
Novel Neighborhood Search for Multiprocessor Scheduling with Pipelining

K. K. Leung, N. H. C. Yung & P. Y. S. Cheung
Department of Electrical & Electronic Engineering, The University of Hong Kong

kkleung@hkueee.hku.hk, nyung@hkueee. hku.hk, cheung@hkueee.hku.hk

Abstract
This paper presents a neighborhood search algorithm

for heterogeneous multiprocessor scheduling in which
loop pipelining is used to exploit parallelism between
iterations. The method adopts a realistic model for inter-
processor communication where resource contention is
taken into consideration. The schedule representation
scheme is flexible so that communication scheduling can
be performed in a generic manner. Based on a general
time formulation of the schedule performance, the
algorithm improves an initial schedule in an efficient way.
Experimental results show that significant improvement
over existing methods can be obtained. Using the
scheduling results, a parallel software video encoder was
implemented and real time performance was achieved.

1. Introduction

Given a program modelled by a task graph, finding an
optimal multiprocessor schedule is a well-known NP-
complete problem [I]. Taking into account inter-processor
communication (IPC), optimal solution has been found
under restrictive assumptions on the task graph [2,3] and
unbound number of processors connected by a contention
free network. These assumptions are rather ideal for real
applications and platforms.

More realistic approaches try to model IPC resource
contention [4,6]. For example, the Mapping Heuristic
(MH) proposed in [4] estimates an additional contention
delay for each message with respect to the system state.
Unfortunately, no actual implementation was given based
on the model. In [5,6], the Ordered Transaction model was
proposed and implemented on a board containing four
DSP96002 processors and a memory access controller.
The shared memory access pattern is determined at
compile time, so that run-time resource contention is
eliminated. For a 1024 point complex FFT, a speedup of 3
is obtained. Based on a similar IPC model, the Dynamic
Level Scheduling (DLS) [7] performs list scheduling
where in each step, the best matched task processor pair is
found based on the system state. Similarly, the genetic
algorithm (CA) proposed in [SI represents a schedule by

matching and scheduling strings. Both algorithms have
implicit restrictions in that the input data transfers for each
task are scheduled only when the task is being considered.

For iterative applications, rotation operation was
proposed in [9] for loop pipelining without consideration
of IPC. In [IO], although IPC is included in the model, its
scheduling has similar restriction as that of [7,8].
Moreover, both [9,10] assume synchronous control steps
and so are unsuitable for asynchronous processors that are
common in most distributed or shared memory systems.

As discussed, optimal solution has been found only
under restricted problem instances and ideal platforms
such as contention free network. When IPC contention is
considered, there are often unnecessary restrictions to the
IPC scheduling. Therefore, one of our objectives is to
develop a realistic and general model for computation and
IPC scheduling. Based on this model, we developed a
novel neighborhood search algorithm with pipelining to
exploit inter-iteration parallelism. Experimental results
show that significant improvement can be obtained over
existing methods. Using the resulting schedules, a parallel
video encoder was implemented, which achieved over 30
framedsec at 352x240 resolution using 24 processors,
which is about 2 times that of the CA tested and 37%
better than a manually optimized video coding algorithm.

This paper is organized as follows: Section 2 states the
model for scheduling. Section 3 presents the method of
neighborhood search. Section 4 gives experimental results
and discussions. This paper is concluded in Section 5.

2. Problem modelling

In order to obtain true overall performance, the
scheduling model should take into account IPC resource
contention. For example, ignoring IPC contention, the task
graph in Fig. l(a) has an optimal schedule in Fig. l(b). In
the presence of link contention, the schedule is no longer
optimal as shown in Fig. l(c). As illustrated, the resource
contention and the flow of data should be emphasized,
which can be represented by a data flow graph (DFG).

In general, the DFG model consists of a number of
non-preemptive computation tasks and a number of data
objects connected according to G(V+VD ,ETDVEDT) with

296
0-7695-0589-2/00 $10.00 0 2000 IEEE

definition of notations given in the APPENDIX. Each task
takes some data objects as input and produces some data
objects as output. Fig. 2 depicts an example DFG.

