
":/'7

Adaptive Load-Balancing Algorithms Using

Symmetric Broadcast Networks

Sajal K. Das and Daniel J. Harvey

Department. of Computer Sciences

University of North Texas

P.O. Box 13886

Denton, TX 76203-6886

E-mail: { alas,harvey} @cs.unt.edu

Rupak Biswas

MRJ Technology Solutions

NASA Ames Research Center

Mail Stop T27A-1

Moffett Field, CA 9403.5-1000

E-mail: rbiswas@nas.nasa.gov

Abstract

In a distributed-computing environment, it is important to ensure that the processor work-

loads are adequately balanced. Among numerous load-balancing algorithms, a unique approach
due to Das and Prasad defines a symmetric broadcast network (SBN) that provides a robust com-

munication pattern among the processors in a topology-independent manner. In this paper, we
propose and analyze three novel SBN-based load-balancing algorithms, and implement them on

an SP2. A thorough experimental study with Poisson-distributed synthetic loads demonstrates
that these algorithms are very effective in balancing system load while minimizing processor idle

time. They also compare favorably with several other existing load-balancing techniques. Ad-
ditional experiments performed with real data demonstrate that the SBN approach is effective

in adaptive computational science and engineering applications where dynamic load balancing

is extremely crucial.

Key words: Hypercube, job migration, load balancing, mesh adaptation, network topology, span-

ning binomial tree, system load, Poisson distribution.

1 Introduction

To maximize the performance of a multicomputer system, it is essential to evenly distribute the load

among the processors. In other words, it is desirable to prevent, if possible, the condition where

one node is overloaded with a backlog of jobs to be processed while another processor is lightly

loaded or idle. The load-balancing problem is closely related to scheduling and resource allocation,

and can be static or dynamic. A static allocation [23, 25] relates to decisions made at compile time,

and compile-time programming tools are necessary to adequately estimate the required resources.

On the other hand, dynamic Mgorithms [4, 10, 14] allocate/reallocate resources at run time based

on a set of system parameters that are maintained. For example, these parameters determine when

jobs can be migrated and account for the overhead involved in such a transfer [24]. Determining

the parameters to be maintained and how to broadcast them are important design considerations.

Distributed scheduling policies [12, 16] are used to resolve these issues.

In this paper, we consider general-purpose distributed-memory parallel computers in which pro-

cessors (or nodes) are connected by a point-to-point network topology and the nodes communicate

with one another using message passing. Responsibility for load balancing is decentralized, or

spreadamongthe nodes.Processorworkloadis determinedby thelengthof the]ocaljob queue.
Thenetworkisassumedto behomogeneousandanyjob canbeprocessedbyanynode.However,
jobs cannotbereroutedonceexecutionbegins.

Recently, Das et al. [7, 8, 9] have suggested a different approach to load balancing, by introduc-

ing a logical topologyqndependent communication pattern called a symmetric broadcast network

(SBN). We refine this approach and propose three novel and efficient load-balancing algorithms,

one of which is adapted for use on the hypercube architecture. Based on their operational charac-

teristics, our SBN-based algorithms can be classified (e.g. [26]) as:

Adaptive: performance adapts to the average number of queued jobs;

Symmetrically Initiated: senders and receivers can initiate load balancing;

Stable: the network is not burdened with excessive load-balancing traffic;

Effective: System performance does not degrade while balancing loads.

The three algorithms proposed in this paper have been implemented on an IBM SP2 multi-

processor [1], using the Message-Passing Interface (MPI) [19]. Performance of the SBN algorithms

are analyzed by extensively conducting two sets of experiments. The first set of experiments uses

Poisson-distributed synthetic loads and compares the SBN algorithms to other existing techniques

such as Random [10], Gradient [17, 18], Sender Initiated [11], Receiver Initiated [11], and Adaptive

Contracting [11]. The second set of experiments applies the SBN approach to a dynamic mesh

adaptation application using a.ctual load data. Our experiments demonstrate that a superior qua.1-

ity of load balancing is achieved by the SBN approach with respect to such metrics as the total

jobs transferred, total completion time, message traffic per node, and maximum variance in node

idle time. Furthermore, results show that SBN techniques can be applied to adaptive mesh-based

computational problems where dynamic load balancing is very important. A preliminary version

of this paper is presented in [6].

This paper is organized as follows. Section 2 reviews several known approaches for load balanc-

ing that will be used for comparison purposes. Section 3 defines symmetric broadcast networks.

Section 4 discusses general characteristics common to all of the proposed algorithms. Section 5

presents three SBN-based load-balancing schemes. This section also analyzes the performance

characteristics of these algorithms, while Section 6 summarizes the experimental results comparing
SBN algorithms to other load-balancing techniques. Section 7 discusses the effectiveness of the

SBN approach in a dynamic mesh application. The fina,1 section concludes the paper.

2 Previous Work

Among various approaches suggested in the literature for comparing load-balancing algorithms,

three categories of analysis predominate: (a) mathematical modeling, (b) solving well-known prob-

lems in a multiprocessor environment, and (c) simulation. For example, in [22], the probability of

load-balancing success is computed analytically. In [13], several load-balancing methods are com-

pared by implementing Fibonacci number generation, the N-Queens problem, and the 15-puzzle on

a network. Several analyses have also employed the simulation approach [15].

In this paper we perform experiments on an IBM SP2 multiprocessor, using the simulation

approach with synthetically-generated random loads according to Poisson distributions. However,

mathematicalanMysisisalsopresentedtoprovideabetterunderstandingof algorithmperformance.
In addition,experimentsthat utilizeactuMloaddatafromadynamicmeshapplicationarereported.

Ma,nyload-balancingalgorithmsthat arecomparedareverysusceptibleto thechoiceof system
thresholds[21].A properselectionof thresholdvalueshasproven helpful in optimizing the SBN-

based algorithms that we propose. The following load-bMancing algorithms will be compared with

ours using several performance metrics.

Random [10]:

Jobs are randomly distributed among processors or nodes.

As jobs are generated, and if the number of jobs queued at a given node is above a designated

threshold, the jobs are randomly distributed between the originating and neighboring nodes.

Once a job originating at a node is received by another node, it is processed. Therefore,

additional job migration is not allowed. Single distribution messages can contain multiple

jobs when more than one job is to be sent from one node to another.

Gradient [17, 18]:

Jobs proceed from overloaded to lightly-loaded nodes. This is accomplished by a systemwide

gradient that is maintained. Each node has a load status flag. When compared with system

thresholds, the vMue stored in this flag determines whether the node is overloaded, lightly

loaded, or moderately loaded.

