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User-Oriented QoS Analysis
in MPEG-2 Video Delivery

W
e address the problem of video quality prediction and control for high-resolution video
transmitted over lossy packet networks. In packet video, the bitstream ¯ows through
several subsystems (coder, network, decoder); each of them can impair the information,

either by data loss or by introducing some delay. However, each of these subsystems can be ®ne-
tuned in order to minimize these problems and to optimize the quality of the delivered signal,
taking into account the available bitrate. The assessment of the end-user quality is a non-trivial
issue. We analyse how the user-perceived quality is related to the average encoding bitrate for
variable bit rate MPEG-2 video. We then show why simple distortion metrics may lead to
inconsistent interpretations. Furthermore, for a given coder setup, we analyse the e�ect of packet
loss on the user-level quality. We then demonstrate that, when jointly studying the impact of
coding bit rate and packet loss, the reachable quality is upperbound and exhibits one optimal
coding rate for a given packet loss ratio.
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Introduction

The transmission of multimedia streams requires a
network capable of handling di�erent types of data.
For several years, the solution has been considered to be
the asynchronous transfer mode (ATM). ATM is the
network technology for the broadband integrated
services digital network (B-ISDN). Now the role of
ATM is being challenged by the success of the Internet
and other IP-based networks due to the new develop-
ments of integrated and di�erentiated services.

A truly integrated network will have to cope with
di�erent tra�c characteristics and quality requirements
1 P. Frossard is now with the Signal Processing Laboratory of
the Swiss Federal Institute of Technology.
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in terms of delay, delay jitter and data loss. Providing
integration of heterogeneous tra�c and adequate QoS
to users has proved di�cult to achieve.

Work remains to be done to optimize multimedia
applications so they can be o�ered at attractive prices.
In other words, the user expects an adequate audio-
visual quality at the lowest possible cost. From the
user's viewpoint, in the case of video transmission over
packet networks, both the encoding and the transmis-
sion processes a�ect the quality of service. The most
economic o�ering can thus only be found by considering
the entire system and not by optimization of individual
system components in isolation [1, 2].

This paper is organized as follows: we ®rst introduce
the MPEG-2 video and system standards. We the brie¯y
describe the impact of data loss on the reconstructed
video sequence. Useful video quality metrics are also
# 1999 Academic Press
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described, particularly the MPQM which is based on a
vision model. The impact of MPEG-2 rate and data loss
on quality is then studied. Finally, we analyse the joint
impact of MPEG-2 rate and data loss on video quality.

MPEG-2 over Packet Networks

MPEG-2 backgrounder

The choice of the compression algorithm depends on the
available bandwidth or storage capacity and the features
required by the application. The MPEG-2 standard [3],
a truly integrated audio-visual standard developed by
the International Organization for Standards (ISO), is
capable of compressing NTSC or PAL video into an
average bit rate of 3 to 6 Mbits/s with a quality
comparable to analog CATV [4].

An MPEG-2 video stream is hierarchically structured
as illustrated in Figure 1. The stream consists of a
sequence composed of several pictures. The MPEG-2
video standard de®nes three di�erent types of pictures:
intra-coded (I-), predicted (P-) and bidirectional (B-)
pictures. The use of these three picture types allows
MPEG-2 to be robust (I-pictures provide error propa-
gation reset points) and e�cient (B- and P-pictures
allow a good overall compression ratio). Each picture is
composed of slices which are, by de®nition, a series of
macroblocks. Each macroblock (16616 pixels) contains
four blocks (868 pixels) of luminance and 2, 4 or 8
blocks of chrominance depending on the chroma
format. Motion estimation is performed on macro-
Figure 1. MPEG-2 video structure.
blocks while the DCT2 is calculated on blocks. The
resulting DCT coe�cients are quantized and variable
length coded. The quantizer comes from the multi-
plication of a Quantizer Scale, MQUANT, and the
corresponding element of a Quantizer Matrix. In
general, the higher the MQUANT value, the lower the
bit rate but also the lower the quality (well-known from
the rate-distorsion theory).

Before being transmitted, a video stream goes through
the MPEG-2 Transport Stream (TS) layer. Basically, the
stream is ®rst segmented into variable-length Packetized
Elementary Stream packets and then subdivided into
®xed-length TS packets. It is worth noting that a non-
encoded header (i.e. syntactic information) is inserted
before each of the following information elements:
sequence, Group of Pictures (GOP), picture, slice, TS
and PES. In general, when a header is damaged, the
underlying information is lost.