A two processor system

(b) .Schedule length&

to an earlier time slot in PI, resulting in a longer schedule.
Moreover, the scheduler should not impose unnecessary
restriction to the IPC scheduling as in [7,8,10]. For
instance, the data transfer (To->T~) in Fig. l(c) can be
moved before (Tl->T2), giving a better schedule in Fig.
3(c). We also consider overlapping of successive iterations
to exploit inter-iteration parallelism. Fig. 3(b) shows an
example of overlapped iterations in which significant
improvement is obtained over Fig. l(c).

0 5 10 15

Computation

Figure 1. Schedule with IPC contention
For iterative DFG G, an iteration is the execution of all

the tasks in G once. For tasks T, , Ti in VT and D in VD, if
(T,D)EETD and (D,T,)EETD, then is dependent on the
instance of T, in the d(D) past iteration. In order to
maintain precedence constraint, all the cycles in the DFG
should include at least one data object, such as D3 and D4
in the cycles in Fig. 2, with positive dependence distance.

In the parallel platform model adopted, each data
transfer is scheduled to channel resources by dedicating
them throughout the duration of transfer [7,8]. For each
ordered pair of processors, there is a channel that contains
the resources involved. For each computation task, the
execution time is assumed to be known a priori and it can
be different on different processors. The data transmission
time may be modelled with a channel setup time plus the
product of data size and an effective bandwidth.

Data transfer from T, t o T, Idling

d(D,)=d(D,)= 1

4 Edge in E , - Edge in E,
0 Data object
0 Computation task

&7 (System output to pI)

Figure 2. An example cyclic DFG

3. Proposed method

Schedules generated by heuristic and non-deterministic
approaches are often sub-optimal. There is obviously
opportunity for improving them with neighborhood search
in which a solution undergoes modification to obtain
neighbor solution which is adopted if it is better. The
optimization criteria should be the overall schedule length,
rather than the task start time [I 13. For example, Fig. 3(a)
shows the modified schedule of Fig. l(c) with T4 migrated

(b)Owrlapping of successiw iterations, To and TI are moxd to the previous iteration
I - - - L , ; - t , * i t P , l h " $h i t c r a t i n n d - -

Pol '4 I 's I '0.1 . ' I ' 4 I 's I '0.1 .'I I
Belong to h e $ iteration Belong to the U+:)* $eralion

(c)Data transfer fT-->T.) mowd to an earlier nosition __
Computation
Data transfer from T, to T,

ldhg

PI
&,
Pn

Figure 3. Modified schedules of Fig. l(c)
At this juncture, we introduce a set of communication

tasks, which is formed from the input DFG according to
Fig. 4. For case 1, data object D may be used by a number
of computation tasks. Each outlet edge (D,T,) is associated
with a communication task T, for transfering the instance
of D in the d(D) past iteration. In case 2, if D is a system
output, its inlet edge is associated with a communication
task. The Gc of the example DFG is shown in Fig. 5. We
collectively call any computation or communication task a
task, and V w V , is then the set of all tasks.

-i+ Edge with dependence distance i
Edge with zero dependence distance T2 Computation task

Figure 5. Gc of the example DFG

3.1. Schedule characterization and evaluation

For iterative program, all the loops execute according
to the same static schedule (RI,Mup,DS,Seq). Table 1

297

shows an example schedule for the DFG of Fig. 2. The
modelled schedule performance is evaluated with several
intermediate graphs, as depicted in Fig. 6. First, the DFG
G is transformed into Gc. Second, the precedence relations
between the tasks are determined with respect to their
relative iteration indices (RI). Then, GpI is derived
according to the platform resource constraints.