An array, PRESSURE, is also maintained at each node. This array has an entry that corre-

sponds to each neighbor. Each of these entries contains the pressure (minimum number of

communication "jumps" to the nearest tightly-loaded node) if a. job is to be routed to the

neighbor that corresponds to this entry. If a node i is lightly loaded, its pressure is zero.
Otherwise it is cMculated as:

rain {PRESSURE for each neighbor node of i} + 1.

Whenever the pressure of a node changes, it is broadcast to all of its neighbors. Because of

network dynamics, this pressure is only an approximation of the true system load.

Under the gradient algorithm, a job can migrate many times before it is finally processed.

Receiver Initiated [11]:

Load balancing is triggered by a lightly-loaded node. If a given node has a load value below

the system threshold, it broadcasts a job request message to its neighbors. The node's job

queue length is "piggy backed" to the request message. Upon receipt of this message, each

neighbor node compares its job queue length to that of the requesting node. If the local queue

size is larger, the neighbor node replies with a single job.

To prevent instability in light system load conditions, a time-out of one second is introduced

to wait for job replies. More specifically, the node will wait one second before initiating

another request for jobs. It is possible for a job to be migrated multiple times using this

algorithm before being processed.

Sender Initiated [11]:

Load balancing is initiated when nodes become overloaded. To prevent instability under

heavy system loads, each node exchanges load information with its neighbors. Load values

areexchangedwhena locMjob queuesizeis halvedor doubledin length.In this way,the
exchangeof loadinformationoccurslessfrequentlyasthesystemloadincreases.
Whenjobs aregenerated,they aredistributedto lightly-loadedneighbors.Once a job is

received from a neighbor node, it is processed. Multiple job migrations are not allowed.

Adaptive Contracting [11]:

When jobs are generated, the originating node distributes bids to its neighbor nodes in par-

allel. The neighbor nodes respond to this bid with a message containing the number of jobs

in their respective local queues.

The originating node then distributes jobs to those neighbors that have loads smaller than

an amount determined by a system threshold. The number of jobs distributed is such that

jobs are equally divided among the originating node and its lightly-loaded neighbors.

3 Preliminaries on Symmetric Broadcast Networks (SBNs)

A symmetric broadcast network (SBN) defines a communication pattern (logical or physical) among

the P processors in a multicomputer system [7, 9]. An SBN of dimension d ___0, denoted as SBN(d),

is a d + 1-stage interconnection network with P = 2 4 processors in each stage. It is constructed

recursively as follows:

• A single node forms the basis network SBN(0).

• For d > 0, an SBN(d) is obtained from a pair of SBN(d - 1)s by adding a communication

stage in the front and additional interprocessor connections as follows:

(a) Node i in stage 0 is connected to node j = (i + P/2) mod P in stage l; and

(b) Node j in stage 1 is connected to the node in stage 2, that was the stage 0 successor of

node i in SBN(d- l).

An example of how an SBN(2) is formed from two SBN(1)s is shown in Fig. 1. The SBN

approach defines unique communication patterns among the nodes in the network. For any source

node at stage 0, there are log P stages of communication with each node appearing exactly once.

The successors and predecessors of each node are uniquely defined by specifying the originating

node and the communication stage. Messages originating from source nodes are appropriately

routed through the SBN.

Stage 0 Stage 1 Stage 0 Stage 1 Stage 2

Figure]: Construction of SBN(2) from a pair of SBN(I)s.

As an example, consider the two communication patterns for SBN(3) shown in Fig. 2. The

paths in Fig. 2(a) are used to route messages originating from node 0, while those in Fig. 2(b)

Figure2: Examplesof SBNcommunicationpatternsin SBN(8).

arefor messagesoriginatingfromnode5. Nowif n_ denote a node at stage .s in Fig. 2(b) and .n_

is the corresponding node in Fig. 2(a), then n_- = n_ e 5, where • is the exclusive-OR operator.

In general, if n_ is the corresponding node in the communication pattern for messages originating

from source node x, then ' 'n_ = n_ • z. Thus, all SBN communication patterns can be derived from

the template with node 0 a.s the root. The predecessor and two successors to n_) can be computed

as follows:

Predecessor = (n_ - 2d-s) V 2d-s+l , where V is the inclusive-OR operator.

Successor_l = n_+2 d-s-1 for 0 _ .s < d,

Successor_2 = n_) - 2d-_-I for 1 _< s < d.

Figure 2 illustrates two possible SBN communication patterns, but many others can easily be

derived based on network topology and application requirements. For example, the SBN node 0

pattern can be defined based on the array implementation of a fllll binary tree. Predecessor and
successors are then defined as follows:

Predecessor = [-_] ifs > 0.

Successor_l =
l+n 8 if.s=n 8=02,n 8 if l_<.s < d.

Successor_2=2,n_+l ifl_<s<d.

In [5], the SBN approach was adapted for use on the hypercube using a modified binomial

spanning tree, which is actually two binomial trees connected back to ba.ck. Figure 3 shows such

a communication pattern for a 16-node network which is used to route messages originating from

node 0. The solid lines of the diagram represent the actual SBN pattern, whereas the dashed lines

are used to gather load-balancing messages at a single destination node (node 15).

Figure 3: Binomial spanning tree used as a hypercube SBN.

The modified binomial spanning tree is particularly suitable for adapting the SBN algorithm

to the hypercube architecture. It ensures that all successor and predecessor nodes at any com-

munication stage are adjacent nodes in the hypercube. Also, every originating node has a unique

destination node. If the nodes are numbered using a binary string of d bits, the number of prede-

cessors for a node is max {1,b} where b is the number of consecutive leftmost 1-bits in the node's

binary address.

4 General Characteristics of Proposed Load Balancing

4.1 System Thresholds

All SBN-based algorithms adapt their behavior to the system load. Under heavy (light) loads, the

balancing activity is primarily initiated by processors that are lightly (heavily) loaded. This activity

is controlled by two system thresholds, NinTh and gaxTh, which are respectively the minimum and

maximum system load levels. The system load level SysLL is the average number of jobs queued

per processor. If a processor has a queue length, OLen, below NinTh, a message is initiated to begin

load balancing. If QLen is larger than NaxTh, extra jobs are distributed through the network. If

this distribution overloads other processors, load balancing is triggered.

Algorithm behavior is affected by the values chosen for MinTh and MaxTh. For instance, MinTh

must be large enough so that sufficient jobs can be received before a lightly-loaded processor

becomes idle. However, the value should not be so large as to initiate unnecessary load balancing.

If MaxTh is too small, it will cause an excessive number of job distributions. If it is too large, jobs

will not be adequately distributed under light system loads. Moreover, once there is sufficient load

on the network, very little load-balancing activity should be required.

