
improvements are achieved by our algorithm.

Our tree construction is compared with the Roskind and Tarjan algorithm [16] which
gives a construction of multiple edge-disjoint spanning trees in arbitrary networks. We
show that our tree construction produces trees with significantly shorter maximum and
average path lengths compared to the Roskind and Tarjan algorithm applied to 2-D torus
networks. Finally, we present and evaluate two methods for tolerating single link faults
using dual edge-disjoint spanning trees, assuming global fault information and local fault
information respectively.

The DSTM Algorithm is sufficiently general to be used in any wormhole-switched
network in which multiple edge-disjoint trees can be constructed. This includes most
common networks possessing a regular structure and many irregular networks as well. For
these networks, DSTM can use the full resources of the network more efficiently than single
tree or single path approaches.

2. RELATED WORK

Recent research on hardware supported multicast in wormhole-routed networks can be
broadly divided into path-based and tree-based approaches. Path-based approaches either
construct a single path spanning all nodes of the network [10, 13, 20] or use an underlying
deadlock-free unicast routing algorithm to construct multiple paths which together cover
the destinations of the multicast [15]. One drawback of the path-based approaches is that
the path lengths can be extremely long, especially in the former approach, and this leads to
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high latency variation. In the latter approach, multiple message startups are required which
cause worm transmissions to be serialized. This approach also incurs multiple startup
penalties, each of which can be a significant fraction of total unicast message delay.

Tree-based multicast algorithms attempt to deliver the message to all destinations in a
single multi-head worm that splits at some routers. Recent research on hardware supported
tree-based multicast in wormhole-routed networks [7, 11] uses up-down routing with a
globally-agreed spanning tree to avoid deadlock. Up-down routing was originally proposed
for unicast communication. In up-down routing, one node is chosen and a spanning tree is
constructed rooted at this node. All links are designated as up or down links with respect to
the root. Tree links are the links on the spanning tree, while non-tree links, or cross links,
are the remaining network links that are not on the tree. A link is up if it goes from a node
at a lower level in the tree to a node at a higher level. A link from a node at one level
to a node at a lower level is a down link. For nodes at the same level, node IDs are used
to classify links as either up or down. Up-down routing routes a message along zero or
more up links, followed by zero or more down links. Since up-down routing uses links in
a strictly monotonic order, circular waiting is prevented and deadlock freedom is achieved
for unicast.

When up-down routing is used for multicast, routers need to be augmented with repli-
cation capability. Messages are delivered to all destinations in a single multi-head worm
that splits at some routers. Each branch of the message may advance independently after
the split. However, deadlock is an issue and the problem is exacerbated if cross links are
used. With cross links, one router may have multiple predecessors. This can introduce
dependencies between the branches of different multicast trees as shown in Figure 1 (a). In
this example, two multicast messages M1 and M2 both want to reach destination nodes 4
and 6. Message 1 is waiting for the links from node 3 to node 6 which is held by message
2, while message 2 is waiting for the link from node 2 to node 4 which is held by message
1. Multiple predecessors also introduce dependencies between the diverging branches of
the multicast tree for a single multicast worm. In the example shown in Figure 1 (b), a
multicast worm is deadlocked by a unicast worm. In this example, message 1 wants to
reach destination nodes 4 and 6, and message 2 wants to reach destination node 6. This
situation can occur when message 1 is requesting the link from node 2 to node 4, which is
held by message 2, and message 2 is requesting the link from node 5 to node 6, which is
held by message 1. This leads to a deadlock as is evident from the figure.

Message 2’s destination: (6)

(b) Message 1’s destinations: (4, 6)(a) Message 1’s destinations: (4, 6)

Message 2’s destinations: (4, 6)
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FIG. 1. Deadlock between (a) two multicast worms and (b) a multicast worm and a unicast worm.
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In [7], Gerla, et al. allow unicast messages to use cross links as shortcuts. Multicast
is implemented by a unicast from the source to the root followed by a multicast to all
destination nodes initiated by the root. Multicast messages are restricted to tree links
only. Multicast messages are totally ordered by the root and therefore deadlock will not
occur between two multicast messages. However, when a multicast message is blocked by a
unicast message at an intermediate node, it has to suspend its transmission and yield its path
to the unicast message. Its transmission is resumed after the unicast message finishes using
those links. This prevents deadlock between unicast messages and multicast messages.
However, a procedure to reassemble multicast messages is then required at intermediate
routers. Gerla’s design favors unicast traffic but the approach can also be modified to favor
multicast traffic. However, in either case, the intelligence required in the router to handle
the blocking situation complicates the router design considerably.

Libeskind-Hadas, et al. [11] loosen the tree link requirement in their single phase adaptive
multicast (SPAM) algorithm. SPAM distinguishes between down tree links and down cross
links. A unicast message is routed along zero or more up links, followed by zero or more
down cross links, followed by zero or more down tree links. A multicast message uses
this approach to reach the least common ancestor of its destination set. It is restricted to
down tree links after that. The algorithm specifies that if multiple output ports are required
at a single intermediate router, they must be reserved atomically. This ensures that two
multicast messages do not deadlock at port reservation time. The performance of SPAM is
evaluated in [11] and a complete proof of its deadlock freedom is given in [12].

The above two algorithms, although they loosen some of the restrictions of pure up-down
routing, still suffer from the problem of traffic that is not balanced between tree links and
non-tree links. This produces a potential congestion problem, especially at the tree links
around the root while under-utilizing most of the cross links. In general, a spanning tree in a
network consisting ofN nodes usesN�� links as tree links. This is only a small portion of
the links in most commonly used regular topologies and does not increase with the addition
of links. A large portion of the scarce network resources, and thus the communication
bandwidth, is wasted.

A method to better balance the traffic load is to construct multiple edge-disjoint span-
ning trees in the network, using as many links as tree links as possible. Although, to our
knowledge, we are the first to study the multiple tree approach for wormhole-routed multi-
cast, others have studied the combinatorial problem of constructing multiple edge-disjoint
spanning trees in a network. A number of works have studied this problem in hypercubes,
either focusing on the existence or on the construction of multiple edge-disjoint spanning
trees [1, 2, 3, 4, 8, 9, 18]. Roskind and Tarjan [16] presented a construction of a maximal
set of edge-disjoint spanning trees of minimum total edge cost in an arbitrary connected
graph. The Roskind and Tarjan algorithm, although it provides a general construction for
an arbitrary topology network, might not produce trees that are well suited for multicast.

This paper proposes the use of multiple edge-disjoint spanning trees for multicast commu-
nication in direct networks. We introduce a scalable header scheme for tree-based multicast
that works with the routing procedure at each router. Considering the 2-dimensional torus
network as the topology of the target system, we give a construction of two edge-disjoint
spanning trees in the network. Flit-level simulation results show greatly reduced latency
and significantly postponed network saturation compared with existing single spanning tree
approaches. Comparison is also carried out between the structures of our trees and those
produced by the Roskind and Tarjan general tree construction algorithm. It is shown that
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our tree construction yields significantly shorter combined diameter and average distance.
Single link faults can be tolerated by DSTM also, resulting in only relatively small increases
in diameter and average distance.

