UNIVERSITY OF JOENSUU
DEPARTMENT OF COMPUTER SCIENCE
Report Series A

Modeling Spreadsheet Audit:
A Rigorous Approach to
Automatic Visualization

Jorma Sajaniemi

Report A-1998-5

ACM H.4.1,H.1.2,H5.2
ISSN 0789-7316
ISBN 951-708-646-6

Modeling Spreadsheet Audit:
A Rigorous Approach to Automatic Visualization

Jorma Sajaniemi

University of Joensuu
Department of Computer Science
P.O. Box 111, FIN-80101 Joensuu, Finland

E-mail: Jorma.Sajaniemi@Joensuu.FI

Abstract:

Computations in spreadsheets are hard to grasp and consequently many errors
remain unnoticed. The problem with the hidden errors lies in the invisibility of the
structure of calculations. As a result, auditing and visualization tools are required to
make spreadsheets easier to comprehend and errors easier to be detected. This paper
presents a theoretical model of spreadsheets, and describes various spreadsheet auditing
mechanisms employing the model. Moreover, two new visualization mechanisms are
introduced.

The model reflects not only current spreadsheet systems but also the way people
actually use spreadsheets. Theoretically, it is impossible to check the correctness of a
spreadsheet without a formal definition of its computations, but our hope is to find
visualizations that point out parts of spreadsheets that contain anomalies, i.e., potential

locations of errors. The model helps us to understand how such anomalies can be
defined.

Keywords: spreadsheets, auditing, visualization, formal models, user interfaces

Contents

1. Introduction.........coooiiiiiiiiiii e, 1

2. The FEFR MOdeleeeeeee s 2
2.1 SETIIES cetttuieeeeeeeeeeeeit e e e e e eeeeet e e e e e e e e e eeer e e e eeeeeeeeea e eeeeeeerarra————_ 2
2.2 SPreadsSheetsovuuieeeiiiiiiiieiicceee e 3
2.3 GENETal PrOPEITIES .uvuueeeeeeeeeeieiiiiieeeeeeeeeeeeerrieeeeeeeeeeeeeerreeeeeeeeeeererrannees 8
2.4 Spreadsheet-Use Based Properties.......cccccceeeeeeeeeeiieeeriiiieeeeeeeeeeeenrinnn. 9

3. Auditing MechaniSImsccccceeeiiiiiiiiiiiieeeeeeeeeiriceeeeeeee e e eeeeeeerrrees 17
3.1 Excel 7.0 AUiting.....ccccoeeeiiiiiiiiiiiieeeeeeeeeeiiiceee e eeeeeeeea s 17
B I N (0} A Yo) PPN 19
3.3 S2 VisualiZationccceevviiiiiiiiiiiiiiiiiiciecceeeeeeeeeeeeeeeeeeee e 20
3.4 S3 VisualiZationccceviiiiiiiiiiiiiiiiiiiiicecceeeeeeeeeeeeeeee e 22
3.5 On-line Data Dependency Diagrams.........cccc.ccoovvvvvvrriieeeeeeeerreevnrennnnnn. 24
3.6 COGIMAD .vvuuneeeeeeieiiitieeeeeeeeeeeeeceee e e e e e e et eeaeeeeeeeeeeeearr b eeeeeeeeeearrrrannes 25
3.7 Spreadsheet SChemescovvuieeeiiiiiiiiiiiiieee e 26

4. Concluding RemarKks.......cccoeeiiiiiiiiiiiiiieeieeeeeeeiceee e eeeeeeeer e 27

AcCKNOWIEAGIMENTS......vvviieeeiieieiiiiiiceee e e e e e e 28

Ry () =Y 0 1T PR 28

1. Introduction

Spreadsheet calculation is one of the main office automation applications that is
widely used in various application areas. Many decisions are based on results
obtained by spreadsheets and hence the correctness of computations in
spreadsheets is of vital importance. The quality of spreadsheets is, however,
poor. Brown & Gould (1987) found that almost half of the simple spreadsheets
created by experienced users contained errors. As a consequence, the results
given by spreadsheets are often just wrong. But this incorrectness of results goes
unnoticed and people use wrong results as if they were correct (see, e.g., Ditlea,
1987).

The problem with the hidden errors lies in the invisibility of the deep
structure of spreadsheets. A spreadsheet calculates its results using a large set of
formulae, each in its own cell. At one time, it is only possible to see a single
formula and the others are not shown. Many spreadsheet systems can display a
spreadsheet so that cells show their formulae and not the values yielded by these
formulae. Such a view helps to reduce working memory load but the checking of
all the formulae is still a demanding and tedious task, and our experiments on
spreadsheet debugging have shown that it is not uncommon to judge a formula
correct even if there is an obvious error.

Further, when an existing spreadsheet needs to be modified, its internal
structure must be understood before any changes can be made. Even if the
modification concerns a single cell only, it is hard to find out what other cells
depend on that value and should those cells be changed, too. Davis (1996) gives
an extensive treatment on the need of auditing tools for spreadsheets.

Spreadsheets are easy to build but their correctness is hard to verify. The
apparent ease of creating a spreadsheet seems to make people think that the
probability of errors is insignificant. Therefore, they skip verification and errors
remain unfound. For this reason it is important that the existence of potential
errors could be automatically checked and pinpointed to users. The exact place of
an error is not so important because if a user knows that there is an error in a
spreadsheet he or she can find it, though it may take some time. So the most
important issue is to let a user know whether there are errors. However, if the
system is not able to exactly say whether an error exists then it should provide
the user an exact hint on the location of the potential error. Otherwise, the user
may not find the error fast enough and conclude that the system has only made a
false alarm.

Theoretically, it is impossible to check the correctness of a spreadsheet
without further knowledge of the purpose of the spreadsheet, i.e., without a
formal definition of the computations, because any computation implemented in
a spreadsheet can be the wish of some user. But in practice, the computational
structures can be visualized in ways that make the presence of potential errors
evident. Computations in spreadsheets are not random but follow some rules of
"good" structure (Tukiainen & Sajaniemi, 1996). Constant values and formulae
form larger structures that are usually harmoniously located and any formula
violating these rules can be suspected to contain an error. Therefore we expect
that automatically created visualizations of computational structures can be
used to highlight anomalies that show that a potential error exists and where it
can be found.

Spreadsheet visualization tools (e.g., Davis, 1996; Hendry & Green, 1993;
Isakowitz & al., 1995; Lakshmanan & al., 1998; Ronen & al., 1989) have been
developed for various purposes: error detection, debugging, comprehension,
documenting, etc. As a result, the amount of user assistance may vary from tool

to tool. For example, Lakshmanan & al. (1998) ask the user to specify the lay-out
of the spreadsheet in order to build semantic abstractions of the spreadsheet,
Isakowitz & al. (1995) ask the user to identify and name the functional relations
(in the sense of relational data bases) that make up the schema behind a
spreadsheet, and Hendry & Green (1993) ask the user to build the whole
visualization.

In the following, we will be interested in auditing tools that visualize the
deep structure of spreadsheets at a given moment for the purposes of error
detection, debugging, and comprehension of spreadsheets. We hope that auditing
mechanisms would have the following properties:

» the visualization should be superimposed on the spreadsheet display:
users may find it tedious and confusing to determine the
correspondence between separate visualization and the spreadsheet
itself (Davis, 1996), so superimposition is needed

* the visualization does not depend on input values: as the structure of
calculations does not depend on specific values, neither should a
visualization depend on them

» the visualization can be constructed automatically: users will probably
not use tools that require much user intervention

We will first introduce a model of spreadsheet calculation that captures
the essential features of spreadsheet systems and applications that are needed in
describing the properties of auditing tools. In chapter 3, we will then use the
model to describe various spreadsheet auditing mechanisms, both implemented
and projected.

2. The FFR Model

This chapter introduces the FFR (formulae, formats, relations) model of
spreadsheet calculation that abstracts formally the structure and fundamental
features of spreadsheets without paying attention to the detailed semantics of
operations and functions. The FFR model is distantly related to the Unisheet
model (Hassinen, 1994) which describes a set of requirements that are supposed
to guarantee that a spreadsheet is free from errors and contradictions. The FFR
model is, however, more general and abstracts a larger set of features.

We will start with some basic definitions concerning strings, and then
introduce spreadsheet applications. Spreadsheet systems are not defined
explicitly but their properties are covered by spreadsheet applications and two
relations: formula equivalence and format equivalence. We will then be
interested in properties of formulae and areas. Section 2.3 defines properties that
are derived from the way operations, notably copying, are implemented in
spreadsheet systems, while section 2.4 deals with properties derived from the
way people use spreadsheets.

2.1 Strings

We will use strings to represent, e.g., formulae. To make our model completely
defined, we will start with the properties of strings.

Definition 2.1: Let X be an enumerable set. A string over the set X is
a finite ordered sequence of elements, also called characters, of X. The
length of a string s, denoted by length(s), is the number of characters in
the string s. The empty string consisting of no characters is denoted by ¢.
The set of all strings over set X is denoted by X*.

In the following, we will see that formulae are strings consisting of
"ordinary" characters and special characters that represent cell and area
references. As the number of cells is theoretically unlimited, the above definition
of strings starts with a possibly infinite set of characters.