4.2 Message Communication

Two types of messages are processed by the SBN approach. The first type is the balancing message

which is sent through the network to indicate unbalanced system load. These messages are orig-

inated from an unbalanced node and then routed through the SBN. As these balancing messages

pass through the network, the cumulative total of queued jobs is computed to obtain SysLL. The

second message type for job distribution and is used for three purposes. First, they are used to

route the SysLL through the network. Each node, upon receipt of such a message, updates its local

values for NinTh, NaxTh, and $ysLL. Second, job distribution messages are used to pass excess jobs

from one node to another. This action can occur whenever a node has more jobs than its NaxTh.

Third, jobs can be distributed when a node responds to another node's need for jobs. This need is

embedded in both load-balance messages and in distribution messages.

If the communication from one node to its neighbors is completed in constant time, a singte

load-balancing operation requires O(log P) time since there are d + 1 = (log P) + 1 communication

stages in SBN(d). However, if multiple balancing operations are processed simultaneously, the worst
case complexity is O(log 2 P) [7]. To reduce message traffic, a node does not initiate additional load-

balancing activity until all previous balancing-related messages that have passed through the node

have been completely processed.

4.3 Common Procedures

All of our load-balancing algorithms based on the SBN scheme consist of four key procedures. The

first two, GetDistribute and GetBalance, are used to respectively process distribution and bMa,nce

messages that are received. Similarly, the procedures, Distribute and Balance, respectively route

distribution and balance messages to the SBN successor nodes. Details of these procedures depend

on the particular load-balancing algorithms used. Figure 4 presents the pseudo code that is common

to all of the SBN based load-balancing algorithms.

Procedure Main Line Processing

Repeat forever

(jail GetBalance to process load-balance messages received

Call GetDistribute to process distribution messages received

If (OLen > MaxTh)

Call Distribute to route excess jobs through the SBN

If (Qaen < MinTh)

Call Balance to initiate a load-balancing operation

Call UpdateLoad(TotalJobsQueued) to set SysLL

Normal Processing

End Repeat

Procedure Update Load(LoadLevelEst iraate)

SysLL = [LoadLevelEsZimate/P]

MaxTh = SysLL + 2 [sysLL/C°nstantParameterj

If (SysLL _ ConsZantParameter)

MinTh = ConstanZParameZer

else NinTh = SysLL -]
Return

Figure 4: Common pseudo code for SBN based load-balancing algorithms.

5 SBN-Based Load-Balancing Algorithms

5.1 Standard SBN Algorithm

In the standard SBN a]gorithm, load-bMancing messages are routed through SBN from the

source to the processors a£ the last stage. Load-bMance messages are then routed b_ck towards the

original source so the total number of jobs in the system can be computed. The originating node

thus has an accurate value of SysLL. Distribution messages are then sent to all nodes along with

SysLL. All nodes update their local SysLL, MinTh, and MaxTh. Excess jobs are routed as part of

this distribution to baiance the system load. In addition, if a processor has QLen less than SysLL,

the need for jobs is indicated during the distribution process. Successor nodes respond by routing

back an appropriate number of excess jobs. Figure 5 provides pseudo code of the standard SBN

algorithm.

To illustrate the processing involved in a]oad-bMancing operation, consider the SBN(3) in

Fig. 6(a). The id and QLen for each node are shown. For example, node 6 ha.s three jobs queued for

Procedure GetBalance

While there are balance messages to be processed

Route any needed jobs to the predecessor node if possible

If more balancing messages are still to be gathered, Break

If this is the final SBN stage

Route distribution and $ysLL to originator node

If this is the originator of the balancing operation

Decrement the number of balance operations being processed

Call UpdateLoad(TotalJobsQueued)

Distribute excess jobs and SysLL through the SBN

Increment load-balancing operations being processed

Route the balance message to the next SBN stage

else

End While

Return

Procedure GetDistribute

While there are distribution messages to be processed

Enquene any jobs received

If the predecessor node has a need for jobs, route excess jobs back

If load balancing is complete

Decrement number of balancing operations being processed

Call UpdateLoad(rotalJobsQueued)

If this is message completes a distribution

If the queue size > maximum threshold trigger load balancing

else Call Distribute to route the excess jobs to the next SBN stage

end While

Return

Procedure Balance

If this is the final stage, Return

If this is a new balance operation

If load balancing is in process, Return

Increment the number of balance operations being processed

Compute the number of distribution messages expected

Compute the number of jobs needed

Route the balance message to the next SBN stage
Return

Procedure Distribute

If this is the final SBN stage, Return

If this is a normal distribution and load balancing is being performed

Inhibit the distribution and Return

Compute the number of excess messages and the number of needed jobs

Dequeue the jobs to be distributed

Distribute jobs and forward the SysLL data. to successors

Return

Figure 5: Pseudo code for the standard SBN algorithm.

8

QI4
Q1 1 _ //_ -'--(3)Q7

Q8

Q6 Q8 7

m2 10 _ o)......__
M24 (b) _ _..._ 7)Q88'--.1'

Figure 6: An example of load balancing using the standard SBN algorithm.

processing, indicated as Q3. The initial values of the SysLL, MinTh, and MaxTh at node 0 are 4, 2,

and 6, respectively (indicated as L4, m2, and M6). After a load-balancing request is sent through

the SBN and then routed ba.ck to node 0, these values are updated as 8, 2, and 24, respectively,

using:

SysLL = [TotalJobsOueued/P]

NinTh = min {ConstantParamet er, SysLL - 1}

MaxTh = SysLL +2 [SysLL/ConstantParamet er]

Note that when the balancing is initiated, node 4 distributes half of its 0Len jobs, i.e. L3/2J, back

to node 0 which had a need for jobs. This distribution is shown by a label on the arrow in Fig. 6(a).

Distribution messages are then used to route excess jobs to the successor nodes or to indicate a

need for jobs if the local QLen is less than SysLL. Jobs are routed back to the predecessor nodes when

appropriate. Figure 6(b) shows the result of this distribution. The arrows indicate the number of

jobs routed between nodes.

To load balance P processors, P - 1 balance messages are sent through the SBN. Then P - 1

distribution messages are routed back to the originating node with the SysLL value. Finally, another

P - 1 distribution messages are sent to complete the operation. Thus, a total of 3P - 3 messages

have to be processed, requiring a total time of O(log P) for this operation.

5.2 Hypercube Variant

The SBN approach can be adapted for implementation on a hypercube topology, using t he modified

binomial spanning tree sketched in Section 3. A complete description of this hypercube variant is

given in [5]. It operates in a manner similar to the standard SBN algorithm with the following
differences:

The value of SysLL is computed when all balance messages arrive at the destination node in

the network. This is possible because there is a unique destination node for every originating

node. Distribution messages are then routed back to complete the load balancing. Since
P

there are P - 1 + 7 - 1 interconnections in the modified binomial spanning tree (of. Fig. 3),

a load-balancing operation requires 3P - 4 messages to be processed.