Another recent tree-based approach for meshes is based on the concept of a quad-branch
multicast tree [23]. While this approach is tree-based, it sends separate copies of a multicast
message into sub-trees of the source and hence it produces multiple message start-ups. It
also uses virtual channels and employs the input-buffer-based switch architecture [19],
which assumes that routers have enough buffer space to store entire multicast packets.
This capability is used to break potential deadlocks. Hence, the approach is more like
virtual-cut-through switching than wormhole switching in this regard.

3. MULTICAST ALGORITHM

The Disjoint Spanning Tree Multicast (DSTM) Algorithm is a deadlock-free tree-based
multicast algorithm. It constructs multiple edge-disjoint spanning trees in a network and
uses our deadlock-free multicast routing algorithm modified from SPAM [11] within each
tree. Deadlock freedom is ensured between messages in different trees because the trees are
completely edge-disjoint. The fact that a maximum number of links are used as tree links
better balances the traffic in the network. This section introduces the DSTM Algorithm,
first describing the multicast routing procedure used within a single spanning tree and then
discussing how the overall algorithm works using multiple trees.

3.1. Single Tree Multicast
In our algorithm, we make use of a modified version of the SPAM [11] algorithm as

the underlying deadlock-free multicast routing algorithm. Only tree links are used. A
multicast message is first routed to the least common ancestor (LCA) of its destination set
along zero or more up links followed by zero or more down links. The message is then
split at the LCA and is restricted to using only down links after that. In the special case
where the multicast has only one destination, i.e, a unicast, the LCA is the destination and
the multicast algorithm is reduced to a unicast algorithm.

A multicast message uses an asynchronous multi-header worm [14] to reach its desti-
nations. Multiple branches advance independently without coordinating with each other.
Header flits are used to set up the routers along the path(s) while data flits are pipelined
along all branches, being replicated at all splitting routers. A data flit is replicated at a
splitting router only if all enabled outgoing links have free buffer space. When one branch
is blocked, some of the trailing flits (header flits, or data flits, or both) may be blocked
behind a splitting router. In this situation, other non-blocking branch(es) may continue
advancing with the flits that already passed the blocking point. Empty flits or idle time
slots are added to those branches until the blocking is resolved.

3.1.1. Scalable Header Scheme

Our tree-based multicast algorithm requires atomic link reservation in order to avoid
deadlock at link reservation time. In [11], this approach is proposed with headers that
consist of a bit string having one bit for each possible destination. This approach, however,
is not scalable. In this subsection, we present a new scalable header scheme which enables
atomic link reservation.

Header flits carry the routing information either implicitly or explicitly [5, 6]. Implicit
routing information can be either the address of a destination node or the offset to it.
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Intermediate routers make routing decisions locally on receiving header flits carrying
implicit routing information. Explicit routing information is often used in source routing
where the source prepares the complete routing information for all routers along the path.
Intermediate routers simply set up the routers as indicated. With multicast, it is not feasible
to carry all destinations’ information in a single header flit. However, with wormhole
routing where fixed size buffers or even a single buffer are present at the routers, atomic
link reservation requires a router to be aware of all requested outgoing links based on the
first arriving header flit without waiting for the complete destination set to arrive.

We propose a scalable header scheme which uses a combination of implicit and explicit
routing information. All-header encoding scheme [5] is used with each header flit carrying
one address plus a few ancillary bits, explicitly indicating the link reservation information
at the addressed router. The node address is used by intermediate routers to route the flit
based on local routing decisions and the link reservation information tells a designated
router the requested outgoing links for the message. Since a splitting router needs to be
aware of all outgoing links requested by a multicast, a header flit is needed for each splitting
node in addition to each destination node. A partial order is enforced so that the header flits
for all nodes that are on a single path follow the path order. This is to ensure that the first
header flit that arrives at a splitting router contains the necessary information for atomic
link reservation. The header flits for nodes that are in different branches after the splitting
node may have any order in the message.

In the example of a network connected by routers with four inter-router connection ports,
an outgoing link is referred to as “Oi” with i being the port number to which it connects.
One more port is used for communication between a router and its local node, where a
consumption link forwards data from the router to the local node. The port corresponding to
the consumption link is henceforth denoted by “C”, . The header flits then have a format of
f“Node”, “C”, “O�”, “O�”, “O�”, “O�”, “S”g. Field “Node” carries the ID or the address
of the router to be reached. Fields “C”, “O�”, “O�”, “O�”, “O�” are each a single bit,
carrying explicit outgoing link reservation information for the addressed router. A value
of � indicates the corresponding link is requested by this multicast. Bit “S” is a splitting
flag indicating whether this flit has passed the first splitting node or not. In a multicast, this
bit is initialized to � for all header flits at the source node and is modified to � at the first
splitting point. Unicast messages do not use the “S” field.

This header scheme is described with an example in Figure 2 where a binary multicast
spanning tree is constructed in the network, assuming the left branches of all nodes are O�

and the right branches are O�. Node IDs are the numbers inside the circles.
In Figure 2, a binary spanning tree is constructed rooted at node 1. A multicast message

is sent by node � to the set of destination nodes f�� �� �� �g. Node � prepares header flits as
shown in Figure 2. The dashed lines indicate the paths taken by the message. The message
is first routed to the least common ancestor node 1, then split at node 1 and routed down
to both branches. The left branch is again split at node 2. A total of � paths exist in this
multicast. The header flits include all destination nodes f�� �� �� �g and the splitting nodes
f�� �g. Partial order should be maintained for nodes on each path. Previous header flits
set the routers along the path(s) appropriately until the last splitting router(s) and are then
stripped from the header. A trailing header flit follows one of the paths till the last reserved
router on its path, and is then routed to a farther destination, setting the routers along its
way. In the example shown in Figure 2, the path orders f�� �� �g, f�� �� �g and f�� �g should
be maintained in the header. However, nodes on different paths, such as nodes 6 and 8,
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FIG. 2. Header scheme in tree-based multicast

can be in any order after the splitting node 1. We have header flits ordered as f�� �� �� �� �g
in Figure 2. Many different orders can produce the necessary partial order, however, such
as f�� �� �� �� �g, f�� �� �� �� �g, etc. An algorithm by which source nodes can compute a
correct header encoding for a multicast message is given in Appendix A.

3.1.2. Routing Procedure

In conjunction with our scalable header encoding scheme, a distributed routing procedure
is carried out at intermediate routers. Upon the arrival of a header flit at a router, field
“Node” is first checked. If field “Node” contains the address of the local node, this header
flit is stripped from the header and consumed locally. The link reservation information
in this flit is used to set up the router. A � in field “C” indicates that the local node is a
destination and the consumption channel needs to be reserved. Otherwise, the local router
is a splitting router. A node can also be both a destination and a splitting node whenC � �

and at least one Oi � �. If the node is a splitting node, the router sets a local split flag and
all tailing headers will have their “S” field set as they pass through.

For header flits that are not addressed to the local node, field “S” is used to identify
whether this flit has passed the least common ancestor (LCA) where the first split occurs. A
header flit that has not yet reached the LCA should follow the path reserved previously by
the first header flit. When the “S” bit is set, the flit is routed directly towards its destination
based strictly on local routing decisions. Field “S distinguishes a header flit in up-routing
from the same flit in down-routing, in which the flit is destined to a descendant node of the
local router, but needs to be routed up to the LCA first. In the example shown in Figure 2,
the header flit for node 6 passes through node � twice, once going up the tree and again
coming down. The flit has the value f�� 	���� 	���� 	���� 	���� 	���� 	���g along the up route
and the value f�� 	���� 	���� 	���� 	���� 	���� 	���g along the down route. This enables the
router at node � to distinguish these cases and determine how to route the flit in each case.