2.2 Spreadsheets

We will start defining spreadsheets with the definition of formulae. Note, that
the definition of a formula does not suppose any spreadsheet where the formula
should reside. In practice, formulae do live within spreadsheets only, but we
want to abstract formulae as far from spreadsheets as possible.

Definition 2.2: Let W be a finite set of characters. Then a spreadsheet
formula in W is a (possibly empty) string over the formula element set,
denoted by %5y, consisting of the following:

* characters belonging to the set W

e quadruples <cs,c,rs,r>, called cell references, where ¢ and r are
integers, cs and rs may be either & or R, and if ¢s is & (rs is &) then
c¢>0 (resp. r>0)

* pairs <cr,cry>, called area references, where both cr; and cr, are
cell references

The first and second components of a cell reference are called
collectively a column reference, its third and fourth components are called
collectively a row reference, its second component is called a column index
and its fourth component is called a row index.

A column or row reference (index) is said to be absolute if the first
(resp. preceding) component is &, otherwise it is said to be relative.

For example, the following is a spreadsheet formula with two cell
references and a single area reference:

=2*%<R 3,R,17>%<%,3,R,-3>+@SUM(<<R,11,R,11>,<R,14,R,14>>)

Another example of a formula is 32, i.e., constant values are special cases
of formulae.

Spreadsheet systems may use different syntax for cell references, and
impose syntax restrictions on the form of formulae. As we suppose that in
practice all formulae emerge from real spreadsheets, all formulae satisfy these
syntax restrictions and there is no need to consider these restrictions in the
model.

In spreadsheet systems the terms absolute and relative reference are not
properties of the reference itself but properties of the copying action. When a
formula is copied from one cell to another, absolute references refer to the same
column or row as in the original location, and relative references refer to the
column or row with same offset as in the original location.

A reference, whether absolute or relative, can be represented in the
formula as a direct reference giving the address of the referenced cell or as an
offset reference giving the offset with respect to the location of the formula. When
the formula is copied, references may need to be changed depending of the
reference representation mechanism adopted. Figure 1 gives the various
possibilities.

In the FFR model reference representation mechanism, we have adopted
direct reference representation for absolute references and offset representation
for relative references (henceforth called the ADRO representation for Absolute-
Direct & Relative-Offset). As a consequence, copying is simple: the original
formula and the copy are exactly same. The chosen reference representation
mechanism is different from that in the user interfaces of most spreadsheet
systems, i.e., direct reference representation for both absolute and relative
references (the ADRD representation, Absolute-Direct & Relative-Direct) but that
poses no problems: the FFR model does not say anything about user interfaces
and any reference representation mechanism may be used for user interfaces
while the FFR model is used. In the following, we will use the ADRD
representation, i.e., the standard spreadsheet system user interface, in many
examples.

Representation
mechanism
Direct Offset
Reference
Absolute no changes must be changed
Relative must be changed no changes

Figure 1: Effects of the copying action to references.

The FFR reference representation mechanism isolates formula
information from location information. The address of a cell referenced with an
absolute reference is known even if the location of the formula is unknown, but
address of a cell referenced with a relative reference is unknown until the
location of the formula is given. On the other hand, the direction (up, left, ...) of
an absolute reference is not known, but the direction of a relative reference is
known without knowledge of the location of the formula. Thus, a formula bears
direction information (of relative references) even though it hides location
information.

If some other reference representation mechanism (direct reference
representation for relative references or offset representation for absolute
references) had been chosen, the location and direction information contained in
a formula would be different. For example, given a formula and its copy (without
knowing their location), it would be possible to tell their relative positions in a
spreadsheet. Further, if the location of the copy were given, the location of the
original formula could be deduced. In the ADRO representation, such deductions
cannot be made.

The rationale for the selection of this particular reference representation
mechanism is based on our goal to visualize computational relationships, i.e.,

relationships between formulae. The ADRO representation isolates formula
information from location information enabling us to distinguish between
visualizing principles that can work with direction information and those that
need full location information.

It would be possible to choose any other reference representation
mechanism but, as we will later see, the ADRO representation provides a clean
theory of formula relationships. In the following, we will point out definitions
that could not be transformed to use other referencing representation
mechanisms without changing the essential content of those definitions.

We will now turn to other aspects of spreadsheets.

Definition 2.3: Let V be a finite set of characters. A cell format in V
is a (possibly empty) string consisting of characters belonging to the set V.

For example, the following is a cell format:
099999.99

Just like in the case of formulae, spreadsheet systems may impose syntax
restrictions on the form of cell formats. As we suppose that all cell formats
emerge from real spreadsheets, they satisfy these syntax restrictions and there is
no need to consider these restrictions in the model.

The definition of spreadsheet applications grasps the properties of single
spreadsheets: they have a fixed number of columns and rows with a formula and
format for each cell. Of course, formulae and formats may be empty.

Definition 2.4: A spreadsheet application is a 6-tuple
SA=(V,W n,m,T,F) where

* Vand W are finite sets of characters
* n>0 is an integer (number of columns)
« m>0 is an integer (number of rows)
» T (format contents) is a total function 7:(1..n,1..m) - V*
* F (formula contents) is a total function F:(1..n,1.m)- %5,* where
for each spreadsheet formula F(c,r), 1<c<n, 1sr<m
* 1<c'sn for each absolute column index ¢' in F(c,r)
* 1<c+c'sn for each relative column index c¢' in F(c,r)
* 1<r'sm for each absolute row index r' in F(c,r)
e 1<r+r'sm for each relative row index r' in F(c,r)

As an example of a spreadsheet application consider the 6-tuple
(A,...,Z,a,...2,0,...,.9,.},{ A,...,Z,a,...2,0,...,9,+,-,%/,.},2,3,T,F) where the functions T'
and F are defined as follows:

T(1,1) = AlignLeft F(1,1) = January
T(2,1) = 099999.99 F(2,1) = 3708.2

T(1,2) =¢ F(1,2)=¢

T(2,2) =¢ F2,2)=¢

T1,3)=¢ F(1,3) = Estimate
T(2,3) = 09999999 F(2,3) = 12*<R,0,R,-2>

Let us next define the constituents of spreadsheets: cells and areas, and
their basic attributes formats and formulae.

Definition 2.5: A cell of a spreadsheet application SA=(V,W,n,m,T,F)
is a pair a=<c,r> where ¢ and r are integers, 1<c<n, 1<r<m. The format of
the cell a is T(a), and the formula of the cell a is F(a).

Definition 2.6: An area of a spreadsheet application
SA=(V,W,n,m,T,F) is a pair A=<<c,,r;>,<c,,r,>> where <c,,r;> and <c,,r,>
are cells of the spreadsheet application SA, c,<c, and r <r,. The area A is
said to contain cells <c,r> where c,<c<c, and r,<r<r,,.

Next we will define how formulae refer to cells and areas. The ADRO
representation mechanism (as opposed to ADRD) requires that the location of a
formula is known in order to know the location of the referenced cells.

Definition 2.7: Let SA=(V,W,n,m,T,F) be a spreadsheet application,
<c,,r;> and <c,,r,> its cells, and <<cg4,r;>,<c,,r,>> its area. The cell <c,,r,;>
refers to the cell <c,,r,> if F(<c,,r;>) contains a cell reference <cs,c,rs,r>
such that c,=ac and ry=ar where

* ac = (if cs=A& then c else c+c)
e ar = (if rs=A then r else r+r1)

or F(<c,,r,>) contains an area reference <<cs,c,rs,r>,<cs',c',rs';r’>> such
that cl<c,<cr and ri<r,<rr where

* cl = min(if cs=A then c else c+c;, if cs'=A then ¢’ else c'+c,)
* cr = max(if cs=A then c else c+c,, if cs'=A then ¢’ else c'+c,)
* rl=min(if rs=A& then r else r+r, if rs'=A then r' else r'+r))
* rr=max(if rs=A then r else r+r,, if rs'=A then ' else r'+r))

The cell <c,,r;> refers to the area <<cgry>,<c,r,>> if F(<c,,r >)
contains an area reference <<cs,c,rs,r>,<cs',c',rs',r'>> such that

* ¢y =min(if cs=& then c else c+c,, if cs'=/& then ¢ else c'+c)
* ¢, = max(if cs=A then c else c+c,, if cs'=& then ¢’ else c'+c,)
* ry=min(ifrs=& then r else r+r,, if rs'=& then r' else r'+r))
* r,=max(if rs=A then r else r+r , if rs'=& then r' else r'+r,)

In practice, the formula of a cell always yields some value, possibly by
using values in other cells. The FFR model does not include values because they
are not needed for the purposes of visualizations. In the introduction, we
postulated that visualizations should not depend on input values and, as a
consequence, visualizations should not depend on the results of computations
either. We are interested in the structure of computations, and not in the
particular values yielded.

Theoretically, it is possible to extend the model to cover values, but then
the semantics of formulae should be modeled, too. As formulae can contain any
number of cell and area references, such a semantics modeling is a tedious task.
Since values are not needed for our purposes, they are excluded from the FFR
model.