Nodes in the SBN need to gather all balancing messages from their predecessors before routing

the updated SysLL to the successors.

The network topology is such that the number of predecessor and successor nodes vary at the

different stages of communica.tion.

5.3 Heuristic SBN Algorithm

Both of the previous algorithms are expensive since a large number of messages has to be processed

to accurately maintain the SysLL. The heuristic version attempts to reduce the amount of processing

by terminating load-balancing operations as soon as enough jobs are found that can be distributed.

In general, this strategy reduces the number of messages; Mthough O(P) messages are needed in

the worst case.

In the heuristic algorithm, a processor estimates $ysLL by averaging QLen for the processors

through which the balance message has passed. An appropriate number of jobs is then returned to

the predecessor nodes as follows:

ExJobs = _ 0 if QLen < 3

[[QLen/2J otherwise.

If ExJobs = 0 or if SysLL > 2 when ExJobs = l, the balance message is forwarded to the next

stage. Otherwise, the load balancing is terminated. The justification for this strategy is discussed

in Section 6.

Job distribution is also processed differently in the henristic SBN algorithm. For example,

consider the network SBN(3) that has a processor with MaxTh= 15 and QLen = 24. The number of

jobs to be distributed is computed by dividing QLen by the total number of stages. Thus, six jobs

are distributed in this case. SysLL is then set to 24 - 6 = 18. The processor that receives these jobs

divides the number of jobs received by the remaining number of stages and adds the result to the

SysLL stored at that node. The pseudo code in Fig. 7 gives the operational details of the heuristic

SBN algorithm.

5.4 Remarks

A significant advantage of the heuristic variant is that the load-balancing messages do not have to

be gathered until SysLL can be estimated. This reduces the interdependencies associated with the

communication. If a particular processor falls, load balancing can still be accomplished utilizing

the remaining processors.

An additional improvement has been obtained for all three load-balancing algorithms by using

using multiple SBN communication patterns. Each time a message is initiated, one of the SBN pat-

terns is randomly chosen. Each message includes the source node, the pattern used, and the stage to

which the message is being routed. Since all nodes have the SBN template associated with messages

originating from node 0, the required SBN communication pattern can be determined. Multiple

randomly-selected SBN patterns distribute messages more evenly, enhance network reliability, and

allow various applications to be written using different communication patterns.

5.5 Mathematical Analysis

In a network of P processors, the distribution of jobs among processors can be modeled using a

Poisson distribution. Specifically, the probabihty of a given node having j jobs is _, where % is
the mean arrival rate. If the system load level SysLL is k, then, by definition, the averag e number

• , k 3 .
of jobs assigned to a processor is k. Hence, the probability that a node has j jobs is _. Using
this simple model, useful probabihties can be easily cMculated. For example, the probability, g3,

k 2 k3,
that a processor in the network has more than three jobs, is g3 = 1 - _(1 + k + -/- + _-). The

probability that all P processors have more than three jobs is gP. Now, gP > 0.9 if k > 5 and is

10

Procedure GetBalance

While there are balance messages to be processed

CMculate the estimated TotalJobsQueued

Call Update Load(T oz al JobsQueued)

Distribute excess jobs to the predecessor node

If no jobs distributed or one job distributed when SysLe > 2

Route the balance message to the next SBN stage
End While

Return

Procedure GetDistribute

While there are distribution messages to be processed

If this distribution is in response to load balancing

NeweL = SysLa -]-[JobsReceived/(Stage -i-l)]

else NeweL = I:]een + [JobsReceived/(2 Dim-stage- l)]

Call UpdateLoad(P× NeweL)

Enqueue received messages

Continue the distriblltion to the next SBN stage
End While

Return

Procedure Balance

If this is the final stage, return

Route the Balance message to the next SBN stage

Ret urn

Procedure Distribute

If this is the final SBN stage, return

If this is a response to a, load-balancing operation

If (QLen < 3)

ExJobs = 0

else ExJobs = [Qlen/2J

else ExJobs = QLen - MaxTh

Ifthe lastjob isto be distributed,ExJobs = O

Dequeue the jobs to be distributed

Distribute the ExJobs among the adjacent,SBN nodes

Ret urn(Number0f JobsDistribut ed)

Figure 7: Pseudo code for the heuristic SBN a.lgorithm.

11

almostunity if k > 15. This imPlies that the need for load-balancing activity rapidly decreases as

SysLL increases. Therefore, increasing MaxTh exponentially as SysLL increases makes good sense.

In order to analyze the heuristic algorithm, we need to analyze other network characteristics

such as (a) the expected number of stages through which load-balancing operations must travel

before at least two jobs are returned and (b) the expected number of jobs that will be returned as

a result of such an operation.

If Ji is the probability that i jumps are required, the expected number of jumps is Ej =

)-_)og P i, Ji- Assuming that a load-balancing operation stops when two or more jobs a.re returned,i=1

the first node with at least four jobs will terminate the load-bMancing process when using the

heuristic algorithm. Since g3 is the likelihood of a node having more than three jobs to process,

we can evaluate the above sum. Unfortunately, the expressions needed to calculate 3"/ become

quite complicated as i increases. However, because i _< log P, we have evaluated this equation for

networks up to 64 nodes. Our analysis shows that the number of expected jumps becomes very

close to unity when k > 7. This conclusion confirms that the heuristic algorithm should greatly

reduce the number of messages that need to be processed for networks with heavy system loads.

The handling of light system loads is an entirely different matter. For example, in an SBN(5), an

average 4.931 stages need to be processed if k = 1. With further analysis, we found that balancing

operations on an average need to pass through 28.265 of the 32 nodes. Therefore, effective load

balancing when processing light system loads is expensive. This result motivated us to impose the

constraint that the Mgorithm should stop load balancing as soon as a single job is returned when

the system is lightly loaded.

Finally, in order to establish how many jobs, on average, will be returned in response to a load-

balancing message requires three parameters: (a) the probability that a single job will be returned

(QLen = 3), (b) the probability that at least two jobs will be returned (QLon > 3), and (c) the

number of nodes through which a balancing operation must pass. We have found that in a network

of 32 nodes, if the SysLL = 2, an average of 7.493 jobs will be returned. Again, requiring that

the algorithm stops load-balancing operations as soon as a single job is returned when processing

light loads, alleviates this situation. The number of expected jobs that are returned is effectively
reduced to a reasonable value.

6 Testing Procedures and Experimental Results

6.1 Simulation Environment

The three SBN-based load-baiancing aigorithms have been implemented using MPI and tested

with synthetically-generated workloads on the SP2 located at NASA Ames Research Center. The

simulation program spawns the appropriate number of child processes and creates the desired

network. The list of all process ids and an initial distribution of jobs is routed through the network.