In summary, our single tree multicast scheme is scalable and uses a combination of source
routing and distributed routing. The source node prepares headerflits for the splitting routers
and the destination routers, indicating requested outgoing links at an addressed router by
accompanying the addresses with a few bits of link reservation information. Intermediate
routers need to have enough intelligence to route a header flit in a distributed fashion based
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on local decisions, following up-down routing. Partial order ensures that the intermediate
routers are ready for header flits coming later along the same path.

3.2. Disjoint Spanning Tree Multicast Algorithm
3.2.1. Algorithm Overview

In a 2-D N -node torus network, there are �N links. Since a spanning tree uses N � �

links in any network with N nodes, a maximum of � edge-disjoint spanning trees can be
constructed in a 2-D torus network. In a network comprised of two edge-disjoint spanning
trees, there is a path in each spanning tree connecting any two given nodes. To save
network resources, we use the tree with the shorter path to transmit unicast messages.
While for multicast messages, since the amount of resources that will be taken can not be
easily foreseen, a single tree is picked randomly for each multicast.2 Alternatively, the
destination set for an individual multicast could be partitioned into two multicast messages
each transmitted in one of the trees to a subset of the destination nodes. However, this
will increase computational complexity and introduce more traffic, and is therefore likely
to have worse performance.

For both unicast and multicast messages, our routing algorithm described in Section 3.1
is used in each tree. All transmission is restricted to tree links. We give a construction in
Section 4 which leaves only two links as non-tree links. Traffic distributes among all but
two network links. Deadlock freedom is achieved within each tree as in standard up-down
routing [7]. Note that, to guarantee that the trees are truly edge-disjoint, two consumption
channels are needed at each node, one for each tree to consume the messages arriving over
that tree. DSTM is then deadlock-free because the two trees are completely edge disjoint.

3.2.2. Router Requirements

Two distinct approaches have been proposed for tree-based multicast using cut-through
switches. The approach adopted in this paper is the use of asynchronous multiheader worms
with wormhole switching. This approach requires coordinatedflow control among multiple
branches after a split point in the multicast tree. It also requires that links representing
multiple children of a node in the multicast tree be reserved atomically. The primary
advantage of this approach is that it can achieve deadlock freedom within the wormhole
switching framework so that only a single flit buffer per virtual channel is required at
each router. The requirements for coordinated flow control and atomic link reservation are
necessary whether the multicast algorithm uses a single tree as in [11] or multiple trees as
in DSTM.

An alternate approach proposed in [23] prevents deadlock and also avoids coordinated
flow control by buffering complete multicast packets within a router. This is similar to
virtual cut through switching in preventing deadlock. It also allows flits to be copied to one
output port while buffering them for later copying to a distinct output port. This avoids the
need for coordinated flow control. The primary disadvantage of this approach is the need
for very large buffers inside the routers.

�Under this assumption, when a long multicast message is split into multiple multicast packets which are each
sent through a random tree, packets could arrive out of order at some destinations. As in any packet-switched
network, there must be a layer of software to assemble and reorder packets at destination nodes. Note that a
similar situation can occur if adaptive routing algorithms are employed, even for unicast. If desired, this situation
can be avoided by simply forcing all packets from the same message to use the same multicast tree.
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The primary additional cost imposed on the router when going from a single multicast
tree to multiple trees is the need to store information in each router about each tree. So for
DSTM, the storage cost inside each router is approximately doubled. It is not necessary to
store the entire multicast tree in each router. In our approach, nodes are ordered according
to a post-order traversal of the tree. Each node is then required to store, for each of its
sub-trees, the lowest and highest numbered nodes within the sub-tree. For the binary tree
construction presented in this paper, this requires 
 logN bits of storage for one tree vs.
� logN bits for two trees. Minor additional logic is required for DSTM to determine which
tree is being used from the link on which the header flit arrives. The information of that tree
is then used to make the routing decision, which is done just as in the single tree multicast
algorithm.

4. CONSTRUCTION OF EDGE-DISJOINT SPANNING TREES IN
TWO-DIMENSIONAL TORUS NETWORKS

In this section, we prove that any 2-dimensional torus network contains two edge-disjoint
spanning trees. The proof is constructive and, hence, provides a method to produce two
such spanning trees given any 2-D torus network. We also discuss the structure of the trees
produced by our construction.

Theorem ���� Two edge-disjoint binary spanning trees can be constructed in any
2-dimensional torus, with 2 edges unused.

Proof. Given aK�M torus (K columns andM rows) as shown in Figure 3, let nodes
R� andR� be two starting nodes to construct tree 1 and tree 2, respectively. Henceforth, refer
to these two trees as T� and T�. Nodes are denoted by N subscripted by their coordinates,
with the first coordinate representing the column and the second coordinate representing the
row. For example, R� and R� are denoted as Nx��y� and Nx��y� respectively. In general,
R� and R� could have the same x coordinate or y coordinate, or R� and R� could even be
the same node. However, in this constructive proof, we assume x� �� x� and y� �� y�.

(x , y ) 1 1

(x , y ) 2 2
1 

tree edges of T  

tree edges of T  

1

2
P(Q)

x

y

R  : starting node of tree 1 (T  )1 

2R  : starting node of tree 2 (T  )2

FIG. 3. Construction of dual edge-disjoint spanning trees in a torus network

For any integer i used as x coordinate in a torus with K columns, we define i� �

�i��
 mod K and i� � �i� �
 mod K. For any integer j used as y coordinate in a torus
with M rows, we define j� � �j � �
 mod M and j� � �j � �
 mod M .

We define Hi�j to be the edge connecting node Ni�j and Ni��j , and Vi�j as the edge
connecting node Ni�j and Ni�j� . H��j denotes all the edges in row j, i.e. H��j � fHi�j �

i � f�� ����K � �gg. Note that the edges of H��j form a cycle. Similarly, Vi�� denotes all
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the edges in column i, i.e. Vi�� � fVi�j � j � f�� ����M � �gg, which also form a cycle. In
a 2-dimensional torus, Hi�j and Vi�j with i � f�� ����K � �g� j � f�� ����M � �g contains
all the edges of the network. As a natural extension of this notation, we use V��� to denote
all column edges in the network,H��� to denote all row edges, andN��� to denote all nodes.

In Step 1, consider the tree T� initially containing only the node R�. Starting from
R�, search the torus along �x direction, wrapping around if necessary and adding the
nodes and edges to T� as visited, until all the nodes in row y� are in T�. At the end of
this step, a total of K nodes and K � � edges are in T�, where the nodes are N��y� , i.e.
fNi�y� � i � f�� ����K � �gg, and the edges are H��y� �H

x
�

�
�y�

. Since the edges of H��y�
form a cycle on row y�, the absence of edge H

x
�

�
�y�

breaks the cycle and makes T� a linear
array which is a degenerate tree.

In Step 2, similar to Step 1, consider the tree T� initially containing only the node R�.
Starting from node R�, search the torus along �y direction, wrapping around if necessary
and adding the nodes and edges to T� as visited, until all the nodes in column x� are in T�.
At the end of this step, a total of M nodes and M � � edges are in T�, where the nodes are
Nx���, i.e. fNx��j � j � f�� ����M � �gg, and the edges are Vx��� � Vx��y� . As in Step 1,
this makes T� a linear array which is a tree.

