Regular Article
Symbolic and Numeric Methods for Exploiting Structure in Constructing Resultant Matrices

https://doi.org/10.1006/jsco.2002.0520Get rights and content
Under an Elsevier user license
open archive

Abstract

Resultants characterize the existence of roots of systems of multivariate nonlinear polynomial equations, while their matrices reduce the computation of all common zeros to a problem in linear algebra. Sparse elimination theory has introduced the sparse (or toric) resultant, which takes into account the sparse structure of the polynomials. The construction of sparse resultant, or Newton, matrices is the critical step in the computation of the multivariate resultant and the solution of a nonlinear system. We reveal and exploit the quasi-Toeplitz structure of the Newton matrix, thus decreasing the time complexity of constructing such matrices by roughly one order of magnitude to achieve quasi-quadratic complexity in the matrix dimension. The space complexity is also decreased analogously. These results imply similar improvements in the complexity of computing the resultant polynomial itself and of solving zero-dimensional systems. Our approach relies on fast vector-by-matrix multiplication and uses the following two methods as building blocks. First, a fast and numerically stable method for determining the rank of rectangular matrices, which works exclusively over floating point arithmetic. Second, exact polynomial arithmetic algorithms that improve upon the complexity of polynomial multiplication under our model of sparseness, offering bounds linear in the number of variables and the number of non-zero terms.

Cited by (0)

1

[email protected]; http://www-sop.inria.fr/galaad/emiris

2

[email protected]