In addition to the initial load, each node dynamically generates additional job loads to be

processed. Namely, 10 job creation cycles are processed. The number of jobs generated at each

node during each cycle follows a Poisson distribution. By randomly picking different values of A,

varying numbers of jobs are created. Therefore, both heavy and light system load conditions are

dynamically simulated. Jobs are processed by "spinning" for the designated time period. The

simulation terminates when a.]] jobs have been processed. Three test rl_ns are reported here:

Heavy System Load (cf. Fig. 8): Initially, 10 jobs per node are randomly distributed throughout

the network. The jobs generated during execution are more than the network can process.

12

Jobdurationaveragesonesecond.

Transition from Heavy to Light System Load (cf. Fig. 9): Fifty jobs multiplied by the

number of processors are distributed to a small subset of nodes as an initial load. A light

load of jobs is generated as the load-balancing algorithm is processed. Job duration averages

two seconds. Note that the initial load imbalance needs to be corrected.

Light System Load (cf. Fig. 10): A small number of jobs are initially distributed to a smMl

subset of nodes. A light load of jobs are created as the algorithms execute.

The performance of the SBN based algorithms are compared with several popular algorithms

(e.g. Random, Gradient, Sender Initiated, Receiver Initiated, Adaptive Contracting). The same

simulation tests are also run without load balancing.

6.2 Performance Metrics

The data and line charts included in Figs. 8-10 measure the comparative performance of the various

load-bMancing algorithms on an SP2. The X-axis of the line charts show the number of processors

used. The Y-axis tracks the following variables:

(a) Message Traffic Comparison by Node: Measures the maximum total number of load-

balancing messages that were sent by any one of the nodes.

(b) Total Jobs Transferred: Measures the total number of job transfers that occurred from
one node to another.

(c) Maximum Variance by Node in Idle Time: Measures the difference in processing time

between the most busy node and the least busy node.

(d) Total Time to Complete: Measures the total amount of elapsed time in seconds before all

jobs are fully processed.

6.3 Summary of Results

As expected, the program with no load balancing (noba D performs by far the worst. The random

algorithm, although providing significant improvement in minimizing idle time, nevertheless is less

effective than the remaining algorithms.

The Sender Initiated (send) algorithm more evenly balances the load than random; however,

the Receiver Initiated (receive) algorithm does better only when the system load is light. For light

to moderate loads, receive generates more network traffic because all nodes poll neighbors to find

jobs they can process. To overcome this deficiency, a time delay of one second has been introduced

after a polling operation at the cost of increasing the idle time. At heavy system loads send can

cause job thrashing. This has been overcome by reducing the number of job transfers that are done

at high load levels. However, it can cause one or more nodes to remain lightly loaded.

The Gradient (gradient) algorithm balances the load quite well without any of the above defi-

ciencies. Unfortunately, lightly-loaded nodes can sometimes receive too many messages from the

overloaded nodes. Also, message communication required to update neighbor node information is

13

pr_essors acw_ gradient noba_ random receive send cube sb_ sbz
2 96 50 0 15 14 34 9 12 2

4 294 586 0 74 80 136 77 68 18

8 1008 2093 0 198 180 439 285 678 134

16 2709 10915 0 560 484 1279 906 1882 320

32 7247 31232 0 1190 864 2617 1980 4420 680

64 16043 1268O7 0 2810 1999 6290 6233 12434 1942

Message Trarfflc Comparison by Node

_4o0oo - . ,........... , ,

===cqll_n=dkmt

-.o-- | _,¢1

.--÷.--¢ubl

_ebz

2 4 e 16 32 64

:)rocessors acwn gradient nobal rartdorft reosive set_d cube sbn sbz
2 141 26 0 158 7 148 34 31 28

4 406 127 0 414 40 373 264 160 146

8 1324 454 O 949 85 837 719 1092 830

16 3646 1820 0 2539 228 1979 1824 2619 1905

32 14223 4856 O 4335 412 5139 4923 7182 5315

64 19113 12616 0 9907 930 10005 17405 15900 10080

Total Jobs Trlmsfen'od

Rn_t

m
imlIimlmOm_

- -._-. rece_,e

-.e.- seine

-.-+--.cube

..... =tin

--ibz

processors acwrt gradient noOal random receive send cube sbn sbz !_'ocessors ac'wn gradient nobal random recewe send cube sbn sbz

2 2.5 4,9 47.7 10.1 33.5 4.1 2.3 0,9 2.0 2 176,1 157.4 178.8 163,8 171,7 152.9 141,2 155,4 158.5

4 6.4 2,3 98,4 45.0 69.7 5.3 2.4 3.1 2.6 4 152.9 152,6 191,6 185,4 170,5 154.8 151.2 153.2 140¸9

8 7.5 3.2 140,9 87.0 89.2 29.5 4,0 3,2 3.0 8 176.6 162.1 194.1 211,4 178,7 178,0 172.7 161.9 147.2

16 9.9 13,7 229.4 84r8 172.6 20,2 2.5 3.6 4.0 16 185A 168.2 300.0 236,8 277,7 171,3 170.9 164.2 161.2

32 40.3 15.0 317.2 146.2 268.3 55,3 4,3 6.7 66.3 32 221.8 201.2 387.4 264,5 365.9 226.7 186.9 200.5 224.3

64 14,6 18.6 356.9 118.8 264,9 49.6 5,5 8.4 53.3 64 189.9 192.5 389,8 242.4 377.7 212.4 187.5 189.6 192,3

Maximum Variance by Node in Idle Time

5000

000

2 4 8 16 32 64

-.e.- sired

• -._ .-.cubl

r
I-- it_

Figure 8: Hea,vy system loa,d.

14

processors acwn gradient nobel random receive send cube sbn sbz processors acwn gradient nobel random receive send cube sbn sbz

2 58 40 0 13 51 26 15 12 7 2 133 23

4 198 979 0 67 786 191 110 166 90 4 398 284

8 515 4346 0 151 1699 540 512 692 228 8 1083 810

16 1268 17498 0 347 4630 1568 1414 2127 802 16 3685 2265

32 3239 53961 0 804 5036 3767 5540 6704 2461 32 10355 5693

64 7713 207489 0 1649 22424 10120 12408 27772 6951 64 24947 14520

Message Traffic Comparison by Node

100000 3

2 4 8 16 32 64

processors ac'w_n gradient nobel random receive send cube sbn sbz

2 3.1 3.3 102.3 65.9 1.1 27.3 1.9 1.7 1.9

4 10.9 9.4 360.2 108.5 70.6 20.3 4.6 6.0 6.7

8 38.0 19.2 335.2 127,8 20.6 25.6 14.3 14.9 17.9

16 59.2 25.2 630,6 254.9 111.5 56.3 9.6 20.3 21_5

32 87.7 34,4 673.4 295.6 241.9 71.0 16.4 24.6 23.3

64 1154 42.1 1.378.5 5346 640.2 132.5 19.0 30.1 52,2

0 181 24 207 141 118 109

0 496 174 345 603 404 406

0 1011 334 878 2201 1264 786

0 2017 9_6 1880 6034 4997 4519

0 4121 1192 4002 20812 23958 11251

0 8417 4184 8217 45107 53.$80 33947

Total Job| Trlmstklrrad

r
i

5oooo , , 11
s

i

400o0 , /- ..:
i :
i :

t :
i ;
r :

j .

i

-'--I

.-=2_ndom
-, x_ • recabve

- • "+, • • Cube !