1 0 0 -1 1 0 0 0 0 1 0 0 0 -1

DFG G

Platform

4
Schedule Length

Figure 6. Evaluation of modelled performance

- Precedence edge
0 Communication task

Computation task
Ti,j Task T, of iteration j

Figure 7. GP derived from the example Gc and RI
3.1.1. Relative iteration index (RI). The tasks in the
schedule may belong to different iterations. RI(T) is the
relative iteration index of task T. As indicated by RI in the
example schedule, 3 successive iterations are overlapped.
3.1.2. Precedence graph (Gp). The precedence relation of
the tasks in the schedule, as represented by GdV+Vm,
Ep), is derived from Gc and RI. For (T,,T,)E Ec, (T,,TJ)E Ep
if (T,,T,)E Ec and RI(T,)=RI(T,)-d(T,,T,). Obviously, Ep
contains a subset of the edges of Ec. Fig. 7 depicts the Gp
obtained from the example schedule and the Gc .
3.1.3. Map, Seq and DS. Given a schedule, the execution
time line is formed by traversing and scheduling the tasks
in the order of Seq, which is a topological ordered
sequence that satisfies the precedence relation of Gp. Each
resource has a task list to guide its execution. During the
scheduling, computation task Tis appended to the task list
of processor Mup(T). For communication task T, it is
appended to the channel resources between the source
processor, Mup(Producer(T)), and the destination
processor, Mup(Consumer(T)). If an alternative data
source (Datu Forwurder [SI) is specified by DS(T), the
source is the destination of DS(T). If the data object is
already present in the destination processor, T is not

scheduled and ET(Z') is set to zero. Fg. 8 shows the time
line of the example schedule. The resources involved in
each scheduling step are tabulated in Table 2.
3.1.4. Augmented precedence graph (G; 1 The schedule
length is the critical path of the augmented precedence
graph G; (VwVm,Ep'). For tasks Ti and Ti , (Z,T)e E; if
(Ti,q)e Ep, or T,=DS(T,), or T is scheduled just before Ti
in some resource. The schedule length can be obtained
using (1). Using (2), the &vel can be obtained by
traversing the tasks in the order of Seq since Seq satisfies
the precedence of GpI. Similarly, blevel can be found
uisng (3) by traversing the tasks in reverse order of Seq.
 ch. length = max { tlevel(T) + blevel(T)p E V, U V, } , (1)

tlevel(T) = max{O,tlevel(T,) + ET(T,)~T, ,T)E E,,'), (2)

blevel(T) =max{O,blevel(T,~T,T)€ E,,'}+ ET(T) (3)
Assume that the number of input and output data

objects for each computation task and the number of
resources in each channel are bounded by constants, it
takes a constant time for finding tlevel and blevel for each
task. As there are at most e+v tasks, it takes O(e+v) time to
find the schedule length.

Task T,
of iteration J

f I d h g Time -+
Figure 8. Execution time line

3.2. Neighborhood search

Below are the three phases of search employed.
3.2.1. Phase NSP-MAP. In this phase, neighbor solutions
are obtained by changing the processor mapping for some
computation task, while keeping the processor mapping of
the other tasks fixed. The algorithm cycles through all the
computation tasks for evaluation upon different processor
mappings. It terminates if no improvement is found for all
the tasks. In the best and worst cases, it requires p and p v
evaluations per improvement respectively. Thus, the time
complexity for finding an improvement is O[pv(e+v)].
3.2.2. Phase NSP-SEQ. This phase searches, for each task
T, a new position in Seq that gives the shortest schedule

298

length. Due to precedence constraints, the search starts by
shifting T backward from its original position until
reaching a predecessor task. If this shifting reaches the
head of Seq, T is wrapped around to the end of Seq with
RI(7J increased by 1 and Gp updated. Then the shifting
continues from the end of Seq. In this way, Tis effectively
shifted to the previous loop while the instance of T in the
next loop is shifted in. After backward shifting, T is
forward shifted from its original position until reaching a
successor task. Similarly, when T reaches the end of Seq,
it is wrapped around to the head with RI(T) decreased by 1
and Cp updated. Wrap around in both directions is not
performed if the maximum latency exceeds L. After the
shifting, the Tis moved to the best position.

For each task, there are at most e+v possible positions
in Seq and L-1 times of wrap around in both directions.
The algorithm terminates when no improvement is found
after inspection for all the e+v tasks. As each evaluation
takes O(e+v) time, an improvement takes O[L(e+vP] time.