In Step 3, for each node that is already in T� except Nx��y� , repeat the following
operation, henceforth referred to as single column search. Search the nodes along �y
direction, wrapping around if necessary and adding the nodes and edges to T� as visited,
until all the nodes with same x coordinates are in T�.

Each single column search starting from nodeNi�y� � i � f�� ���� x���� x���� ����K��g
results in a total of M � � nodes being added to T�. The added nodes are Ni���Ni�y� . At
the end of this step, including the nodes that are already in T� from Step 1, T� has the node
set N��� � Nx��� �Nx��y� . Since searches start from tree nodes which are connected to
all the other nodes, the adding of the search path which consists of the nodes and the edges
along which nodes are visited maintains the connectedness of T�.

In each single column search starting from node Ni�y� , edges Vi�� � Vi�y� are added to
T� also. The acyclic feature holds within any single column search because the absence
of edge Vi�y� breaks the cycle formed by Vi�� on column i and a linear array is added to
T� via a single node Ni�y� . All single column searches and their resulting linear arrays are
separate from each other because of the different columns investigated. No cycle is formed.
The newly added edges in this step are V��� � Vx��� � V��y� . Since T� is connected and
acyclic, it is still a tree.

In Step 4, symmetric operations to Step 3 are done for T�. Single row searches are
done along �x direction starting from every node in T� except Nx��y� . The achieved node
set after this step is N��� � N��y� � Nx��y� . Edges that are added to T� in this step are
H��� �H

x
�

�
�� �H��y� . Connectedness and the acyclic feature are maintained for T� as in

Step 3, which implies that T� is still a tree.
At the beginning of Step 5, all nodes exceptNx����Nx��y� are in T�. Note that in Step 4,

edges H
x
�

�
�� are not used. In Step 5, add edges H

x
�

�
�� �H

x
�

�
�y�

to T� (note that H
x
�

�
�y�

is already in T� from Step 1). Since edge H
x
�

�
�j

connects nodes Nx��j and N
x
�

�
�j

, which
are already in T�, these edges bring all remaining nodes in the network into T�. Hence, T�
spans all the nodes at the end of this step.

The acyclic feature is maintained because each newly added node has only one edge
connected to the rest of T�, with which no cycle can be formed. Hence, T� is a tree
containing all nodes, i.e. a spanning tree.
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In Step 6, similar to Step 5, the edges that are unused in Step 3, V��y� �Vx��y� , will bring
the remaining nodes at the end of Step 4 into T�, which are N��y� �Nx��y� . T� spans all
the nodes at the end of this step and is still a tree by the same reasoning as in Step 5.

The fact that T� and T� are spanning trees is now proved.
Now, consider edge sets used by T� and T�. Table 1 lists the tree considered and the

edge set used in each step as specified earlier.

TABLE 1

Edges used in T� and T�

Step Tree Hi�j Vi�j

1 T� H��y� �Hx
�

�
�y�

null

2 T� null Vx��� � Vx��y�
3 T� null V��� � Vx��� � V��y�
4 T� H��� �Hx

�

�
��
�H��y� null

5 T� H
x
�

�
��
�H

x
�

�
�y�

null

6 T� null V��y� � Vx��y�

In Table 1, edges in Hi�j column form a non-overlappedHi�j edge connection, which is
H��� �H

x
�

�
�y�

. Edges in Vi�j column form a non-overlapped Vi�j edge connection, which
is V���� Vx��y� . Therefore, the edge-disjoint feature of T� and T� is proved. All edges but
two, H

x
�

�
�y�

and Vx��y� , are used in the two trees.
Finally, in a 2-dimensional torus, every node has four inter-router links. As two edge-

disjoint spanning trees are constructed out of these links, every node has at least one link and
at most three links in one tree. Therefore, nodes with parent can have at most two children
in any tree. This ensures all subtrees are binary. Since root nodes in our construction has
two children in each tree, binary feature is then proved.

In the construction presented in the Theorem 4.1 proof, the method used to construct T�
is called a ��x��y
 method, because the sequence of visiting network nodes is along �x

direction followed by �y direction. Similarly, the construction method for T� is called a
��y��x
 method. The two edge-disjoint spanning trees produced by this construction are
shown in Figure 4.

First Binary Spanning Tree (T1) Second Binary Spanning Tree (T2)

R2R1

P Q

FIG. 4. Constructed dual edge-disjoint binary spanning trees



12 WANG AND BLOUGH

As the root node may become the bottleneck when the network traffic gets higher, it is
critical to make the trees binary and balanced with respect to the root. Compared with a
tree having higher degree at the root, fewer branches at the root mean larger subtrees that
can handle more traffic locally without passing it through the root. Balancing the trees with
respect to the root also results in more traffic being handled without going through the root
node.

The construction of Theorem 4.1 classifies links into two spanning trees. Using the
starting nodes for the construction as the root nodes guarantees that the constructed trees
are binary but they may not be balanced. However, it is not necessary to use the starting
nodes as the root nodes. For example, in Figure 4, nodes P and Q may be selected as
root nodes to better balance the two trees while still maintaining their binary nature. One
possible drawback is that nodes P andQ are actually the same node in the network, located
at the intersection of the row of R� and the column of R� as shown in Figure 3.

When the two starting nodes are located in the same row or the same column and are
chosen as the root nodes, our construction gives only one branch at the root for one or both
trees. These trees can be better balanced by moving a half branch to the other side of the
root using the unused wrap-around links while maintaining their binary nature. One such
example is shown in Figure 5. The change in tree structure is limited to the nodes on the
part of the branch to be moved, i.e. a total of dK��e nodes on a branch of K nodes. The
remainder of the tree is unchanged.
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FIG. 5. Construction and adjustment of dual edge-disjoint binary spanning trees in a torus network when
the two starting nodes are in the same row

5. PROPERTIES OF DISJOINT SPANNING TREE CONSTRUCTION

In a network comprised of two edge-disjoint spanning trees, we define the distance
between any two nodes as the length of the shorter path in the two trees, and we denote
this distance by d�ni� nj
. The combined diameter CD and average distance AD of such a
network are then defined as in the single network case, i.e.

CD � max
�ni�nj

d�ni� nj


and

AD �

P
�ni�nj

d�ni� nj


n�n� �
��

As non-shortest paths may be used in the DSTM Algorithm, unicast performance may
be impacted compared with algorithms that use shortest paths. In this section, we study
the combined diameter and average distance of the trees produced by the construction
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presented in Section 4. We also compare these values to the same values that result from
the trees produced by the Roskind and Tarjan edge-disjoint spanning tree construction
algorithm [16] applied to the torus.

5.1. Starting Node Selection

To simplify our study, we look at
p
N � p

N torus networks which have the most
symmetry. In such networks, there are N � �N � �
 possible ways to select two different
starting nodes for tree construction. Given a pair of starting nodes, there are 16 distinct
methods to construct edge-disjoint trees with our construction method, i.e., use one of
��x��y
, ��x��y
, ��x��y
, ��x��y
 methods to construct T� and one of ��y��x
,
��y��x
, ��y��x
, ��y��x
 methods to construct T�. All methods can be classified
into one of the above categories because of the symmetry of the torus network. Therefore
a total number of ��N�N � �
 different constructions exist in a 2-D torus network.