A typical approach to the type concept in spreadsheet systems is to
consider types as properties of cell values propagated from cell to cell through
formulae. Values of any type can be formatted using the specific format of the

cell provided the type and the format match. If they do not match, a type-specific
default format is used. For example, in Excel 7.0, the type of a value is
independent of the format of the cell where the value resides. A numeric value
can be formatted to appear as text or a date, and a text may have the format
"numeric with two decimal places" but it is formatted as text. There is a set of
rules that govern how a value of certain type is formatted in each case so that
errors do not arise. Thus, types are not tied to cell formats.

To decide the type of a cell value, one must know the semantics of
formulae. For example, in Excel 7.0, the type of a constant or a formula not
containing cell or area references is defined by the content of the formula, e.g., 23
and =5+17 are numeric whereas January is text. The type of a value produced by
a formula containing references may depend on the types of the referenced cells,
e.g., =A3 results in a numeric value if the value of A3 is 23 and in a string value
if the value of A3 is January.

The type of a value may depend not only on the types of the referenced
cells but on their values, too. For example, let the cell A2 contain the formula
=MID(A1,1,1) which returns the first character of the value of Al. If the value of
Al is 3x then the value of A2 is 3 and its type is numeric, but if Al contains x3
then the value of A2 is x and its type is text. Interestingly, Excel 7.0 and
Applixware Spreadsheet 4.37 treat these cases similarly but differ in the case
where the value of the cell Al is 111. Excel 7.0 selects the first character (i.e., the
function MID is defined also for numbers) but Applixware returns an error.
However, this difference is not a result of differences in the general approach to
types but a difference in the definition of the semantics of the MID function.

Thus, types are not bound to formulae but to cell values and, moreover,
the type of a cell value is not directly determined by the associate formula but
the types and values of the referenced cells are needed, also. Therefore, at least
in Excel 7.0, the concept of type is a property of the formula contents of
spreadsheet applications together with the semantics of the formula language.

As the FFR model does not cover formula semantics, it cannot handle
types in full. On the other hand, we have seen that type is a dynamic property
and can change depending on the input values. But we have postulated that
visualizations should not depend on input values. Therefore, visualizations
should not depend on types, at least when they are dynamic. When we analyze a
static situation, i.e., visualize a spreadsheet with given input values, types are
static and can be attached to formats, even though this is theoretically a wrong
approach.

Spreadsheet systems provide also mechanisms to name cells, areas, or
sometimes arbitrary collections of cells by giving a name for the collection of the
cell and area references. The name can then be used in formulae instead of the
named collection of cell references, e.g., =VAT*PRICE where VAT is the name for
the cell reference A3 and PRICE is the name for the cell reference $B7. Most
spreadsheet systems allow names to consist of both absolute and relative
references (with the default being absolute). To understand the effects of copying,
it is best to think that each name is replaced by the associated cell or area
reference in the formula, and that the occurrence of a name in a formula is a user
interface aspect only.

The FFR model contains no specific provision for naming as names are
just mnemonics for ordinary references. We thus consider names to be part of
user interface, only. It is possible, though, that a user gives names to
semantically important and consistent areas, and so names may help us in
understanding the structures of spreadsheets and effect on the form of the
resulting visualization. Apparently, the most important occasions are names

containing absolute references only, as they reveal the position of data forming a
meaningful entity for the user.

The FFR model can describe names containing absolute references only.
This can be done by attaching the name as part of the format information of each
cell belonging to the named collection of cells. For example, the cell A3 could have
the format 09.99#VAT. We will later see a relation called format equivalence
that is used to resolve whether two formats are the same. If names are combined
with the format information, the format equivalence must be defined to discard
names when comparing two format strings.

Spreadsheet systems provide also mechanisms to protect cells in order to
prevent accidental changes. Usually, cells containing formulae as well as
constant, parameter-like values should be protected, and cells containing input
values should not be protected. Empty cells should also be protected unless they
are supposed to be later filled with input data.

The FFR model contains no specific provision for describing protection but
it can be described as part of the format information just like naming above. For
example, the cell A3 could have the format 09.99#VAT! stating that it is
protected.

2.3 General Properties

Next we will define properties that are derived from the way operations, notably
copying, are implemented in spreadsheet systems.

In the following definitions, we will use relations that concern cell
formats, as well as relations between spreadsheet formulae. Even though the
context of the definitions is some particular spreadsheet application, we will
suppose that all relations are defined for all cell formats and all spreadsheet
formulae.

Definition 2.8: Let SA=(V,W,n,m,T ,F) be a spreadsheet application,
a, and a, its two cells, =, (format equivalence) an equivalence relation on
V*, and =, (formula equivalence) an equivalence relation on #5;*. The cells
a, and a, are copy equivalent with respect to =, and =, if T(a,) =, T(a,) and
F(a,) = F(a,).

For example, the cells <1,5> and <2,5> are copy equivalent (with respect
to equality as both format equivalence and formula equivalence) in the following
case:

T(<1,55) =099 F(<1,5>) = 2*<R,3,R,17>*<%&,3,R,3>
T(<2,55) =099 F(<2,5>) = 2*<R,3,R,17>*<A&,3,R,3>

Both the format equivalence and the formula equivalence are supposed to
be properties of the spreadsheet system behind our model. Usually both of them
are normal equality, but the definition takes a more general approach by
allowing some transformations to occur during copying. For example, the
spreadsheet system might change the case of letters in function names, etc.
Further, if naming is included in cell formats, the format equivalence should
discard all naming information. If protection is included in cell formats, the
format equivalence should not discard that information unless the copying
operation of the spreadsheet system discards protection.

Due to the ADRO representation, copying is a trivial operation: there is no
need to make any changes in the formula. Consequently, the definition of copy

equivalence is very simple. If some other reference representation mechanism
had been chosen, copy equivalence should be defined to consider changes in the
absolute or relative references of the formula.

Copying may lead to an invalid spreadsheet application as a relative
reference may point outside the application in its new location. The FFR model
does not, however, define copying as an operation but as a relation between cells
in a (valid) spreadsheet application and, therefore, there is no need to consider
such invalid references in the model.

The formula equivalence is a relation between two formulae. Due to the
ADRO representation, this relation can check, e.g., the column and row position
of an absolute reference and the direction (up, left, ...) of relative references but
not vice versa. Had some other reference representation mechanism been chosen,
the strength of copy equivalence would be different. For example, in the ADRD
representation, it is possible to test whether a formula is copied an even number
of cells away from the original cell (i.e., the formula =2*A4 can be defined to be
copy equivalent to =2*A6 but not to =2*A5) though one hardly would like to
make use of such possibilities. Later, in the case of origin relation, these
differences between reference representation mechanisms will be a more
important issue.

It is easy to show that copy equivalence is a reflexive, symmetric and
transitive relation, i.e., an equivalence relation.

2.4 Spreadsheet-Use Based Properties

In this section, we will define properties of areas that stem from the way people
use spreadsheets. There is no pure theoretical basis for these properties but they
are based on our understanding of the cognition that directs human spreadsheet
construction (e.g., Sajaniemi & Pekkanen, 1988; Saariluoma & Sajaniemi, 1991;
Saariluoma & Sajaniemi, 1994).

We will start with similarity of two cells. It states that the cells must
either have the same formula or they both must be constants. In practice, people
often use cells as calculators, e.g., they enter the formula =365%13 to a cell in the
area containing other yearly costs. Thus, input data areas contain a mixture of
single numbers and constant formulae, and similarity allows this to occur.
Moreover, similarity requires that the formats of the cells must be the same.

Definition 2.9: Let SA=(V,W,n,m,T,F) be a spreadsheet application,
a, and a, its two cells, = an equivalence relation on V¥, and =; an
equivalence relation on %5;*. The cells a, and a, are similar with respect
to =, and =, if they are copy equivalent with respect to =, and =, or T(a,)

=, T(a,) and both F(a,) and F(a,) contain no cell (or area) references.

For example, the cells <1,5> and <2,5> are similar, and so are the cells
<13,36> and <25,11>, if their formats and formulae are the following:

T(<1,5>) = 099 F(<1,5>) = 2*<R,3,R,17>%*<%,3,R,3>
T(<2,5>) = 099 F(<2,5>) = 2*<R,3,R,17>%*<%,3,R,3>
T(<13,36>) = 099.99 F(<13,36>) = 36

T(<25,11>) = 099.99 F(<25,11>) = 178*15

It is easy to see that similarity is a reflexive, symmetric and transitive
relation, i.e., an equivalence relation.

-10-

Similarity is used to define homogeneity: a homogeneous area is an area
consisting of similar cells.

Definition 2.10: Let SA=(V,W,n,m,T,F) be a spreadsheet application,
A its area, =, an equivalence relation on V*, and = an equivalence
relation on 75,*. The area A is homogeneous with respect to =, and =, if

all cell pairs a,, a, contained in the area are similar with respect to =, and

Ef'

As similarity is a reflexive and transitive relation, an area can be shown
to be homogeneous by considering its cells in any order a,, a,, a,, ..., and checking
that cells a; and a, ; are similar.

A homogeneous area contains either constants or it can be constructed by
copying a single formula to all cells in the area. In practice there are, however,
many areas that represent a single computation even though the cells contain
different formulae. For example, in cumulative sum the formula in the first cell
may be different from that of the others. The concept of top-originating areas
abstracts and generalizes such calculations.