]

:)rocessors ac',*,'n gradient nob_ random receive send cube sbn sbz

2 437.2 466.8 516.3 387.3 465.7 478.8 484.3 464.3 459.9

4 340,0 330.1 569.7 429.7 346.9 332.8 343.4 326.0 309.5

8 319,7 309,4 480.4 415.1 314.3 315.5 327.6 310,4 301,8

16 317.7 317.4 630.6 442.6 347.5 338.3 348,1 315.6 328.6

32 363.1 338.8 630.6 477.4 365.9 350.8 327_0 330.3 339.8

64 372_6 331.7 1,376.2 654.3 7864 396.4 332.7 326.4 3306

Maximum Variance by Node in Idle Time Total Time to Complete

0o0

4 8 18 32 64

ala=_-II_-==_rodNmt

m

Immwxgm, indom

--.=l- .. rtcl=_

-.e.- s_
..,÷.. c_= i

--,,b= r

Figure 9: Transition from heavy to light system load.

15

processors ac.wn gr_:lient nobal random receive send cube sbn sbz processors acw_ gradient nobal random receive Bend cube sbn sbz

2 28 172.02 0 16 498 75 80 94 23 2 49 520 0 139 91 118 131 258 110

4 191 862 0 54 1306 274 469 353 179 4 274 285 0 301 140 247 690 645 561

8 464 3618 0 144 2609 877 1256 1553 598 8 663 784 0 689 344 653 1590 2293 1614

16 1073 10162 0 333 5783 2503 4989 4365 2403 16 1595 1508 0 1227 627 1174 4081 4426 5277

32 2368 32184 0 810 11318 6568 19058 16356 7462 32 3852 3907 0 3029 1393 2762 15809 11819 14592

64 5292 89605 0 1603 23072 16578 46250 33719 22377 64 7070 7292 0 5420 2626 5410 39601 22691 40512

Meslmge Traffic Compaltson by Node

400O0

e

2 4 8 16 32 64

Total Jobs Transferred

450OO , - - -,

40O00

35000

30000

250OO -

20000-

15O00

2 4 8 18 32 64

-.e.- lend

processors acwn gradmnt nob =1 random receive send cube sb_ sbz processors acwn gradient nobal random receive send cube sbn sbz
2 7.4 50.9 124.3 79.0 2.7 9.1 5.2 7.1 1.5 2 132.8 133,0 322.0 317.2 258,5 264.4 219.1 256,3 266.9

4 53.5 23.9 204.2 58.6 34.3 20.4 12.1 12.9 4.5 4 268.2 211.7 321,5 245.4 216.2 209.5 252.4 204.7 230.4

8 37,8 35,5 358,9 64.7 74,5 87.5 12.3 12.7 14.5 8 243.6 241.9 3_0,6 267,6 262.4 267.3 251.9 226,2 231.0

16 140,3 58.2 360,4 141,9 76.9 76.3 26,7 32.9 21.2 16 295.1 231.5 3_0.5 254,8 234,4 239,0 184.0 206.4 229.5

32 160,2 86.0 397.1 221.5 145.2 76.8 28.6 45.5 32.0 32 297.1 254.0 397,2 321,8 275,3 250.7 253.7 242,8 234,3

64 128.0 687 585.4 186.4 172.7 127,8 39.3 52.1 31.1 64 274.0 247,7 685.3 306.1 311.1 294.3 275.5 232.5 2386

Maximum Varhmce by Node in Idle Time

600 ,

100 oo

2
I

Total Time to Comp}eta

n

ii-i.

Figure 10: Light system load.

16

significantandoftenresultsin excessivenetworktraffic. TheAdaptiveContracting(acwn)algo-
rithm performsthe bestin periodsof heavysystemloads.However,aswastrue for the gradient

algorithm, an increased system traffic and the number of jobs migrated is observed.

Both the standard SBN (sbn) algorithm and its hypercube variant (cube) were able to balance

the system load more evenly than other algorithms. Their performance characteristics are very

similar. They require less message traffic than the gradient algorithm but cause a higher number

of job migrations, especially in periods of light system loads.

The heuristic SBN algorithm (sbz) performs well in minimizing idle time in light system loads.

Although its performance during periods of heavy loads is relatively good, it does not balance the

generated system load as well as the cube or sbn. This is because its estimate of SysLL is not

necessarily accurate. Note that for light loads, sbz requires many more job transfers than the other

algorithms. However, it consistently requires fewer messages than gradient, sbn, or cube.

7 Applications to Dynamic Mesh Adaptation Problems

Numerical solution schemes for problems in computational science and engineering are usually

performed on a mesh of vertices and edges. These applications can be modeled in onr dynamic

load-balancing framework as a grid of jobs where adjacent jobs need to communicate to complete

their tasks. The traditional approach to such problems is to find a near-optimal minimal cut that

partitions the grid among the processors in a network while balancing the individual processor

workloads. For applications that require dynamic mesh adaptation, the load balancing procedure

has to be invoked whenever the system load becomes unbalanced. Load balancing involves both

partitioning the computational mesh and mapping the resulting partitions to the processors. Map-

ping requires data, to be redistributed, that is, moved from one processor to another as determined

by the partitioner.

Several load-balancing algorithms have been designed specifically for adaptive-mesh applica-

tions. In this work, we modify the standard SBN algorithm to make it applicable to such problems.

Results obtained from our experiments show that it is an effective load-balancing technique for

applications that undergo dynamic remeshing. Some of the major modifications that were made

are the following:

(a) The unit of time required to execute a given job is determined by actual load data. The

cost in time to distribute a job's data set from one processor to another is assumed to be

equal to the processing time. This cost is incurred when a job begins to be executed on a

processor different from the one to which the job was originally assigned. Note that the time

to complete a job at a remote processor is at least double the cost of running that job on its

original processor. Lastly, units of communication time, Ctime, are calculated according to

the following formula:

Ctime = _i_=1 PRi,

where PRI is the percentage of time that the data for adjacent job, i, resides at a remote

node, and a is the mlmber of adjacent jobs.