This number can be reduced because of the symmetry of the torus network. First, since
there exists a homomorphism that maps any node of the torus network onto any other
node in the same network, the first starting node R� can be chosen randomly. We denote
the coordinates of R� to be �R�x� R�y
. Second, given the first starting node R�, if we
divide the network into four quadrants originated at R� as shown in Figure 6 (b), the
selection of the second starting node R� will have four nodes as mirrors in each quadrant
because the relative relationship betweenR� andR� are the same by rotating ��o. Now we
only consider nodes within the rectangular region defined by two corner nodes R� and P�
whose coordinates are �R�x �

p
N
�
� R�y �

p
N
�


. Further note that nodes in this region are
symmetric with respected to the diagonal from R� to P� by exchanging x and y as shown
in Figure 6 (c). So the second starting node only needs to be selected from the triangle
defined by R�, P� and P� whose coordinates are �R�x� R�y �

p
N
�


 with the number of
possible selections of R� as N��.

1 R1

P1 P1

2P1 RR

y

x

(a) (b) (c)

FIG. 6. Selection of starting node R�.

However, the number of possible selections of R� is still quite large. We investigate R�

along the diagonal from R� to P� and also along the row from R� to P�. As expected,
the minimum combined diameter and minimum average distance do exhibit a pattern. The
two quantities both decrease while R� is attempted along the diagonal from R� to P� until
it reaches the midpoint of the diagonal, then the quantities increase until R� reaches P�.
WhenR� is attempted along the row fromR� toP�, both quantities decrease until it reaches
the midpoint which is �R�x� R�y�

p
N
�


. The best trees along this row are constructed using
��x��y
 method for T� and ��y��x
 method for T�. The minimum combined diameter



14 WANG AND BLOUGH

and minimum average distance then increase until P� is reached. The attempt along the
row results in better values for the two quantities than the attempt along the diagonal.

Based on the above analysis, the following two constructions are selected for our study.
DSTM–1. Arbitrarily select node R� with a coordinate of �R�x� R�y
. Select node R�

with coordinate �R�x �
p
N
�
� R�y �

p
N
�


. Construct T� using ��x��y
 method starting
from R� and construct T� using ��y��x
 method starting from R�. This construction is
selected because it produces the most well-balanced trees after root node adjustment.

DSTM–2. Arbitrarily select node R� with a coordinate of �R�x� R�y
. Select node R�

with coordinate �R�x� R�y �
p
N
�


. Construct T� using ��x��y
 method starting from R�

and construct T� using ��y��x
 method starting from R�. This construction is selected
because it produces the shortest combined diameter and shortest average distance.

5.2. Properties

Theorem ���� The combined diameter of the edge-disjoint spanning trees used by
DSTM–1 in a

p
N �p

N torus is �
p
N � �.

The proof of Theorem 5.1 can be found in Appendix B.

Theorem ���� The combined diameter of the edge-disjoint spanning trees used by
DSTM–2 in a

p
N �p

N torus is �
p
N � �.

The proof of Theorem 5.2 is similar to that of Theorem 5.1 and is therefore omitted.
Compared with the diameter of

p
N for

p
N �p

N torus networks, the diameters for
both DSTM–1 and DSTM–2 are increased by no more than a factor of two. In a wormhole
switched network, in which the latency is considered to be insensitive to the path length
because of the high-speed pipelined transmission and high start up penalty, a path length
which is increased by a factor of two is generally acceptable, especially if it allows good
multicast performance to be obtained.

Theorem ���� The header encoding complexity for DSTM multicast with D destina-
tions in a

p
N �p

N torus with the use of algorithm in Appendix 0.1. is O�D logD�N
.

The proof of Theorem 5.3 can be found in Appendix C.

5.3. Comparison
An alternative method for constructing two edge-disjoint spanning trees in a torus is to

use the algorithm of Roskind and Tarjan [16]. Their algorithmfinds a maximal set of lowest-
cost edge-disjoint spanning trees in an arbitrary graph. The algorithm considers edges in
cost-increasing order. Since, in our problem, all edges have unit cost, the algorithm can
consider edges in any order. In fact, considering edges in two different orders can yield two
different pairs of edge-disjoint spanning trees. One special case constructs two Hamilton
paths when we consider links in aN �N torus in the following order: first horizontal links
Hi�j with i � ��� ����� N � �� and for each i, j � �i� i�� ���� i��, followed by all vertical
links Vi�j with j � ��� �� ���� N � �� and for each j � ��� N � ��, i � �j� j�� ���� j�� and for
j � N � �, i � ��� �� ���� N � ��. Figure 7 shows the two Hamilton paths the above order
produces in a �� � torus network. Since edge order impacts tree structure for the Roskind
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and Tarjan algorithm, we carried out a set of experiments, in which different random edge
orderings were used. For a fixed-size torus, we used 500 different random orderings and
used them to compute 500 pairs of spanning trees.

FIG. 7. Hamilton paths produced by the Roskind and Tarjan algorithm in a �� � torus network considering
links in a special order.

The combined diameter results are listed in Figure 8(a). Minimum combined diameter
represents the lowest combined diameter that was found among the 500 pairs of trees.
Average combined diameter is the average taken over all 500 pairs. Figure 8(a) shows that
for networks of size �� � or larger, the tree constructions used by DSTM–1 and DSTM–2
have lower combined diameter than the best pair found by the Roskind and Tarjan algorithm
in 500 trials. For ����� networks, the minimum combined diameter found by the Roskind
and Tarjan algorithm is about 65% higher and the average combined diameter is more than
twice as high as those produced by our constructions.
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FIG. 8. Combined diameter and average distance in N �N torus networks with no faults

Figure 8(b) shows the results for average distance where, for the Roskind and Tarjan
algorithm, the average is taken over all pairs of nodes in all 500 pairs of trees. As shown in
Figure 8(b), with the increase of the network size, the average distance increases roughly
at a linear rate for all three algorithms. However, the increase in the Roskind and Tarjan
algorithm is about 51% faster than DSTM–1 and about 59% than DSTM–2. The average
distances for their algorithm are higher than those produced by our constructions for all
cases considered, with the difference being about 50% for ��� �� networks.

6. EXPERIMENTAL RESULTS
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To evaluate the performance of the DSTM algorithm, simulation has been done on a flit
level simulator, MARS, originally developed at Harvey Mudd College. MARS includes
a number of routing and multicast algorithms, including the SPAM algorithm using a
single spanning tree [11]. We added the DSTM algorithm into this simulator. The DSTM
algorithm is investigated for the tree construction of Section 4 and for several pairs of trees
constructed by the Roskind and Tarjan algorithm. The Roskind and Tarjan constructions
considered are a well balanced pair of trees with roughly average combined diameter and
average distance over 500 random trials, a worst case pair of trees which corresponds to
two Hamilton paths, and a well balanced pair of trees selected out of the 500 trials to have
small combined diameter and average distance. The experiments are done in a �� � ��

torus network. No virtual channels are needed by any of the algorithms.
The following parameters are used for all the experiments reported in this section. The

startup latency is 10 microseconds. The router setup time for each message header is 40
nanoseconds. Channel propagation delay is 10 nanoseconds. The number of consumption
channels at each node is two to maintain the disjointness between the spanning trees for
DSTM algorithm. To ensure a fair comparison, two consumption channels are used for the
SPAM algorithm also. The number of injection channels at each node is one which permits
only one multicast to be launched from a node at any time. Each message contains 128
flits. The simulations were run until the results were within 1% of the mean, using 95%
confidence intervals for all simulations.