MPEG-2 Sensitivity to data loss

In an MPEG-2 video stream, data loss reduces quality
depending strongly on the type of the lost information.
Losses of syntactic data, such as headers and system
information, a�ect the quality di�erently than losses of
semantic data such as pure video information (e.g.
motion vectors, DCT coe�cients, etc.). Furthermore,
the quality reduction depends on the location of the lost
semantic data due, not only to the predictive structure of
MPEG-2 video coded streams, but also to the visual
relevance of the data.

Figure 2 illustrates how network losses map onto
visual information losses in di�erent types of pictures.
Data loss spreads within a single picture up to the next
resynchronization point (e.g. picture or slice headers)
mainly due to the use of di�erential coding, run-length
coding and variable length coding. This is referred to as
spatial propagation and may damage any type of
picture. When loss occurs in a reference picture (intra-
coded or predictive frame), the damaged macroblocks
will a�ect the non intra-coded macroblocks in
subsequent frame(s), which reference the errored macro-
blocks. This is known as temporal propagation and is
due to inter-frame predictions.

However, the error visibility may be dramatically
reduced by means of error concealment techniques.
2 DCT stands for Discrete Cosine Transform.



Figure 2. Data loss propagation in MPEG-2 video streams.
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These error concealment algorithms include, for exam-
ple, spatial interpolation, temporal interpolation and
early resynchronization techniques. The MPEG-2 stan-
dard proposes an elementary error concealment algo-
rithm based on motion compensated techniques.
Mainly, it estimates the motion vectors for the lost
macroblock by using the motion vectors of neighboring
macroblocks in the a�ected picture (provided these have
not also been lost). This improves the concealment in
moving picture areas. However, there is an obvious
problem with errors in macroblocks whose neighboring
macroblocks are intra-coded, because there are ordina-
rily no motion vectors associated with them. To
circumvent this problem, the encoding process can be
extended to include motion vectors for intra macro-
blocks3.

Error concealment techniques may, in general,
e�ciently decrease the sensitivity to data loss. However,
none of these techniques is perfect. Data loss may still
involve annoying degradation in the decoded video.

Video quality metrics

A quality metric often used for audiovisual signals is the
peak-to-noise ratio (PSNR). Many studies have shown
that this metric is poorly correlated with human
3 Some MPEG-2 encoder chips automatically produce con-
cealment motion vectors for all intra-coded macroblocks.
perception since it does not take visual masking into
consideration. In other words, every errored pixel
contributes to a decrease in PSNR even if the error
cannot be perceived. Recent research has therefore
addressed the issue of video quality assessment by
means of metrics based on the properties of the human
visual system. All these metrics fall into one of the
following categories: (a) metrics based on a mathema-
tical ®t of a subjective rating function obtained by
intensive psychovisual experiments (e.g. Ŝ [5]) and (b)
metrics relying on a model of the human visual system
(e.g. JND [6], MPQM [7]). Metrics belonging to the
latter category perform usually better [8].

In [7], a spatio-temporal model of human vision has
been developed for the assessment of video coding
quality [8, 9]. The model is based on the following
properties of human vision:

. The responses of the neurons in the primary visual
cortex are band limited. The human visual system has
a collection of mechanisms or detectors (termed
``channels'') that mediate perception. A channel is
characterized by a localization in spatial frequency,
spatial orientation and temporal frequency. The
responses of the channels are simulated by a three-
dimensional ®lter bank.

. The channels can be considered to be independent.
Perception can thus be predicted channel by channel
without interaction.



Figure 3. Moving Pictures Quality Metric (MPQM) block diagram.
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. Human sensitivity to contrast is a function of both
frequency and orientation. The contrast sensitivity
function (CSF) quantizes this phenomenon by
specifying the detection threshold for a stimulus as a
function of frequency.

. Visual masking accounts for inter-stimuli inter-
ferences. The presence of a background stimulus
modi®es the perception of foreground stimulus.
Masking corresponds to a modi®cation of the
detection threshold of the foreground according to
the local contrast of the background.