Definition 2.11: Let SA=(V,W,n,m,T,F) be a spreadsheet application,
A=<<c,r{>,<cy,ry>> its area, =, an equivalence relation on V¥, = an
equivalence relation on #5,*, and Q (origin relation) a 5-ary relation on
FSy xVEx g5, #xV¥*xN. The area A is top-originating with respect to =, =
and Q, if there exists an integer % such that all of the following hold:

o l1gksr,ri-1

* each area <<c r +r>,<c,r;+r>>, 0<r<k, is homogeneous with
respect to = and =

* area <<c,,r +k>,<c,,ry>> is homogeneous with respect to = and =,

o T(<cyri+r>) 5 T(<c ,ri+r+1>), 0sr<k

o Q(F(<cq,r+r>),T(<c,ri+r>),F(<c ,ri+r+1>),T(<c,,r +r+1>),r), Osr<k

* not F(<c,r;>) = F(<c,,ry>) or not T(<c,,r;>) =, T(<cy,ry>)

Feows T e
ﬂ| Fl=oy =) Fi<ta.f42)

| Fl=oy =) Flecs fic)
Fi<er) | Fl<cz i)

Fi<cy fz) Fl<czfe?]

Figure 2: Homogeneous parts of a top-originating area.

Figure 2 illustrates this definition. In a top-originating area, the first row
consists of similar cells that take care of the first step of the computation. In a
simple case, there is a single column and consequently a single cell, but in the
general case there may be multiple equivalent computations, each in its own
column. The next row takes care of the second step of the computation, etc. After
k steps, the computation must stabilize so that at least two rows at the end of the

-11-

area must use the same formula. The origin relation Q tells what kinds of
formula series are allowed at the beginning of a computation.

Figure 3 contains two examples of top-originating areas (with the ADRD
representation). The area B2:B5 is a cumulative sum. In the notation of the
previous definition, & is 1, both =, and =; are equality, and Q(f,,t,.f,,t,,r) holds if
f; can be obtained from f, by removing all cell references containing a relative
row reference to the cell in the previous row (together with the associated
operator). The area G2:H5 is a generalization of cumulative sum with several
columns, each computing its own sum.

Figure 3 contains further examples of top-originating areas. The area
B8:B13 is the Fibonacci sequence that can be seen to be top-originating by
selecting £=2, both =, and =; to be equality, and Q(f,t,.f;t,,r) to hold if either f)
contains no cell references or f; and f, are the same formula.

The area G8:G12 in Figure 3 is a sequence of titles 1980, 1985, 1990, etc.
Now £ is 1, both = and = are equality, and Q(f ¢, f,,t,,r) holds if either f; and f,
are the same formula, or £, contains no row references to the cell in the previous
row.

Al B |C|D|E|JF|] 6 | H |
1
2 13 |= 11 14 | [=D2 =E2
3|7 |=A3+B2 12 8 =D3+G2 =E3+H2
4 |12 |=A4+E3 5 12 |=D4+G3 =E4+H3
8 |3 |=A5+B4 14 7 =D5+G4 =E5+H4
6 |
7
8| | 1980
9] I =GG+5
10| |=BB+Eg =345
11| [=B9+B1D =G10+5
12| |=B10+B11 =G11+5
13| |=B11+B12
14

Figure 3: Examples of top-originating areas.

An origin relation concerns formulae and formats, but within a top-
originating area format equivalence is required, also. Thus, an origin relation is
basically a relation between formulae. Formats are included just to cover cases
where the format equivalence discards, e.g., naming information, and the origin
relation needs this information.

Had some other reference representation mechanism been chosen for the
FFR model, the meaning of the previous definition would change notably. Due to
the ADRO representation, the formulae in the cells <c,,r;>, ..., <c,,r;>, ie., in
cells in the first homogeneous area, are exactly same (presuming formula
equivalence is equality). Likewise, the formulae in the cells <c,,r,>, ..., <cy,r,>,
i.e., in cells in the second homogeneous area, are exactly same Hence
Q(F(<cy,r>),T(<cy,r>),F(<cy,ri+1>),T(<c,,r;+1>),r) implies that for each c,
c,Scsc,, also Q(F(<c,r;>),T(<c,r>),F(<c,r;+1>),T(<c,r;+1>),r) holds. Thus, even
though the definition of top-originating areas requires Q to hold on the first
column only, it holds also for the other columns. But if some other reference
representation mechanism were in use (like in Figure 3), this implication would
not be true as the formulae in different columns would differ.

-12-

For example, Figure 4 shows two pairs of cumulative sums, the first one
using the ADRO representation mechanism used in the FFR model, and the
other using ADRD. In the case of ADRO, the two columns are exactly the same
and hence Q holds for the second column if it holds for the first. But in ADRD,
the columns differ. Consider, e.g., Q defined as "Q(f,t,.f,,t,,7) holds if both f; and
f, start with =D". Now Q holds for the first column but not for the second.

If the FFR model were using ADRD, there would be a need to define some
kind of "position independence of the origin relation" to overcome the problem.
However, with ADRO as the selected reference representation mechanism, the
FFR model avoids the problem totally.

Further, as the ADRO representation implies that formulae have no
knowledge of their location in the spreadsheet, an origin relation cannot check,
e.g., whether two relative references, one in each of the formulae, refer the same
cell.

=<R,-3,R,0> =<R,-3,R,0>
=<R,-3,R,0>+<R,0,R,-1> =<R,-3,R,0>+<R,0,R,-1>
=<R,-3,R,0>+<R,0,R,-1> =<R,-3,R,0>+<R,0,R,-1>
=<R,-3,R,0>+<R,0,R,-1> =<R,-3,R,0>+<R,0,R,-1>
=D2 =E2

=D3+G2 =E3+H2

=D4+G3 =E4+H3

=D5+G6 =E5+H4

Figure 4: Cumulative sums with the ADRO and ADRD representations.

An origin relation is not a property of the underlying spreadsheet system
but a relation we must invent. In the previous examples, the various relations
were defined to suit the specific spreadsheet application. As a result, the relation
we used with the Fibonacci sequence can be used with the cumulative sum, but
not vice versa. Now, an interesting question arises: can we define a single origin
relation that will accept as many error-free calculations as possible while at the
same time disallowing as many erroneous calculations as possible. Here the term
"error" refers to users' intention of the calculation. Therefore, there is no formal
way to define how well an origin relation works but empirical research is needed
to evaluate various relations.

We will now define some special cases of origin relations. The basic idea is
not to accept any kinds of relations but only relations that, when traversing
through the formulae from bottom to top, retain other parts of the formulae but
cut off references that stop referring to the area itself. For example, in the
cumulative sum, the formula in the first cell lacks the reference that refers to
earlier subsums in other formulae.

There will be two cases: a start-pruning origin relation cuts off such
references together with parts of the formulae around the references, while a
start-compressing origin relation cuts off such references and allows any other
changes as long as other references remain untouched.

Definition 2.12: An origin relation Q is start-pruning, if for all
spreadsheet formulae f; and f,, formats ¢, and ¢,, and integer r=0 for
which Q(f,,t,.f5,t,,r) holds, f; can be written in the form §159---8, and f, can
be written in the form 3'0313'1323'2..sqs'q so that each s’ is either € or

-13-

contains a relative row reference -r-1, and no s; contains relative row
references -r-1.

Definition 2.13: An origin relation Q is start-compressing, if for all
spreadsheet formulae f; and f,, formats ¢, and ¢,, and integer r=0 for
which Q(f,t,.f,,t,,r) holds, f; can be written in the form s's;s';5,8,..5 8’

¢ ! g . °q
and f, can be written in the form s"s,s" s, 958", SO that

each s, is either € or a cell reference containing either an absolute
row reference or a relative row reference different from -r-1

each s'; contains no row references

each s"; contains neither absolute row references nor other relative
row references but -r-1

For example, the origin relation used above with cumulative sum is start-
pruning, e.g., =<R,-3,R,0> can be written as s; where s, is the whole formula, and
=<R,-3,R,0>+<R,0,R,-1> can be written as s';s;s'; where s') is & and s'| is

+<R,0,R,-1>.

The origin relation used with the sequence of titles 1980, 1985, 1990, etc.
is not start-pruning but it is start-compressing. For example, 1980 can be written
as s';s,s'; where s’ is €, s, is € and s’ is 1980, and =<R,0,R,-1> can be written as
s",s;8"; where 5" is =<R,0,R,-1>, s, is€ and s"| is €.

It is easy to show that every start-pruning origin relation is also start-
compressing, but not vice versa. The following definitions consider cases where
the pruning or compression part is always at most k cells long.

Definition 2.14: A start-pruning origin relation Q is k-start-pruning,
1<k, if for all spreadsheet formulae f; and f,,, formats ¢, and ¢, and integer
r, for which Q(f ¢, f,,t,,r) holds, r<k.

Definition 2.15: A start-compressing origin relation Q is k-start-
compressing, 1<k, if for all spreadsheet formulae f; and f,, formats #; and
t,, and integer r, for which Q(f,¢,.f5,.t,,r) holds, r<k.

For example, the origin relation used with cumulative sum is 1-start-

pruning.

Earlier we defined top-originating areas to abstract computations where
the start of a calculation is at the top of the area. Next we will give definitions for
the symmetrical cases.