The first set of simulation results examines the message latency of different algorithms
in a network with traffic composed of 90% unicast messages and 10% multicast messages,
with the average arrival rate varying from 0.001 to 0.014 messages per node per microsecond
and following a Poisson distribution. The simulated algorithms include SPAM, DSTM–
1, DSTM–2 and DSTM with the three constructions of dual edge-disjoint spanning trees
produced by the Roskind and Tarjan algorithm that were detailed earlier. In this experiment,
each multicast message has 48 destinations randomly selected from the system. The results
are shown in Figure 9.
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FIG. 9. Latency versus average arrival rate for traffic composed of 90% unicast and 10% multicast.

The results shown in Figure 9 are enlightening as to the relative merits of different tree-
based multicast approaches. DSTM–Tarjan(path), however, is a pathological case where
the edge-disjoint trees are actually Hamilton paths. This data point should not be used
to draw conclusions about path-based approaches because the algorithm still treats the
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paths as trees and uses up-down routing. Hence, DSTM–Tarjan(path) will result in some
unnecessary back-tracking of messages that would not occur if a path-based algorithm were
used on the Hamilton paths.

A clear distinction can be seen in Figure 9 between the single tree approach (SPAM) and
the four non-pathological dual tree approaches. All of the dual tree approaches significantly
outperform the single tree approach. This clearly demonstrates the benefits obtained by
the multiple edge-disjoint tree approach through its efficient and more well-balanced use
of the links of the network.

In comparing the various dual tree approaches, Figure 9 shows that DSTM–1 is the best
but that DSTM–Tarjan(best) is quite close to it in performance. Interestingly, DSTM–
Tarjan(best) actually outperforms DSTM–2 despite DSTM–2’s substantially lower com-
bined diameter and average distance. This indicates that the use of trees that are well
balanced with respect to the root is relatively more important than minimizing their com-
bined diameter and average distance. DSTM–1 and DSTM–Tarjan(best) are both extremely
well balanced in this respect while DSTM–2 is less balanced. Combined diameter and av-
erage distance do influence the results but are relatively less important than balancing
the trees. The influence of distance is demonstrated by the superiority of DSTM–1 over
DSTM–Tarjan(best) because the trees used in DSTM–Tarjan(best) are actually more bal-
anced around the root than those of DSTM–1. The distance effect is also seen in the
relatively poor performance of DSTM–Tarjan(average) for which the trees are extremely
well balanced but have far higher combined diameter and average distance than the other
DSTM algorithms.

In the simulations shown in Figure 10, the same algorithms are studied for pure mul-
ticast traffic with the number of destinations uniformly distributed from 5 to 10 and each
destination being selected randomly from the whole network.
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FIG. 10. Latency versus average arrival rate for pure multicast traffic.

Figure 10 again demonstrates the advantages of multiple tree approaches via the lower
latencies exhibited by the non-pathological DSTM algorithms relative to SPAM’s single
tree approach. DSTM–1 is once again the best dual tree algorithm but in the pure multicast
setting its performance is significantly better than DSTM–Tarjan(best).

Despite the existence of spanning trees generated by the Roskind and Tarjan construction
that have performanceclose to that of DSTM–1, there are a number of benefits that make our
construction method valuable. Our construction led to the first proof that two edge-disjoint
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spanning trees exist in any size torus. The Roskind and Tarjan construction does not tell
us a priori how many spanning trees can be constructed in a given network. Furthermore,
our construction is valid for any size torus, whereas the Roskind and Tarjan construction
algorithm must be applied again for each new network. Good constructions can be obtained
from their algorithm only by running a large number of random experiments. In addition,
there is no way to know which of the pairs of trees produced by the Roskind and Tarjan
algorithm will result in good multicast performance without simulating their operation.
Thus, using their construction to design a DSTM algorithm having good performance
for a particular network involves many costly random trials and several sets of extremely
time-consuming flit-level simulation experiments. In contrast, the proven upper bound
on diameter for any size torus and the simulation results obtained over a wide range of
sizes mean that our construction is well characterized and has known good multicast (and
unicast) performance for virtually any torus.

A final advantage of our tree construction is that it always produces binary trees. As
discussed earlier, binary trees reduce the amount of traffic that must travel through the
root compared to trees of higher degree. Binary trees also minimize the number of links
that might have to be reserved atomically at any router. Thus, fewer links are reserved
in advance of their actual use, meaning that throughput is increased compared to trees of
higher degree.

7. SINGLE LINK FAULT TOLERANCE

We consider static link faults which occur when a link is unused and does not interrupt a
message during transmission. To a routing algorithm, a static fault appears as a permanent
obstacle and a router attempts to route the message around it.

In a network containing two edge-disjoint spanning trees,a single link fault will result in at
most one tree becoming disconnected. Since the other tree still maintains the connectivity
of the network, single link faults can be taken care of with limited modification to our
approach.

In general, fault information can be either globally known or only locally known. With
global fault information, a distance table can be regenerated at every node for the faulty tree
with the length of the faulty link considered as infinity. When a unicast message is present,
the tree with the shorter path will be selected to deliver the message. In this situation,
multicast messages are always delivered through the good tree. Deadlock freedom is
maintained since basic up-down routing is still used.

The combined diameters for DSTM–1 and DSTM–2 in networks with a single link fault
and assuming global fault information are shown in Figure 11(a), with the average and the
maximum values among 500 trials with a single faulty link chosen at random. The average
distances between any two nodes in such networks are shown in Figure 11(b).

If the fault information is known to neighboring nodes only, fault tolerance can be
achieved as follows. A message is routed normally until the faulty link is encountered.
The router R at which the message last arrives then routes the message as normal except
that, instead of routing the branch of the message to the faulty link, it routes the branch to
the local processor. Node R then completely consumes the entire message, re-calculates
the header flits according to the good tree as if R is the source and re-injects the message
to the good tree. Note that two startup penalties can be incurred in this approach for some
messages.
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FIG. 11. Combined diameter and average distance for DSTM–1 and DSTM–2 in N � N torus networks
with a single link fault and global fault information.
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FIG. 12. Combined diameter and average distance for DSTM–1 and DSTM–2 in N � N torus networks
with a single link fault and local fault information.

In this approach, message transmission will not be deadlocked in a single tree. The good
tree can always be relied on to deliver the message when a faulty link is encountered. Since
only a single link is faulty, messages can be routed only from one tree to the other but not
vice versa. This allows deadlock freedom to be maintained.

The combined diameters for DSTM–1 and DSTM–2 in single-link-fault networks with
local fault information are listed in Figure 12(a), shown with the average and the maximum
value among 500 trials. The average distances between any two nodes in such networks
are shown in Figure 12(b).

To summarize the results of Figures 11 and 12, combined diameters and average distances
for the DSTM constructions are increased only modestly when a single link is faulty
compared to the fault-free case and the values remain below those produced by Tarjan’s
algorithm with no faults. The increase is slightly higher for local information than for global
information but distances remain quite reasonable even if only local fault information is
used.