Note that job completion requires one extra unit of time for inter-job communication, if an

adjacent job's data set resides at a remote processor during the entire run.

17

(b) The SBN algorithm utilizes multiple heaps (i.e. priority queues) to decide which jobs to

process and which jobs to migrate. All jobs queued for processing are stored in a single 'local

processing heap' and in one of a group of 'local migration heaps'. One local migration heap

exists for each processor in the network. Table 1 illustrates this concept by listing a group

of jobs queued for processing at node 0. Jobs 1 and 2 are on migration heap 0. Jobs 3-5 are

stored on migration heap 2, 3, and 1, respectively. Note that the migration heap to which a

job is placed corresponds to the processor at which the corresponding data set resides. By

using this data structure, the SBN algorithm can quickly favor migration of jobs that are to

be moved to the processor where the job's data is stored. For example, if according to Table

1, a job is to be distributed to node 3, job 4 will be favored since its data is stored at node 3.

The balancing algorithm can quickly remove that job from the corresponding migration heap.

Also the algorithm can efficiently choose jobs to migrate that would incur minimum increase

in the system distribution and communication costs when the job is run. The heap order

reflects this calculation. Lastly, the processing heap is used to choose jobs to be processed

that would be the most expensive to migrate.

Table 1: Example of jobs queued for processing at node 0.

Jobs Data Set

(c) A weighted system load level WSysLL is used rather than determining the system load based

solely on the queue length. WSysLL accounts for the total processing time, communication

time, and distribution time required to complete the running of the jobs in the system. Assume

that JDistj, Radii, and Ladjj respectively represent the distribution cost, the number of

adjacent jobs that are in remote processors, and the number of adjacent jobs that are in the

same processor for job, j. The va.hle of WSysLL is then computed as follows:

_--_QLen/p
WSysLL = P × z_.,j=l _ x JDistj -Radjj -F P × Ladjj)

(d) Migration messages have been added to simulate the movement of data. sets from one processor

to another. Using the SBN, a migration message is broadcast when a job is about to be run

and its corresponding data set is not resident. A locate message then is broadcast to indicate

the new location of the data set. Therefore, all processors can maintain the processor location

of all data sets.

(e) Minimum and maximum thresholds, blaxTh and MinTh, have been altered to reflect the time

that will pass when all locally queued jobs are processed. Also, a limit has been placed on

the number of jobs that can be migrated at once. This limit has the purpose of preventing

excessive job distributions.

7.1 Experimental Results

Two experiments have been run using a dynamic-mesh adaptation load data.. The computational

mesh is one that was used to simulate an acoustics experiment where a]/Tth-sca.le model of a

18

UH-1Hhelicopterrotor bladewastestedovera rangeof subsonicandtransonichover-tipMach
numbers.Theinitial meshconsistedof 13,967vertices,60,968tetrahedralelements,and 78,343

edges. Numerical results and a detailed report of the simulation are given in [3, 27]. A total of three

adaptations were performed on this initial mesh using a solution-based dynamic mesh adaptation

procedure [2]. The final mesh contained 137,474 vertices, 765,855 tetrahedra, and 913,412 edges.

However, load balancing was always performed on the initiaJ mesh by modifying the weights of the

vertices of the corresponding dual graph to model the dynamic mesh adaptation [20].

The results of these experiments are shown in Tables 2-3 and in Figs. 11-12. In the experiment

charted in Table 2 and Fig. 11, we favor migration of jobs with long execution times. In the second

experiment with results charted in Table 3 and Fig. 12, we favor migrating jobs with short execution
times.

Table 2: Dynamic-mesh experiment favoring migration of long jobs.

Jobs Total Processing Idle Distribution Communication

Migrated Messages Percentage Percentage Percentage Percentage

Nodes

2

4

8

16

32

64

3,567

6,745

12,767

128,780

1,261,500

10,854,794

9,068

76,555

426,169

2,759,716

15,915,048

96,184,273

92.85

89.27

84.22

79.56

76.05

72.25

0.03

0.15

0.41

0.70

1.33

2.89

5.18

6.49

8.22

8.45

11.11

13.33

1.93

4.09

7.15

11.28

11.51

11.53

100.00%

90.00:_
80.00 Yo

70.00%

60.00%

50.00%

40.00%

30.00%

20.00%

10.00% _

0.00%=
2

l +

; 16 ;2 44

--e- Processing "-=- Idle

--*- Distribution _ Communication

Figure 11 : Dynamic-mesh experiment favoring migration of long jobs.

The results show that both experiments balance the load in such a way that minimal idle time

is achieved. Favoring migration of large jobs increases the percentage of time spent processing

jobs and lowers the number of jobs migrated. However, this improvement requires significantly

more message traffic. If these results are extrapolated, minimal changes in idle time percentage

occurs as the number of processor nodes are increased. Both experiments demonstrate that the

SBN approach is genera] enough to be applicable to this class of problems.

19

Table 3: Dynamic-mesh experiment favoring migration of short jobs.

Jobs Total Processing Idle Distribution Communication

Migrated Messages Percentage Percentage Percentage Percentage

Nodes

2

4

8

16

32

64

29,298

53,636

84,225

182,036

913,601

3,603,769

58,531

80,991

514,549

2,074,743

7,139,339

19,858,167

82.89

80.15

76.15

72.80

70.87
68.32

0.02

0.03

0.12

0.51
0.92

1.34

13.04

12.03

11.63

10.77

] 1.59

12.88

4.05

7.79

12.10

15.92

]6.62

17.46

90.00%1

80.00%t

70.00%t

60.00%]

50.00%t

40,00%t

30.00%t

20.00%_

10.00%t

0.00%=
L- I

_ _6 32 64

Processing -_- Idle

-_- Distribution -¢- Communication

Figure 12: Dynamic-mesh experiment favoring migration of short jobs.

8 Conclusions

Empirical results have shown that our approach to load balancing using the concept of a symmetric

broadcast network (SBN) is effective and superior to several other schemes. All three algorithms

that we propose successflllly balance the system load and minimize processor idle time. In addition,
the heuristic variant reduces the overhead associated with load-balancing message traffic. We

have also demonstrated that the SBN approach, when applied to a dynamic mesh application, is

effective in minimizing the required communication and distribution costs. In our dynamic mesh

experiments, while it may appear that the reduction in processor idle time is at a cost of a larger
number of message transfers, we are currently developing heuristics with a goal to reduce such

message transfers significantly. We expect to report our findings in the final version.
The research presented in this paper could be extended in different directions. Further a.dap-

rations of our SBN-based load balancing approach to a wide variety of topological interconnec-

tions (and hence multicomputer configurations) would make our scheme even more versatile and
architecture-independent. This simply means how effectively SBNs can be mapped onto existing

topologies like meshes, fat trees, etc. In sections 3 and 5.2, we have demonstrated the mapping
of SBNs on a hypercube topology. Therefore, with the help of binary reflected Gray codes, it is

straightforward to embed SBNs into meshes. Another important area for research is to analyze

the effect of altering the definition of "system load". In the standard SBN algorithm, we have as-

sumed that the local queue size determines system load, whereas in the dynamic-mesh adaptation,

a weighted queue length was used. However, other parameters such as processor resource allocation

2O

and execution dependencies could greatly alter how load balancing should be accomplished.