Definition 2.16: Let SA=(V,W,n,m,T,F) be a spreadsheet application,
A=<<c,,r>,<c,,r,>> its area, = an equivalence relation on V*, = an

t

equivalence relation on #5,*, and Q (origin relation) a 5-ary relation on
FSy xVEx 75, #xV*xN. The area A is bottom-originating with respect to =,
=.and Q, if there exists an integer k£ such that all of the following hold:

1<ksr,r -1

each area <<c,,r,r>,<c,,r,-r>>, 0<r<k, is homogeneous with respect
to = and =

area <<c,,r;>,<C,,,-k>> is homogeneous with respect to = and =,
T(<c,ryr>) = T(<cy,ryr-1>), 0sr<k

Q(F(<cy,ryr>),F(<c,,ry-r>),F(<c ,ryr-1>),T(<c,,r,r-1>),r), 0sr<k
not F(<c,,r;>) = F(<c,,ry>) or not T(<c,,r;>) =, T(<cy,ry>)

-14-

Definition 2.17: Let SA=(V,W,n,m,T,F) be a spreadsheet application,
A=<<c,r{>,<cy,ry>> its area, =, an equivalence relation on V¥, = an
equivalence relation on #5,*, and Q (origin relation) a 5-ary relation on
FSy ¥ VEx 5, #xV#xN. The area A is left-originating with respect to =, =

t?
and Q, if there exists an integer £ such that all of the following hold:

* 1<ksc,c-1

* each area <<c +c,r>,<cytc,r;>>, 0O<c<k, is homogeneous with
respect to = and =

* area <<c;+k,r;>,<c,,ry>> is homogeneous with respect to = and =,

s T(<cyte,r>) 5 T(<c +c+1,r,>), 0<c<k

s Q(F(<cq+c,r>),F(<c +e,r>),F(<c +c+1,r>),T(<c +e+1,r>),0), Osc<k

* mnot F(<c,r;>) = F(<c,,r,>) or not T(<c,,r;>) =, T(<cy,r >)

Definition 2.18: Let SA=(V,W,n,m,T,F) be a spreadsheet application,
A=<<c,r{>,<cy,ry>> its area, =, an equivalence relation on V¥, = an
equivalence relation on #5,*, and Q (origin relation) a 5-ary relation on
FSy xVExF5,#xV*xN. The area A is right-originating with respect to =, =

=r
and Q, if there exists an integer £ such that all of the following hold:

* 1<ksc,c-1

+ each area <<c,-c,r,>,<cy,-c,ry>>, 0<c<k, is homogeneous with respect
to = and =

* area <<c,,r;>,<cy-k,r,>> is homogeneous with respect to = and =,

s T(<cq-cry>) =, T(<cq-c-1,ry>), 0<c<k

s Q(F(<ci-c,ry>),F(<ci-c,ry>),F(<c-c-1,r,>),T(<c-c-1,r,>),0), 0<c<k

* mnot F(<c,r;>) = F(<c,,r;>) or not T(<c,,r;>) =, T(<cy,r >)

An edge-originating area is any of the previous, and a corner-originating
area is such that it can be constructed in two directions as a collection of edge-
originating areas.

Definition 2.19: Let SA=(V,W,n,m,T,F) be a spreadsheet application,
A=<<c,r{>,<cy,ry>> its area, =, an equivalence relation on V¥, = an
equivalence relation on #5,*, and Q (origin relation) a 5-ary relation on
FSy xVEx 75, #xV¥*xN. The area A is edge-originating with respect to =, =
and Q, if it is either top-originating, bottom-originating, left-originating,
or right-originating with respect to =, =.and Q.

Definition 2.20: Let SA=(V,W,n,m,T,F) be a spreadsheet application,
A=<<c,,r{>,<cy,ry>> its area, =, an equivalence relation on V¥, = an
equivalence relation on #5,*, and Q (origin relation) a 5-ary relation on
FSy xVEx g5, #xV*xN. The area A is corner-originating with respect to =,

=.and Q, if both of the following hold:

* area <<c,r;><c,r,>> is edge-originating with respect to =, = and
Q, ¢, sc=c,

* area <<c;,r><c,,I'>> is edge-originating with respect to =, = and
Q, risrsr,

-15-

The area A is called x-y-originating if <<c,,r;>,<c,,r,>> is x-originating
(where x is top or bottom) and <<c,,r;>,<c,,r;>> is y-originating (where y
is left or right).

For example, the area D1:F3 in Figure 5 is corner-originating but not
edge-originating for any start-pruning relation (unless a very strange formula
equivalence is used).

_|alB|c] b | E I F |
1 (1 1 1 =A1 =B1+D1 =C1+E1
2|11 1 1 [=A2+D1 =B2+D2+E1-D1 =CZ2+EZ+F1-E1
3|11 1 |=A3+D2 |=B3+D3+EZ2-D02 =C3+E3+F2-E2
A

Figure 5: A corner-originating area.

As an example of a computation that is neither edge-originating nor
corner-originating consider the computation of moving average in Figure 6. The
reason is that the computation has a starting phase but is has an ending phase
as well, and edge-originating areas can have formula differences at one end only.

A | B |

(1 [30 =(A1+AZ)2
(2|70 =(A1+HAZ+AT)E
3|78 =(A2+AT+AA
4|20 =(A3+AL+AS)3
5 |20 =(A4+AS+ABYS
B[22 =(ABHAG AT
T |17 =(AB+ATYZ

L1

Figure 6: An area that is neither edge-originating nor corner-originating.

We have now defined the forms of areas that we consider to reflect error-
free calculations. An area is next defined to be consistent if it is of any of those
forms.

Definition 2.21: Let SA=(V,W,n,m,T,F) be a spreadsheet application,
A its area, = an equivalence relation on V*, = an equivalence relation on
FSw', and Q (origin relation) a 5-ary relation on £S5, *xV*x 75, *xV*xN.
The area A is consistent with respect to =, =;and Q, if it is either

* homogeneous with respect to = and =,
* edge-originating with respect to =, =.and Q, or
* corner-originating with respect to =, =;and Q

In visualizations, we are interested to find as large consistent areas as
possible. This notion is captured by the definition of maximal areas.

Definition 2.22: Let SA=(V,W,n,m,T,F) be a spreadsheet application,
A=<<c,r{>,<cy,ry>> its area, =, an equivalence relation on V¥, = an

equivalence relation on #5,*, and Q (origin relation) a 5-ary relation on
FSy xVEx F5,,#xV¥*xN. The area A is maximal with respect to =, =, and Q,

-16-

if A is consistent with respect to =, =, and Q and there is no area A’ of the
spreadsheet application SA such that all of the following hold:

* A’ contains all the cells A contains
* A’ contains at least one cell that A does not contain
+ A'is consistent with respect to =, =,and Q

It should be noted that given a cell in a spreadsheet, the maximal
consistent area that contains the cell is not necessarily unique. For example, in
Figure 7, the areas B1:B3 and B3:D3 are both maximal consistent areas even
though they both contain the cell B3. In practice, such situations are rare, and a
visualization may select any of the possible areas.

Al B | € | D |
11 =Ad
2 |1 =A24B1 1 1
3 |1 =A3+B2 =B3+C2 =C3+D2
A

Figure 7: Overlapping maximal consistent areas.

Finally, we define breaking areas as maximal areas that refer to other
areas in an anomalous way. Acceptable ways are to refer to all cells of the other
area, and to refer cells at one edge (or corner) provided that the computation in
the referenced area starts at the opposite edge (or corner).

Definition 2.23: Let SA=(V,W,n,m,T ,F) be a spreadsheet application
and A=<<c,r;>,<c,,r,>> and B its two areas that are consistent with
respect to equivalence relations =, and =, and an origin relation Q. The
area B breaks the area A, if at least one cell in the area B refers to at least
one cell in the area A, and either

* A is homogeneous with respect to = and =; and at least one cell in
the area A is not referred to by any cell in the area B,

A is top-originating (bottom-originating, left-originating, right-
originating) with respect to =, = and Q, and B refers to all the
cells in the area <<c,r,><c,r,>> (resp. <<c ,r;><c,r;>>,
<<Cy,T'>,<Cy,Tg>>, <<Cq,7>,<C1,75>>) but not any other cell of A, or

* A is top-left-originating (bottom-left-originating, top-right-
originating, bottom-right-originating) with respect to =, = and Q,
and B refers to <c,,r,> (resp. <c,,r;>, <c,,ry>, <c{,r;>) but not any
other cell of A.

The area B is said to be a breaking area if it breaks any area A' and
both A’ and B are maximal with respect to =, = and Q.

For example, in Figure 8 there are four maximal areas Al:A4, B1:B2,
B3:B3, and B4:B4. Each of the areas on the column B are breaking areas as they
all break the area Al:A4. In Figure 9 there are three maximal areas Al:A4,
B1:B4, and C4:C4. None of these areas breaks any other area.

-17 -

Al B |
122 =107AT
2 |33 =107A2
3 |44 =440
4 |55 =107Ad
3

Figure 8: Breaking areas.

Al B | C |
1 [22 =Al
2 |33 =A2+B1
3 |44 =A3+B2
4 |55 =A4+E3 =10°B4
3

Figure 9: Non-breaking areas.