20 WANG AND BLOUGH

8. CONCLUSION

In this paper, the DSTM multicast algorithm using edge-disjoint spanning trees was
presented. The DSTM algorithm provides deadlock-free multicast routing fully compatible
with unicast by making use of a modified up-down routing algorithm. Multicast capability
has been successfully added to up-down routing with the scalable header scheme proposed
in this paper. Compared with multicast algorithms using a single spanning tree with cross
links, DSTM uses more links as tree links and better balances traffic in the network. This
produces simulation results that outperform the best single tree approach in 2-dimensional
torus networks by up to a factor of two. In addition to its performance benefits, DSTM is
able to tolerate single link faults.

An interesting question is how well-suited is DSTM for network topologies other than
torus. The minimum number of links required to construct two edge-disjoint spanning
trees is ��N � �
 (the torus has �N ). Because two-dimensional mesh networks (without
wrap-around connections) have fewer than ��N � �
 links, they are not able to produce
multiple edge-disjoint spanning trees.

However, DSTM can be extended to k-aryn-cubes withn� �. These networks represent
higher-dimensional versions of the 2-D torus. We have been able to construct 3 edge-
disjoint spanning trees in k-ary 3-cube networks, and we conjecture that n edge-disjoint
spanning trees can be found in an arbitrary k-ary n-cube. k � � is an interesting special
case. Wrap-around connections are redundant in this case and deleting them yields the
hypercube topology. It is known that

�
n
�

�
edge-disjoint spanning trees can be constructed

in an n-dimensional hypercube [3]. Adding wrap-around connections would then allow
� � �n

�

�
edge-disjoint spanning trees, proving our conjecture true for k � � and n even. We

are currently studying how to generalize our tree construction and selection methods for
arbitrary k-ary n-cubes.

The concept of making use of multiple edge-disjoint spanning trees is sufficiently general
for other regular or irregular networks with an algorithm to provide the construction of a
maximum number of spanning trees in the network. Current vendors usually provide
routers or network interface cards with a fixed number of ports, say P . A maximum of
P�� disjoint spanning trees could then be constructed. The actual number is likely to be
much smaller in practice because of unused ports and irregular interconnection patterns.
An interesting open problem is to find a topology that permits the maximum number of
edge-disjoint spanning trees given the number of nodes, the number of routers, and the
value of P .

APPENDIX A

Header Encoding Algorithm
We provide a header encoding scheme for multicast in a network with a binary spanning

tree. This scheme includes a one time pre-processing step at network configuration time
and a calculation executed at a source node before a message is injected into the network.
The source node calculation generally follows depth-first search with two parameters, one
being the node currently considered and the other being the destination list for this node.
The calculation starts with the root node and a complete destination list. The destination
list is then partitioned into sub-lists, one for each child of the root. Each child’s destination
list contains exactly those destinations that are contained in the sub-tree rooted at that child.
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The same calculation is recursively executed at each child node with its own destination
list.

When the network is configured,a spanning tree is constructed following a post-order tree
traversal. An integer number is incrementally assigned to each node during the traversal.
This number is henceforth referred to as the PN number of that node. Each node N i

maintains “low” and “high” fields recording the coverage of its subtree. The node with PN
number of “low” is the leftmost child in Ni’s subtree. The node with PN number of “high”
is Ni itself. Any node with a PN number between “low” and “high” resides in Ni’s subtree
(see the example in Figure2). This one time pre-processing step takes time O�N
 in a
network with N nodes and is needed only at network configuration time. The information
of the tree is then distributed to all routers and stored in their memory. When a multicast
is present at a source node, the source node first sorts the destination list according to the
PN numbers. Algorithm 1 is then used by the source node to generate the header flits, with
the root node and the sorted destination list as inputs.

Algorithm � �Header Calculation �current� dests���

1. Input: current = current node
2. dests = destination list sorted according to the PN numbers;
3. Output: header = list of header flits, global variable, single header flit has the format
4. of [Node, “C”, “O�”, “O�”, “O�”, “O�”, “S”];
5. begin
6. SPLIT LOCALLY = FALSE;
7. if (dests�length�
 � � ) OR (current � dests�last�
) then
8. add flit [dests�last�
� 	���� 	���� 	���� 	���� 	���� 	���] to the end of the header;
9. remove dests�last�
;

10. if (dests is empty) return;
11. else SPLIT LOCALLY = TRUE;
12. end if
13. end if
14. for i � � to 
 do /* partition the destination list */
15. begin
16. if (dests is not empty and portOi connects node current to its child nodeCi)
17. then
18. if (node�dests�last�
��PN � node�Ci��high)
19. create integer list dests Ci = dests and clear list dests;
20. else /* partition list dests and keep new list dests Ci sorted */
21. create empty integer list dests Ci;
22. while (dests is not empty and
23. node�dests�first�
��PN � node�Ci��high)
24. move dests�first�
 from list dests to the end of list dests Ci;
25. end if
26. end if
27. end if
28. if ( not SPLIT LOCALLY) and (exist more than one non-empty dests Ci) then
29. add header flit [current, “�”, “�”, “�”, “�”, “�”] to the end of the header;
30. SPLIT LOCALLY = TRUE; /* split at current node */
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31. end if
32. if ( SPLIT LOCALLY)
33. set Oi � � for every non-empty dests Ci in last added header flit;
34. for i � � to 
 do
35. if (exist non-empty dests Ci) call Header Calculation (Ci, dests Ci);
36. end.

Now we consider the complexity of our header encoding scheme for a multicast with
D destinations in a network with N nodes. During network configuration, two O�N


operations are performed as pre-processing steps for all subsequent communication in the
network. The two steps correspond to constructing a binary spanning tree and traversing
the tree in post order. When a multicast message is present at a source node, the destination
list is first sorted according to PN numbers which takes O�D logD
 time. The recursive
procedure in Figure0 is then executed to compute the header flits. With a complete binary
tree and randomly-distributed destinations, this algorithm has a complexity of O�D logN


on average, with at mostD computations in each level and a total of dlog�N ��
e levels in
the tree. As a special case of multicast, a broadcast message in a network with a complete
binary spanning tree takes O�N logN
 time for its header encoding.

Note that different tree constructions vary the number of levels of the tree while the
distribution of destinations affects the number of computations in each level. For example,
the DSTM construction introduced in Section 4 produces two binary trees with �

p
N � �

levels instead of logN levels in a complete binary tree. Two distributions of the destination
nodes simplify the algorithm of Figure 0. First, any computation with a destination list
covered by a single child’s subtree has a complexity of O��
 at the current node. Second,
any computation with a single destination has a total complexity ofO��
, either for a single
destination branch or a unicast. Therefore, unicast has a header encoding complexity of
O��
. In Section 5, we analyze the complexity of the header encoding scheme for the trees
produced by our spanning tree construction.

As for the storage requirement of this header encoding method, the tree information
stored at each node takes size of O�N
. The procedure of Figure 0 requires a storage of
O�D
. All these requirements may be met using local memory at the source nodes. No
on-chip memory is required in the routers.