References

[1] T. Agerwala, J. Maxtin, and J. Mirza, "Research Report SP2 System Architecture," IBM

Corporation Publication 95A001198, 1995.

[2] R. Biswas and R.C. Strawn, "A New Procedure for Dynamic Adaption of Three-Dimensional

Unstructured Grids," Applied Numerical Mathematics, Vol. 13, No. 6, pp. 437-452, Feb. 1994.

[3] R. Biswas and R.C. Strawn, "Mesh Quality Control for Multiply-Refined Tetrahedra] Grids,"

Applied Numerical Mathematics, Vol. 20, No. 4, pp. 337-348, Apr. 1996.

[4] G. Cybenko, "Dynamic Load Balancing for Distributed-Memory Multiprocessors," Journal of

Parallel and Distributed Computin9, Vol. 7, No. 2, pp. 279-301, Oct. 1989.

[5] S.K. Das and D.J. Harvey, "Performance Analysis of an Adaptive Symmetric Broadcast Load

Balancing Algorithm on the Hypercube," Technical Report, Department of Computer Science,

University of North Texas, 1995.

[6] S.K. Das, D.J. Harvey, and R. Biswas, "Adaptive Load-Balancing Algorithms Using Sym-
metric Broadcast Networks: Performance Study on an SP2," Proceedings of the International

Conference on Parallel Processing, Bloomingdale, Illinois, Aug. 1997, to appear.

[7] S.K. Das and S.K. Prasad, "Implementing Task Ready Queues in a Multiprocessing Environ-

ment," Proceedings of the International Conference on Parallel Computing, Pune, India, pp.

132-140, Dec. 1990.

[8] S.K. Das, S.K. Prasad, C-Q. Yang, and N.M.Leung, "Symmetric Broadcast Networks for

Implementing Global Task Qneues and Load BaJancing in a Multiprocessor Environment,"

Technical Report, CRPDC-92-1, Department of Computer Science, University of North Texas,

1992.

[9] S.K. Das, C-Q. Yang, and N.K. Leung, "Implementation of Load Balancing in Multiprocessor

Systems Using a Symmetric Broadcast Network," Proceedings of the International Conference

of Parallel and Distributed Systems, Hsinchu, Taiwan, pp. 589-596, 1992.

[10] D.L. Eager, G. Lazowska, and J. Zahorjan, "Adaptive Loa,d Sharing in Homogeneous Dis-

tributed Systems," IEEE Transactions on Software Engineering, Vol. SE-12, No. 5, pp. 662-

675, 1986.

[11] D.L. Eager et al., "A Comparison of Receiver Initiated and Sender Initiated Adaptive Load

Sharing," Performance Evaluation, Vol. 6, pp. 63-68, 1986.

[12] M.R. Eskicioglu, "Design Issues of Process Migration Facilities in Distributed Systems,"

Scheduling and Load Balancing in Parallel and Distributed Systems, IEEE Computer Soci-

ety Press, Los Alamitos, CA, pp. 414-424, 1995.

[13] M.D. Feng and C.K. Yuen, "Dynamic Load Balancing on a Distributed System," Proceedings

of the Symposium on Parallel and Distributed Processing, Dallas, TX, pp. 318-325, Oct. 1994.

21

[14]

[]5]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

G. Fox, A. Kalawa, and R. Williams, "The Implementation of a Dynamic Load Balancer,"

Proceedings on Conference of Hypercube Multiprocessors, pp. 114-121, 1987.

L.V. Kale, "Comparing the Performance of Two Dynamic Load Distribution Methods," Pro-

ceedings of the International Conference on Parallel Processing, Vol I, pp. 8-12, 1988.

P. Krueger and M. Livny, "The Diverse Objectives of Distributed Scheduling Policies," Pro-

ceedings of the International Conference on Distributed Computing Systems, pp. 242-249, 1987.

F.C.H. Lin and R.M. Keller, "The Gradient Model Load BaJancing Method," [EEE Transac-

tions on Software Engineering, SE-13, pp. 32-38, 1987.

R. Luting, B. Monien, and F. Ramme, "Load Balancing in Large Networks, A Comparative

Study," Proceedings of the Symposium on Parallel and Distributed Processing, Dallas TX, pp.

686-689, 1991.

Message Passing Interface (MPI) Standard. URL http://www.mcs.anl.gov/mpi/index.html.

L. Oliker and R. Biswas, "Efficient Load Balancing and Data Remapping for Adaptive Grid

Calculations," Proceedings of the Symposium on Parallel Algorithms and Architectures, New-

port, RI, Jun. 1997, to appear.

S. Pulidas, D. Towsley, and J. A. Stankovic, "Embedding Gradient Estimators in Load Bal-

ancing Algorithms," Proceedings of the International Conference on Distributed Computing

Systems, pp. 482-490, 1988.

C.G. Rommel, "The Probability of Load Balancing Success in a Homogeneous Network," IEEE

Transactions on Software Engineering, pp. 922-923, Sept. 1992.

V. Sarkar and J. Hennessy, "Compile-time Partitioning and Scheduling of Paxallel Programs,"

Scheduling and Load Balancing in Parallel and Distributed Systems, IEEE Computer Society

Press, Los Alamitos, CA, pp. 61-70, 1995.

K.G. Shin and Y.C. Chang, "Load Sharing in Hypercube Multicomputers for Real-Time Ap-

plications," Proceedings of the Conference on Hypercubes, Concurrent Computers, and Appli-

cations, pp. 617-621, Vol. l, 1989.

B.A. Shirazi, A.R. Hurson, and K.M. Karl, Scheduling and Load Balancing in Parallel and

Distributed Systems, IEEE Computer Society Press, Los Alamitos, CA, 1995.

N.G. Shivaratri, P. Krueger, and M. Singhal, "Load Distributing for Locally Distributed Sys-

tems," Computer, pp. 33-44, December 1992.

R.C. Strawn, R. Biswas, and M. Garceau, "Unstructured Adaptive Mesh Computations of

Rotorcraft High-Speed Impulsive Noise," Journal of Aircraft, Vol. 32, No. 4, pp. 754-760,

Jul./Aug. 1995.

22