3. Auditing Mechanisms

Spreadsheet systems provide users with various tools to trace how values are
computed. In the following, we are interested in auditing mechanisms that we
define to consist of a visualization, a visualization construction process, and other
user interface features.

A visualization is some graphical representation of a spreadsheet
supposed to make the structure of the computations in the spreadsheet more
readily available for users. A visualization can be superimposed on the
spreadsheet display or it can be a separate entity. In the latter case, the
visualization may have some user interface mechanism to make the connection
between the visualization and the spreadsheet more evident.

A visualization construction process consists of the possibilities given to
users to build the visualization in a stepwise manner or instantly. Users may be
allowed to govern the construction process by limiting it to some parts of the
spreadsheet (usually by selecting the core cells from which the visualization is
gradually accumulated), or by giving the direction of the growing process (usually
towards referenced cells or towards referencing cells). The final visualization may
depend on the order of its construction.

Other user interface features may include, e.g., the use of the visualization
to navigate in spreadsheets, or automatic repositioning of the visualization to
show the currently active cell.

In the following, we will describe various auditing mechanisms, both
implemented and projected. We will use the division described above and end
with a statement of implementation status and a discussion part consisting of a
comparison of the features of the mechanism with respect to the FFR model.

3.1 Excel 7.0 Auditing

Microsoft Excel 7.0 contains an auditing mechanism intended to help users to
"understand the relationships between cells [...] and find mistakes. The tracers
[...] graphically display the flow of computations," as the on-line help states.

-18-

Al B |c] D [E| F 6] H |

1
2| 25
3
A =§0§2"B4/100 =D4 =B4
5| 12 =§D§2°BE/100 =F4+D5 = =B5+H4
8| 13 =§0§2°B6/100 =F5+06 =B6+HS
7| 14 =§0§2°B7/100 =FB+D7 =B7+HE
8| 15 =§0§2°BE/100 =F7+08 =B8+H7

9
0| =SUM(B4ES) =D2*Hg/100

14

Figure 10: An example spreadsheet.

Visualization. Let us consider as an example the spreadsheet in Figure
10. This spreadsheet is shown in Figure 11 with Excel 7.0 total visualization, i.e.,
all cells have been audited (towards referenced cells). This visualization
highlights the data flow by superimposing graphics on the spreadsheet display. If
the formula of a cell, say a, contains a cell reference to another cell, say b, then
the visualization has a blue arrow starting from a small blue circle located in the
cell b and pointing to the cell a. In the case of an area reference, the circle is
located in the top-left corner cell of the area, the whole area has a blue rectangle
around it, and the arrow is thicker.

Arrows are normally blue, but an arrow starting form a cell containing
the special error value is red.

e
—a

[Rl s R R i n]
oo Cp o

i £

LES]

J IEV N EN i £

Lalg: o

-=‘|f.n m|-—4|:n|r.n|4=- m|m|—n

i
]
[y}

=
=

Figure 11: The spreadsheet of Figure 10 with the Excel visualization.

The arrows end and start at the same point within a cell yielding vertical
and horizontal lines having arrow heads in those cells containing formulae, and
circles in cells that are referenced in those formulae. The location of the start/end
point of arrows within a cell is fixed implying that arrows may be on top of
others, e.g., arrows D4 - F4 and B4 - H4 in figure 11.

Representation construction process. The construction of a
visualization starts always from a single cell and the user can request
visualization construction in either of two directions: towards precedents (i.e.,
towards referenced cells or areas) or towards dependents (i.e., towards
referencing cells). In each step the visualization consists of a set of cells and
areas together with arrows connecting them. It is also possible to draw back the
arrows added during the latest step, and this process can be repeated to clear the
whole visualization.

-19-

When the visualization is constructed towards precedents, the system
expands the set with new cell and area references in the formulae of the cells and
areas in the set, and draws arrows as described above.

When the visualization is constructed towards dependents, the set
consists of cells only. In each step, the system expands the set with cells that
refer to cells already in the set, and draws arrows. In the case of visualization
construction towards dependents, area references are treated as collections of cell
references and no area visualization is used.

The cell forming the origin of visualization construction can be changed
during the process, and so can the direction be changed, too. The next step is,
however, performed just as there would be a new visualization construction
process: even though the old visualization is not removed from the screen, the set
of cells and areas that is the base of the visualization is reset to contain the new
origin cell only. Each arrow tree is treated separately when arrows are drawn
back, but the user can also remove all arrows with a single command.

Due to differences in the representation construction process depending on
the direction of the process, the total visualization obtained by working towards
precedents may differ from that obtained by working towards dependents.

Other features. If a user double-clicks an arrow, a cell at other end of
the arrow will become the currently active cell. Thus, users can follow arrows by
double-clicking them.

Implementation. The Excel 7.0 auditing mechanism is fully
implemented and integrated in the Microsoft Excel 7.0 spreadsheet system.

Discussion. The Excel 7.0 auditing mechanism is based on the cell and
area references of formula contents, and on the occurrence of the special error
value among the cell values. The mechanism visualizes the following aspects of
spreadsheet applications:

» cell references including the referenced cell and the referencing cell

» area references including the referenced area and the referencing cell

» cell references where the referenced cell contains the special error value

» area references where at least one cell in the referenced area contains
the special error value

The Excel 7.0 auditing mechanism does not consider other aspects of
formula contents, neither does it consider the format contents, naming or
protection of spreadsheet applications. Moreover, it pays no attention to any
relations between formulae.

3.2 Arrow Tool

Davis (1996) introduces two auditing tools for spreadsheets: the on-line data
dependency diagram that will be described later, and the arrow tool. The arrow
tool is closely related to the Excel 7.0 auditing.

Visualization. The arrow tool visualization is a variant of the Excel 7.0
visualization. It colors precedent and dependent cells in addition to using arrows.
Area references are not treated separately from cell references, and all arrows
have the same color.

Representation construction process. The construction of a
visualization occurs as with the Excel 7.0 auditing except that the removal of the
visualization cannot be done stepwise.

Other features. Arrows can be used for navigation by clicking them like
with the Excel 7.0 auditing. Moreover, the arrow tool facilitates cyclic

-20-

examination, one cell at a time, of a collection of dependent cells or precedent
cells.

Implementation. The arrow tool is implemented as Excel macros.

Discussion. The arrow tool is based on the cell and area references of
formula contents. The mechanism visualizes cell references including the
referenced cell and the referencing cell. It does not consider other aspects of
formula contents, neither does it consider the format contents, naming or
protection of spreadsheet applications. Moreover, it pays no attention to any
relations between formulae.

Davis (1996) has proposed enhancing the arrow tool by labeling each
arrow with the reference and the name relating to the cell at the other end of the
arrow. This labeling scheme makes references easier to understand especially
when the other end of an arrow is outside the screen.

Davis (1996) has also proposed adding new commands to construct the
visualization in larger steps: the whole precedents chain, the whole dependents
chain, or the total graph with a single command.

3.3 S2 Visualization

We have developed a visualization that highlights the data flow of a spreadsheet
as well as areas containing formulae or data that seems to form a logical entity.
As a consequence, highlighted areas are supposed to describe the plan structure
(Hassinen & al., 1988) of the spreadsheet. Any deviation from this structure
shows clearly up in the visualization. The visualization is called S2 and it is the
third in a series of visualizations (the former being called SO and S1 with
differences in the visualization of broken areas).

Al B |c|] D |[E] F [G] H |

1
B
3|

4 11,00 S 11,00
5 | 12 00 300 23,00
6 | 13,00 325 36,00
7| 1400 350 50,00
8| | 1500 375 65,00
9|
10|

Figure 12: The spreadsheet of Figure 10 with the S2 visualization.

Visualization. Figure 12 contains the same spreadsheet as in Figure 11,
but now with total S2 visualization. This visualization marks with yellow
coloring and a thick border areas (so called S areas) that contain values having
equal type and equal format as well as areas having a formula that could be
obtained by copying from each other. Moreover, a S area can contain at any edge
cell a formula that can be obtained by removing from the copy in the neighbor
cell all references to the cells at that edge and copying that formula. For
example, The formula in the cell H4 can be obtained from the formula =B5+H4
in the cell H5 by removing the reference to the cell H4 (together with the
preceding operator) and then copying this formula to H4.

In the S2 visualization, blue arrows connect areas and not individual cells
as in the previous visualizations. There is an arrow from an area A to an area B

-21-

if any formula in the area B refers to any cell in the area A. When needed,
arrows are shifted a little to prevent overlapping.

If some cells in the area A are not referenced in the area B, then the area
A is split into smaller subareas so that in each resulting subarea either each cell
is referenced in the area B or no cell is referenced. As a consequence, each cell at
the starting area of any arrow is referenced by some formula at the head of the
arrow. The area B, that caused the splitting, is colored orange. For example,
consider a variant of the previous example spreadsheet having in the cell H7 the
formula =D7+H6. In the place of the S area H4:H8 there are now three S areas
H4:H6, H7:H7, and H8:HS8 (as the formula in the cell H7 differs from neighboring
cells). These three areas split both the area B4:B8 and the area D4:D8 because,
e.g., the area H7:H7 contains a reference to D7 but not to other cells in the area
D4:D8. As a result, the visualization of this spreadsheet is more complicated as
shown in Figure 13.