APPENDIX B

Proof of Theorem 5.1
The proof is done by induction.
First consider � � � torus as shown in Figure 1, i.e.

p
N � �, nodes N�� and N�� are

the starting nodes for T� and T� respectively. The diameter D � �
p
N � � � � can be

easily proved by exhaustive counting.
Second, assuming diameter Di � �

p
Ni � � for

p
Ni �

p
Ni torus network for odd

number
p
Ni � �i� � (i is an integer), we prove that, diameter Di�� � �

p
Ni�� � � forp

Ni�� �
p
Ni�� torus network, where

p
Ni�� � �i� �, i.e., the diameter increases by

4 with each increase of 2 in network size.
To bring the result from

p
Ni �

p
Ni torus network with

p
Ni � �i� � to an expanded

network, the old topology should be held in the expanded network, which leads to the old
trees also be held. The expansion can be done by adding two rows and two columns in the
manner shown in Figure 2.
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FIG. 1. 5x5 torus network and its corresponding spanning trees.
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FIG. 2. Expansion of
p
Ni �

p
Ni torus network to

p
Ni�� �

p
Ni�� network and the corresponding

spanning trees.

A
p
Ni�� �

p
Ni�� torus network with

p
Ni�� � �i � � can be expanded from ap

Ni �
p
Ni torus network where

p
Ni � �i � � by adding two rows and two columns.
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In our proof, row A and row B are added adjacent to R� and R� in the �y direction
respectively. Column C and column D are added adjacent to R� and R� in the �x
direction respectively. The added nodes are referred to as new nodes. Nodes that were
present in the original network are referred to as old nodes. The expanded trees are shown
in Figure 2(c) and (d), from where we can see the expansion is done on the old topology
by inserting four dark shaded regions A, B, C and D. We evaluate the distance between
nodes in the expanded network for four different cases.

Case 1. Distance between old nodes and old nodes.
Starting from any old node, we need to traverse at most 3 dark shaded regions to reach

any old nodes. This observation holds for both trees. Therefore, at most 3 hops are added
between any two old nodes. The increase of the distance is no more than 3.

Case 2. Distance between new nodes and old nodes.
From Figure 2(c) and (d), we select a reference old node in light shaded region A �, B�,

C �, D� for each new node in dark shaded region A, B, C, D respectively. The reference
nodes are geographically adjacent to the new nodes along either x or y direction. Every
new node except four intersection nodes is able to find a reference old node and that the
new node is either one hop away from that old node or able to reach their least common
ancestor old node by one more hop. With this one extra hop and the result from Case 1,
every new node except four intersection nodes are able to reach any old nodes with at most
4 more hops.

Case 3. Distance between four intersection nodes and old nodes.
New nodes located at the intersection of the four dark shaded region adjacent to new

nodes in both x and y directions. Therefore no reference old node can be found. However,
node Cn�� at the intersection of row B and column C belongs to CRNS of T�. Node
An�� at the intersection of row A and column D belongs to CRNS of T�. Therefore,
they are able to reach all other nodes within �

p
Ni�� � � hops. For each of the rest two

intersection nodes, i.e. nodeBn�� at intersection of rowB and columnD and nodeA�n��

at intersection of row A and column C, we obtained a pair of formulas for the distances
between the intersection node and old nodes, one for each tree. These pairs of formulas
showed a compensation relationship. When the path in one tree is quite long, the other tree
gives a shorter path. These formulas show that the distance is no greater than �

p
Ni��� �

in all cases.
Case 4. Distance between new nodes and new nodes.
In a way similar to Case 3, we also prove the diameter condition is satisfied.
Therefore, that the combined diameter for DSTM–1 is no more than �

p
N � � is proved

for odd number
p
N � �i � �. For even number

p
N � �i, combined diameter for the

base case of
p
N � 
 can be easily proved to be � by exhaustive counting as we did in step

one. With the same expansion and induction, same result can be proved for even numberp
N � �i. Therefore, the combined diameter of DSTM–1 is no more than �

p
N � � is

proved.

APPENDIX C

Proof of Theorem 5.3
We start the proof of header encoding complexity from the worst case, i.e., broadcast

in a
p
N �p

N torus. Before the calculation is started from the root node, the complete
destination list is first sorted according to nodes’ PN numbers, which takes O�N logN
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complexity withN destinations for the broadcast. Algorithm 0 is then executed for the two
spanning trees constructed by DSTM.

Figure 1 shows one of the edge-disjoint binary spanning trees, i.e. T�, constructed by
DSTM–1 in a

p
N � p

N torus. We prove the broadcast header encoding complexity
is of O�N
 with this tree using Algorithm 0. As similar analysis applies to tree T� of
DSTM–1 and all other trees produced by DSTM construction, we prove the broadcast
header encoding complexity for DSTM is of O�N
.
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FIG. 1. Analysis of header encoding complexity of DSTM broadcast.

Figure 1 shows T� as a binary spanning tree with a total number of �
p
N � � levels. The

number of computations in each level is listed to the right of each level. Being a broadcast,
destinations list includes all nodes in the network, sorted according to their PN numbers.
At level �, root node R� takes one computation to strip off itself from the destination list,
and

p
N � � computations to move the

p
N � � destinations on the branch AC to child

A’s destination list. After this, since the rest of the destinations can be completely covered
by child B’s subtree, one computation is taken to assign the destination list to child B.
Therefore, the number of computations at level � is

p
N � �, as listed to the right of level

�.
At level �, since branch R�C is a linear array, node A takes one computation to strip

off itself from A’s destination list. The rest of the list is assigned to child D. While node
B repeats the computation of node R�,

p
N � � computations are taken to partition B’s

destination list. A total number of
p
N � � computations is therefore needed at this level.

At level �, there are two linear arry branchesDC andEF and a splitting nodeG. A total
number of

p
N � � is needed for nodes at this level, with 1 computation for each linear

array and
p
N � � computations for the splitting node.

The number of computations in each level forms a equal-difference series until levelp
N � � with a computation number of

p
N �

p
N .

Starting from level
p
N , all branches are linear arrays and the number of computations

in each level forms a equal-difference series from
p
N��,

p
N �� to 1 at the lowest level.
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Except for the above computations, nodes on branch KL have additional computations
because of their non-linear array subtrees. The computation numbers are respectively
�
p
N , �

p
N � �, �

p
N � 
, � � �, 
, � for nodes on each level of branch KL.

The overall number of computations then equals to

Computations = �
p
N � �
 � �

p
N � �
 � � � �� �

p
N �

p
N
� �z �p

N

��
p
N � �
 � �

p
N � �
 � � � �� � � �� �z �p
N��

���
p
N � �
 � ��

p
N � 

 � � � �� 
 � �� �z �p
N

= �N �p
N�

Therefore, broadcast header encoding complexity of DSTM–1 withT� is ofO�N logN�

N
.
With regular topology, we know that T� of DSTM–1 has lighter right branches. Header

encoding function described in Algorithm 0 can then be modified to search the destination
list from the end of the list instead of the front. Same broadcast header encoding complexity
can then be achieved onT�, completely symmetric to T�. Therefore, the broadcast header
encoding complexity of DSTM–1 is of O�N logN �N
.

The differences among DSTM trees don’t bias the argument on the complexity analysis of
DSTM–1. Therefore, broadcast header encoding complexity of DSTM is of O�N logN �

N
.
Generally, when a multicast message is present, the complete destination list is first sorted

according to nodes’ PN numbers. This is a O�D logD
 procedure given D destinations.
The execution of Algorithm 0 then takes no more thanO�N
 complexity for the same reason
as in broadcast with D � N . The fact that the multicast header encoding complexity with
D destinations of DSTM is of O�D logD �N
 is then proved.
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