This time complexity can be reduced. The idea is to
first remove T, then use the levels functions of the
remaining tasks with the absence of T to find the levels for
T in each insertion position in a constant time. After
removing T, if SLT < SLX(l-&), the algorithm proceeds by
shifting T. At each new position of T, SLNEW is given by
SL,, = max{rfevef (T)+bfevef (T) ,SL,} . (4)

In (4), rlevel(T) and bfevel(7J are obtained by (2) and
(3). During the shifting, pointers are used to keep the
positions of Tin the resources where it is scheduled. When
T is exchanged with its left (right) neighbor T’, those
pointers corresponding to common resources with T’ are
decreased (increased) by 1. Then the immediate
predecessors and successors of T in GpI can be identified
and the levels for T can be obtained in a constant time. For
each task, evaluation of SLT, updating of Gp during wrap
around and inspection of all positions take O[L(v+e)] time.
So, an improvement now takes o [L (~ + e) ~] time.
3.2.3. Phase NSP-SEQ-DF. NSP-SEQ may get stuck at a
local optimum. We use the degree of freedom as a
heuristic function to guide the search, which is defined as
DF(T) = SL- rlevel(T) - blevef(T) (5)

The search method is similar to NSP-SE&, but without
the checking that SLT < SL x (I-&). During the search, SL
may be reduced or unchanged at the new position for T. In
order to limit the search time, the algorithm terminates if
there is no improvement to SL after cycling all the tasks
for ~ D F (fixed at 2 in all the tests) times. Similar to NSP-
SE&, it takes O[L(v+e)’] time to find an improvement.
3.2.4. The overall NSP algorithm. In the overall NSP
algorithm, the above 3 phases are cycled repeatedly until
all of them fail to reduce SL. At worst, it takes the sum of
worst case times of the 3 phases to find an improvement.
The overall time complexity is O{ nlx [pv(e+v)+~(e+v>~]}.
As n, I (SL, /SL* - I) / & , this time complexity becomes

2
3
4
5

O{ (SL,/SL*- 1)D< [pv(e+v)+L(e+~)~]/&}. Fine improvement
is ignored with a large E. With a small E, the search is
likely to give better result using a longer search time. In
all the tests done, the value of E is IO-’, which can be
considered as typical value.

300 10-55 5 10 0.2
300 5 1-19 10 0.2
300 5 5 2-20 0.2
300 5 5 10 0.025-12.8

4. Experimental results and discussions

4.1. Comparison by random DFG

Comparisons were made with DLS [7] and the GA of
[8] since they have a similar model of IPC as our
approach. For acyclic DFGs, five tests were done with
variation in the parameters as shown in Table 3. In each
random DFG, v data objects are added to v computation
tasks with the producer and consumer tasks selected
randomly. Each computation task has an expected unit
execution time selected from the range 0.001 to 1.999 with
uniform distribution. Each data object has a size also from
this range but post-scaled by the desired CCR. In each test,
50 DFGs were used, i.e. a total of 250 DFGs in the 5 tests.

Table 3. Test parameter setting
Test I V c p NSHARE P CCR

1 i 100-1000 5 5 10 0.2

299

4.1.5. Test 5. In Fig. 13, the improvement of NSP over CA
and DLS starts to increase, reaches about 32% and 45%
respectively at CCR=0.4. In fact, NSP gives a better IPC
scheduling as reflected from this substantial improvement.
4.1.6. Execution time:On a Pentium@ I1 350MHz system,
the execution time of the algorithms was measured. For
the case of CP=55, NSP starts from an initial solution
from DU, which takes 0.16 second for scheduling. As
depicted in Fig. 14, CA attains a steady value after about
10 minutes while the NSP phases show stepwise drops and
stop at about 3.5 minutes. This shows that NSP gives a
substantially better schedule in a comparably short time.