It is noteworthy that, in Excel 7.0 auditing, the total visualization of the
new spreadsheet with the change in the cell H7 has, as perceived by a user, the
same appearance as the original one in Figure 11, because the only change
considers the lengths of the arrows but these changes coincide with other arrows
and hence they do not show up. Thus, the change in the spreadsheet can be
detected during the representation construction process but not in the final
visualization.

Al B |c|] D |E|] F [G6] H |

1]

2| 25

3 B!

4 | 11,00 2 Fal—% 275
5 12,00 3,00 575
6| [1300] | 4335 \:‘i,l:ll:l
7 14,00}« Al 'u,%
8 3751525
9

10|

Figure 13: Splitting area in the S2 visualization.

In the S2 visualization, an area A is not split by an area B, if the area A
has at one edge formulae with some references removed (as described above) and
cells in the area B refer to cells at the opposite edge of the area A but not to other
cells. For example, in the area H10:H10 there is a reference to the cell H8, but
not to other cells in the area H4:H8, but this does not split the area H4:HS.

The splitting does not propagate, i.e., the subareas that form the split
area A are treated as a single area when further splitting effects are considered.

Representation construction process. The construction of a
visualization can start with any area and the mechanism automatically expands
the set of cells to include all cells belonging to partially included S areas. The
user can request visualization construction in either of two directions: towards
precedents (i.e., towards referenced S areas) or towards successors (i.e., towards
referencing S areas). In each step the visualization consists of a set of (possibly
split) S areas.

When the visualization is constructed towards precedents, a S area is not
colored orange until the S area it splits is included in the visualization.

-22.

When the visualization is constructed towards successors, a S area is not
split until the S area that splits it is included in the visualization.

The whole visualization can be removed with a single command.

The total visualization does not depend on the direction of the
representation construction process.

Other features. If a user double-clicks an arrow, the upper-left corner
cell at other end of the arrow will become the currently active cell.

Implementation. The S2 visualization is partially implemented as Excel
macros. Representation construction towards successors and arrow double-
clicking are not implemented. Moreover, the positioning of arrows is simplified.

The S2 visualization macro is available for download by anonymous ftp at
ftp://cs.joensuu.fi/pub/Software/S-visualization.

Discussion. The S2 visualization is originally defined by a procedure
that finds S areas and not by defining the properties of S areas. Yet S areas fit
quite well with the FFR model.

The S2 visualization is based on highlighting maximal consistent areas
and references between these areas. Formats include type information, and
format equivalence is equality with naming and protection information discard.
Formula equivalence is case independent equality comparison with case
dependence within strings embedded in formulae. The origin relation is defined
by the phrase "a formula that can be obtained by removing from the copy in the
neighbor cell all references to the cells at that edge, and copying that formula".
This relation is 1-start-pruning.

Any breaking area, say B, is highlighted with different color than other
consistent areas, and an area that it breaks, say A, is split into subareas so that
B is not breaking these subareas.

The S2 visualization does not recognize corner-originating areas but they
are treated as collections of consistent columns or rows. The S2 visualization
pays no attention to naming or protection information.

3.4 S3 Visualization

The S2 visualization and the FFR model suggest together a more coherent
visualization mechanism, the S3 visualization, that exploits the full power of
maximal consistent areas, generalizes the origin relation from 1-start-pruning to
start-pruning, includes protection information, and makes a visual distinction
between split areas and maximal areas.

Visualization. The S3 visualization uses the same visual units, i.e.,
yellow and orange areas together with blue arrows to highlight references
between the areas. In contrast to the S2 visualization, broken areas are now
visualized with dashed lines between subareas treated as unbroken when arrows
are drawn. Figure 14 gives the S3 visualization of the same spreadsheet as in
Figure 13.

Each highlighted area is a maximal consistent area. The format
equivalence is equality with naming information discard (but protection
information retention), and the formula equivalence is case independent equality
comparison with case dependence within strings embedded in formulae. The
origin relation is the most general start-pruning relation, i.e., Q(f},t,.f;,,t,,r) holds
if f, can be obtained from £, by removing all cell references containing a relative
row reference -r-1 together with any amount of preceding and succeeding
characters (but not references).

-23-

1
2|

3

4| 11,00 75— 275 1.0
5 12,00 300 575 23400
6 13,00 325 900 6,00
7 14,00 3 A0 1240 "t 30 50
8 15,00 J7a T, 2 54 50
9|

10

55,00 13 625

Figure 14: The S3 visualization of the spreadsheet in Figure 13.

Representation construction process. The construction of a
visualization occurs as with the S2 visualization.

Other features. If a user double-clicks an arrow, the upper-left corner
cell at other end of the arrow will become the currently active cell like in the S2
visualization. Moreover, clicking an arrow with another mouse button opens a
text box that describes the areas at both ends of the arrow. An area description
consists of the corner indexes, possible name of the area, protection of the area
(all cells protected, none protected, mixed), and one or two formulae depending on
the character of the area. If the area is homogeneous, the description contains
the formula of the upper left corner cell together with its address, or the word
“Constants” if the area contains no cell or area references. Otherwise formulae
and addresses of two cells are presented, the first being the cell from which the
computation originates, and the second being the respective corner cell of the
homogeneous part of the area. Figure 15 shows an example of an arrow
description.

Al B |c|] b |E[] F [G6] H |

1
2

3
4| 11,00 o) Fapaa 11,00
5 12,00 3,00 5,75 r 2300
b | 13,00 B4:B8 Froduct sales @ 35,00
] 14,00 Mot protected 50,00
i 15,00 | Constants 5,00
i H4:H8 Mo name

10 Frotected 16,25
1| H4: =B4
12| H&: =B5-+H4

13

Figure 15: An arrow description in the S3 visualization.

Implementation. The S3 visualization can be implemented as Excel
macros but this has not yet been done.

Discussion. The S3 visualization is defined in the terms of the FFR
model above. It does not make use of any naming or protection information
except in arrow descriptions.

-24-

3.5 On-line Data Dependency Diagrams

The other auditing tool suggested by Davis (1996), on-line data dependency
diagrams, is based on spreadsheet flow diagrams introduced by Ronen & al.
(1989) for documenting spreadsheet designs. While spreadsheet flow diagrams
are supposed to be constructed by users, on-line data dependency diagrams are
supposed to be generated automatically.

Visualization. The visualization is not superimposed on the spreadsheet
display but is presented as separate graphics in its own window. The
visualization consists of a flowchart-like graph with cells as nodes and arrows
showing data dependencies. There are distinctive symbols for nodes to represent
cells that function as inputs, outputs, decision variables, parameters, or
formulae. Nodes contain textual information about the role of the cell and its
formula. Figure 16 gives a partial example of the visualization.

_F {Inputs [1]: Cash flow in current year)
8 | Srriallest 00 = (CR7 N
C9 | Outputs [0]: Appropriste discount rate certain return
10
k0 per § (C% i
12 | Smallest certain return per § - [P] 0,9 I 0
13 | Risk free rate [F] s % Present value
14 | Cash flow in current year I Fzs0n Fisk free |y offow
13 | Cash flow you're cortert with [1,0] $30510 rate (RF)
16 | Present value of flow [L0] | ek /{ () =
7 | Appropriste discount rate [9] 14 % N0 HEF M 007
18 *
- | [||

Figure 16: Excerpt of an on-line data dependency diagram (Davis, 1996).

Representation construction process. The visualization is
constructed in a single step.

Other features. A user can activate the corresponding cell in the
spreadsheet by giving a command when a node in the graph is selected, and vice
versa. The selected cell and node are marked with the same color, and the
display of the graph is centered on that node.

Implementation. The on-line data dependency diagram tool is not
implemented and no implementation is planned.

In the only on-line data dependency diagram given by Davis (1996), nodes
represent single cells. As a consequence, the set of nodes and arrows can be
constructed automatically, and graph algorithms can be used to find a suitable
layout. With large spreadsheets the graph becomes, however, huge and its
usability may be questionable. Moreover, to be able to automatically construct
the textual information in the cells, new theory about spreadsheets must be
developed.

In spreadsheet flow diagrams, proposed by Ronen & al. (1989), nodes do
not represent single cells but areas that are identified by users. As a result, the
sizes of graphs remain manageable. But to be able to automatically find the
areas, some theory about the properties of areas is needed. The FFR model above
is the first attempt to give such a theory.

Discussion. On-line data dependency diagrams are based on the cell and

area references of formula contents. The part whose construction is not

-25-

automated, may use any other information but we cannot be more precise as
there is no clear description of the basics of the visualization in literature.

3.6 CogMap

Hendry & Green (1993) introduce CogMap as a mechanism for spreadsheet users
to describe their spreadsheets to co-workers. It is not an automatic audit tool but
rather a way to document spreadsheets.

Visualization. The basic idea of CogMap is to give users the possibility
to annotate spreadsheets with textual tags that are attached to colored areas
and with links that connect such areas. Each tag and link may have a textual
description. Users can set up tags and links, select colors, and write the contents
of texts freely. Links are represented as lines, their thickness is adjustable, and
they can have arrow heads. A cell may belong to many tags and, therefore, may
have multiple colors. Simulated transparency is used to describe two colors on
top of each other. Figure 17 contains an excerpt of a CogMap visualization.

4

5

6|

7

8

9

0 1 14
1 3 21
12 4 27
3 5 13
14 B a2
15 4 45
6 | 4 5]
A7 B5 57
8 B B3
19 4 BS
20 3 i
21 5

22 5

23 4

24 5 The tags are: start block row
25 B

3 s O]
% EE % start block row 5 |5t5||1 block row |
29 65

30 4 d |Tag Description: |
31 5 (Explain) QKD | | [Fiis is the cell Ak
32 b reference for the
33 7B first cell in the
34 I a block of raw
35| 4

Th EF|

Figure 17: Excerpt of a CogMap visualization (Hendry & Green, 1993).

-26 -

Representation construction process. CogMap assists users to
construct annotations but it does not automatically suggest any part of the
visualization.

Other features. CogMap allows users to list tags attached to an area, to
display the texts, to control which tags and links are shown, and to search for
particular tags and links.

Implementation. CogMap is implemented in the scripting language of
the Claris Resolve spreadsheet system.

Discussion. CogMap annotations are attached to areas identified by
users. All information is based on users’ interpretation of the contents of
spreadsheet applications. The tool does not analyze spreadsheets in any manner.

Hendry & Green (1993) have sketched an extension to CogMap consisting
of short arrows starting from the upper-left cell of an area and pointing to a box
with the tag of an area that is referenced in the cell. In contrast to links, the
direction of arrows is now opposite, and they do not reach to the other area but a
name box is used instead.

Hendry & Green (1993) have proposed also extending CogMap to apply a
background pattern to cells containing absolute (column or row) references. The
background pattern, either vertical, horizontal or diagonal lines, is supposed to
reveal areas having copy equivalent formulae (or “the direction that the formula
was filled [into the area with the Edit/Fill operation]”). Unfortunately, due to
area borders not being visualized, this effect is not achieved. It is unclear
whether such patterns are supposed to be applied manually by users or
automatically by CogMap. If the background pattern is going to express more
than just the form (one column wide, one row high, other) of a copy equivalent
area, user assistance is needed.

3.7 Spreadsheet Schemes

Isakowitz & al. (1995) propose a textual representation of spreadsheets that
captures the computations between logical structures in a spreadsheet. The
process is not totally automatic: the user must identify and name the functional
relations (in the sense of relational data bases) that make up the mathematical
model behind the spreadsheet. The resulting logical schema is supposed to lend
itself to identifying design anomalies, either by human auditor or by automated

techniques.
SPREADSHEET SCHEHMA _|D|X|

relation proforma alias p
year: numeric key
sales: n=1 -» numeric
2 {=n <5 -> p[n-1].sales * (1+ a.grate)
n »>=5 -» B8.5=({p[n-1].sales+p[n-2].5ales)*1.2
cogs: sales *= a.cogs
ovhead: a.ovhead
lease: numeric
inc: cales - cogs - ovhead - lease -
KN AW

Figure 18: Excerpt of a spreadsheet schema (Isakowitz & al., 1995).

Visualization. Spreadsheet schemes are not graphical but textual
representations that treat vector input areas as entities used in the calculations.

-27-

For example, Figure 18 gives an excerpt of a schema that describes a
spreadsheet for sales forecast. The entities year, sales, cogs, ovhead, lease, and
inc correspond to rows with those names in column A and values for six years in
columns B..G. The spreadsheet schema has no reference to physical columns but
uses indexes to refer to individual elements, and it applies vector operations
when possible.

Representation construction process. The representation is
constructed in a single step consisting of two phases. First, the user is asked to
identify and name contiguous blocks of cells that represent either a singular or a
repetitive entity. Then the spreadsheet schema is automatically constructed.

Other features. Spreadsheet schemes can be stored in external files.
There is a reverse operation to create a spreadsheet from a schema, thus
enabling schema reuse.

Implementation. Spreadsheet schemes are implemented as an Excel
macro that enables users to identify and name entities, and a Pascal program
that does rest of the representation construction. An implementation of the
reverse operation is projected.

Discussion. Spreadsheet schemes consider areas identified by the user,
formula and format contents, and types of cells containing constant formulae.
Within a user identified entity, consecutive copy equivalent formulae are
recognized and replaced by a single formula. Copy equivalence tests for formula
equivalence but not for format equivalence.

Spreadsheet schemes do not take advantage of naming or protection
information. Edge-originating calculations are not particularly recognized.

Spreadsheet schemes cannot be constructed automatically unless some
theory about the properties of areas, like the FFR model, is introduced.

4. Concluding Remarks

We have introduced the FFR model to be able to theoretically analyze and
compare visualization mechanisms. The model has demonstrated its practicality
as we could easily describe various auditing tools with it. Moreover, the FFR
model provides a systematic way to operate with different origin relations
describing how calculations within areas can begin. The application of the model
to describe the S2 visualization suggested immediately an improved version, the
S3 visualization.

We used the FFR model to analyze 7 auditing tools. On-line data
dependency diagrams, CogMap and spreadsheet schemes require user assistance
in the visualization construction process making their usability limited. Of the
remaining four tools, the S2 and S3 visualizations turned out to be essentially
more expressive than the Excel 7.0 auditing mechanism and the arrow tool. The
power of the S2 and S3 visualizations stems from the recognition of edge-
originating areas by using specific start-pruning origin relations.

In the introduction we claimed that visualizations can be used to
highlight anomalies that imply potential errors. The FFR model enables us to
rephrase this claim: we expect that errors in spreadsheet applications manifest
themselves as inconsistent and breaking areas. Provided that the claim holds for
some origin relation Q in most cases, a spreadsheet application audit tool can be
based on visualizing such areas.

Thus, future research should concentrate on the formulation of new origin
relations and their validation with empirical research. What is needed is an
origin relation that rejects as many erroneous computations as possible and at

-28-

the same time accepts practically all correct computations. We feel that such a
relation will be start-compressing but not start-pruning.

Secondly, we mneed research into the psychological aspects of
visualizations: how should we highlight various areas and their interconnections
to best match the cognitive capabilities of users. Empirical experiments are
needed to understand how details of visualization mechanisms affect users'
comprehension of computational structures within spreadsheets.

Finally, when the FFR model is applied to new cases, there will certainly
arise a need to improve the model itself. For example, it may turn out that
naming and protection information should not be embedded in formats, or that
types should be explicitly included in the model. But the further development of
the FFR model must wait until we have more experiences about its use.

Acknowledgments

I would like to thank Markku Tukiainen for lengthy discussions about the nature
of spreadsheets and the manifestation of users' goals and plans in spreadsheets,
Pertti Saariluoma for his encouragement on visualization development, and Tero
Koistinen for his programming efforts on the S2 visualization. This work was
inspired by carpets and wallpaper.

References

Brown, P. S. & Gould, J. D. (1987) An Experimental Study of People Creating
Spreadsheets. ACM Transactions on Office Information Systems, 5(3), 258-
272.

Davis, J. S. (1996) Tools for Spreadsheet Auditing. International Journal of
Human-Computer Studies, 45(4), 429-442.

Ditlea, S. (1987) Spreadsheets Can be Hazardous to Your Health. Personal
Computing, 11(1), 60-69.

Hassinen, K., Sajaniemi, J. & Viisdnen J. (1988) Structured Spreadsheet
Calculation. 1988 IEEE Workshop on Languages for Automation,
Computer Society Press, 129-133.

Hassinen, K. (1994) Luokitteluperustainen menetelmd taulukkolaskenta-
sovellusten analysointiin (A Classification-Based Method for the Analysis
of Spreadsheet Applications). In Finnish. Lic.Phil. Thesis, University of
Joensuu, Department of Computer Science.

Hendry, D. G. & Green, T. R. G. (1993) CogMap: A Visual Description Language
for Spreadsheets. Journal of Visual Languages and Computing, 4, 35-54.

Isakowitz, T., Schocken, S. & Lucas, H. C. Jr. (1995) Toward a Logical/Physical
Theory of Spreadsheet Modeling. ACM Transactions on Information
Systems, 13(1), 1-37.

Lakshmanan, L. V. S., Subramanian, S. N., Goyal, N. & Krishnamurty, R. (1998)
On Querying Spreadsheets. 14th International Conference on Data
Engineering, IEEE Computer Society, Los Alamitos, Ca, 134-141.

Ronen, B., Palley, M. A. & Lucas, H. C. Jr. (1989) Spreadsheet Analysis and
Design. Communications of the ACM, 32(1), 84-93.

Saariluoma, P. & Sajaniemi, J. (1991) Extracting Implicit Tree Structures in
Spreadsheet Calculation. Ergonomics, 34(8), 1027-1046.

-29.-

Saariluoma, P. & Sajaniemi, J. (1994) Transforming Verbal Descriptions into
Mathematical Formulas in Spreadsheet Calculation. International
Journal of Human-Computer Studies, 41(6), 915-948.

Sajaniemi, J. & Pekkanen, J. (1988) An Empirical Analysis of Spreadsheet
Calculation. Software - Practice and Experience, 18(6), 583-596.

Tukiainen, M. & Sajaniemi, J. (1996) Spreadsheet Goal and Plan Catalog:
Additive and Multiplicative Computational Goals and Plans in
Spreadsheet Calculation. University of Joensuu, Department of Computer
Science, Technical Report, Series A, Report A-1996-4.