12

10
4
8 8

!?4

$ 6

2

0
100 300 500 700 900

No. of computation tasks (v)

Figure 9. Test 1

Figure 11. Test 3

1 a 0.1 -
1 ,025 0.1 0.4 1.6 6.4

CCR

10 20 30 40 50
CP

Figure 10. Test 2

0 " " ' " ' ' I

2 6 10 14 18
No. of processors (p)

Fiaure 12. Test 4
70

C 65

60

- =
.c

-
J 55
U

5 50
cn

0 5 10 15 20 25 30

I Elapsed scheduling time (mln)

Figure 13. Test 5 Figure 14. Running time

4.2. Application to video encoding

An H.261 [12] video encoder was implemented and
comparisons were made with CA and the Multiple Master
Multiple Slave (MMMS) solution [13]. DLS was not
compared since it cannot be applied to cyclic DFG. The
encoding algorithm is represented by the cyclic iterative
DFG of Fig. 15 where macroblock (MB) is the basic unit
of data decomposition. The platform used is the IBM-SP2
in the University of Hong Kong, which is composed of 48
160MHz IBM P2SC RISC processors connected by the
High Performance Switch (HPS) with point-to-point
bandwidth of 105MBytes/s and latency of 27.5psec.

Blocking send and receive operations of the Message
Passing Library were used. All the task execution times
were measured using gettimeofday. For simplicity, we
assume that the HPS is a completely connected switch
such that each IPC channel is composed of the source and
destination processors only. The video tested consists of
50 frames of 352x240-pixel resolution. It shows a table
tennis game that involves a zooming view. Each test was
repeated 8 times and the average frame rates were taken.

The decoded
MB generated
and its 8
neighbonng
decoded MBs
(Dependence
distance = I)

Data object blt-stream
Computation (To P,)

Figure 15. DFG for video coding

4 8 12 16 20 24 1
No. of processors 1

Figure 16. Frame rate
4.2.1. Results & discussions

I I
4 8 12 16 20 24 1

NO ofprocessors j
Figure 17. Speedup-

As depicted in Fig. 16, NSP
gives about 31 framedsec at p=24, which is about 2 times
that of CA and 37% better than MMMS. From Fig. 17, the
speedup of GA tends to level at about 6 for p over 20
while both MMMS and NSP show an increasing trend and
reach about 9 and 12 respectively at p=24. NSP shows a
curve closer to linear than MMMS. In fact, MMMS is the
product of manual optimization by experience while NSP
is an automatic scheduler for arbitrary DFG and platform.

Owing to variation in message transfer time, deviation
from the predicted performance is observed. Firstly, the
HPS has message buffers so that the sender can complete
earlier. Secondly, network congestion may cause the
transfer time to be longer. In our case, the first effect
dominates and the message transfer time is generally
shorter than the predicted. Furthermore, there is variation
in the MB encoding time depending on the video content.
Since the schedules were generated based on a frame with
above average encoding time, the result is better than the
predicted. Moreover, the latency from input frame to
output bit-stream is only 3 frames encoding time, which
suits on-line applications such as video conferencing.

5. Conclusions

In this paper, a scheduling algorithm for heterogeneous
multiprocessor systems is presented. First, a flexible

300

representation scheme is used so that communication
scheduling can be done in a generic way. Second, loop
pipelining is used to exploit parallelism between
iterations. Third, an efficient technique is incorporated
into the search that reduced the time complexity by an
order of magnitude. Fourth, experimental comparisons
were made with DLS and a CA algorithm using different
suites of random DFGs with variations in different
parameters including the effect of data sharing. Finally,
the method is verified by actual implementation of a video
encoder in which over 30 framedsec is obtained using 24
processors.

&

nr

APPENDIX. Definition of symbols

DFG G(V+VD,E~-DUEDT) :
VT,VD
ETD,EDT

]The sets of computation tasks and data objects.
/The sets of directed edges from V, to VD and vice

~~

Percentage decrease in SL that is counted as an
improvement step.
Total number of imurovement stem.

d(D)
v, e
Communication task graph Gc(V+Vcr,Ec) :
VC-

[Dependency distance of data object D.
lThe number of computation tasks and edges in G .

]The set of communication tasks.

CCR
CP

IMean ratio of communication to computation time.
ICritical path length of G ignoring IPC.

I

Platform model :
SR, Sp [The sets of resources and processors, S p c s ~ .

P lThe number of processors.
Solution characterization :
M(7) lThe relative iteration index of T.

SL”
SL*, SLi
DF(7)
k m

Max. latency from input to output in terms of

inserted in a new position, respectively.
The optimal and the initial schedule lengths.
Degree of freedom of T.
No. of times that all the tasks are cycled since the

Precedence graph Gp(V+.A’,-,Ep) :
EP
Augmented precedence graph G i (V+VcT, E;) :

[The set of directed edges in Gp.

I E,’ lThe set of directed edees in G,’ . I

SL]The current schedule length.
SLT , !The schedule length when T is removed and re-

-.

(last improvement before the search stops.

INsHaRE]Max. no. of consumer tasks sharing each data object. 1

ACKNOWLEDGMENT. The authors would like to express
their gratitude to the Computer Center at the University of
Hong Kong for their support of the IBM SP2 system.

REFERENCES

M. R. Garey, D. S. Johnson, Computers and Intractability,
A Guide to the Theory of NP-Completeness, W. H. Freeman
and Co., 1979.
T. Yang, A. Gerasoulis, “DSC: Scheduling Parallel Tasks
on an Unbounded Number of Processors”, IEEE Trans.
Parallel Distrib. Syst. 5 , No. 9 (Nov. 1994), 951-967.
S. Darbha, D. P. Agrawal, “Optimal Scheduling Algorithm
for Distributed-Memory Machines”, IEEE Trans. Parallel
Distrib. Syst. 9, No. 1 (Jan. 1998), 87-95.
H. El-Rewini, “Scheduling Parallel Program Tasks onto
Arbitrary Target Machines”, J. Parallel Distrib. Comput. 9,
No. 2 (June 1990), 138-153.
S. Sriram, E. A. Lee, “Statically Scheduling
Communication Resources in Multiprocessor DSP
Architectures”, Conf. Rec. of 281h Asilomar Conf. on
Signals, Systems and Computers 2, 1994, 1046-105 1.
S. Sriram, E. A. Lee, “Design and Implementation of an
Ordered Memory Access Architecture”, Roc. of the
International Conference on Acoustics Speech and Signal
Processing, Apr. 1993, pp. 1345-1348.
G C. Sih, E. A. Lee, “A Compile-Time Scheduling
Heuristic for Interconnection-Constrained Heterogeneous
Processor Architectures”, E E E Trans. Parallel Distrib.
Syst. 4, No. 2 (Feb. 1993), 175-187.
L. Wang, H. J. Siegel, V. P. Roychowdhury, A. A.
Maciejewski, “Task Matching and Scheduling in
Heterogeneous Computing Environments Using a Genetic-
Algorithm-Based Approach”, Journal of Parallel &
Distributed Computing 47, No. 1 (Nov. 1997), 8-22.
L. E Chao, A. S. LaPaugh, E. H. M. Sha, “Rotation
Scheduling: A Loop Pipelining Algorithm”, IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems
16, No. 3 (Mar 1997), 229-239.
S. Tongsima, E. H. M. Sha, N. L. Passos, “Communication-
Sensitive Loop Scheduling for DSP Applications”, E E E
Trans. on Signal Processing 45, No. 5 (May 1997), 1309-
1322.
Y. K. Kwok, I. Ahmad, “Bubble Scheduling: A Quasi
Dynamic Algorithm for Static Allocation of Tasks to
Parallel Architectures”, Proc of 7’ Symp. on Parallel &
Dist. Proc., Oct. 1995, pp. 36-43.
“ITU-T recommendation H.261: video codec for
audiovisual services at px64 kbits”, ITU, 1990.
N. H. C. Yung, K. K. Leung, “Parallelization of the H.261
video coding algorithm on the IBM SP2 multiprocessor
system”, Proc. of 3rd ICA3PP-97, Dec. 1997,571-578.

30 1