This model has been used to build a computational
quality metric for moving pictures [8] which behaves
consistently with human judgments. The metric, called
moving pictures quality metric (MPQM), ®rst decom-
poses the original sequence and a distorted version of it
into perceptual channels. A channel-based distortion
measure is then computed while accounting for contrast
sensitivity and masking (see Figure 3). Finally, the data
is pooled over all the channels to compute the quality
rating which is then scaled from 1 to 5 [10]. This quality
scale is used for subjective testing in the engineering
community (see Table 1).

Impact of MPEG-2 Rate and Data Loss on Quality

In this section, we ®rst describe the experimental setup
used throughout this work. We then study how the
video quality behaves according to the quantizer scale
factor (MQUANT) in an MPEG-2 OL-VBR4 encoding
scheme. We also analyse how the average encoding bit
rate is a�ected by this MQUANT. We then derive a
mathematical relation modeling the impact of the
average variable rate of the video encoding quality.
4 OL-VBR stands for Open-Loop Variable Bit Rate (constant
quantizer scale over the whole sequence).
Finally, we study how the video quality decreases when
the data loss ratio is increased, for a ®xed average
encoding bit rate.

Experimental setup

The experimental testbed is composed of four parts (see
Figure 4):

. An MPEG-2 software encoder, which is composed of
an open-loop VBR TM5 video encoder [11] and a
transport stream encoder. Four sequences conforming
to the ITU-T 601 format were used (i.e. Football,
News, Ski and Barcelona). All these sequences are
very di�erent in terms of spatial and temporal
complexities. They were encoded, as interlaced
video, with a structure of 12 images per GOP and
two B-pictures between every reference picture in an
OL-VBR mode. The following MQUANTs were
used: 6, 10, 16, 20, 28, 32, 36, 40 and 48. Motion
vectors were generated for all intra-coded
macroblocks. It is to be noted that the OL-VBR
encoding quality is not a�ected at all when
introducing these extra motion vectors. Before being
transmitted, each MPEG-2 video bitstream was
encapsulated into 18 800-bytes length Packetized
Elementary Stream (PES) packets and divided into
®xed length Transport Stream (TS) packets by the
MPEG-2 system encoder.

Table 1. Quality scale generally used for subjective testing in
the engineering community

Rating Impairment Quality

5 Imperceptible Excellent
4 Perceptible, not annoying Good
3 Slightly annoying Fair
2 Annoying Poor
1 Very annoying Bad



Figure 4. Experimental testbed.
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. A model-based data loss generator was used to
simulate packet network losses. For this purpose, we
used a two-state Markovian model (Gilbert model
[12], see Figure 5).

States 0 and 1 respectively correspond to a correct and
an incorrect packet reception. The transition rates
between the states control the length of the bursts of
errors. Hence, there are three parameters to be
controlled: the packet loss size (PLS), the packet loss
ratio (PLR=p/p�q) and the average length of
a burst of errors (ABL=1). In our simulations,
we imposed a non-bursty (ABL=1) TS packets
(PLS=188 bytes) loss process and made the packet loss
ratio vary between 1072 and 1077.

. Video quality was evaluated by means of the MPQM
tool presented in the previous section. The per-frame
quality values given by the MPQM tool were gathered
together thanks to a Minkowski summation [13]
(exponent b=72). This summation, along with the
correct exponent, gives a result that is lower than the
simple average quality which is too optimistic (i.e. the
subjective quality evaluated over a set of frames is
Figure 5. Two-State Makov Chain: Gilbert Model.
lower than the average of the per-frame quality
values).

. The last part is an MPEG-2 software decoder
constituted by both a TS decoder and a video
decoder. The video decoder provides the motion
compensated concealment technique brie¯y explained
in the previous section. This technique was chosen for
di�erent reasons. The ®rst is to be consistent with real
implementations. The second is to be able to perform
the perceptual measurements. Indeed, the vision
model currently developed and the derived metrics
have been tested for errors below what is called
suprathreshold 5. The problem is that, in general, the
degradations due to data losses generate highly visible
artefacts (i.e. holes) in the sequence and these errors
are all above this suprathreshold. By using
concealment techniques, most of the artifacts may
be considered as being below the suprathreshold of
vision, making the perceptual measure accurate.

MPEG-2 VBR encoding impact on video quality

First, we study how the OL-VBR encoding process
in¯uences video quality on a GOP basis. Figures 6 and 7
show how the quality is a�ected by the MQUANT
parameter using, respectively, the PSNR metric and
MPQM tool to measure it. While the PSNR versus
MQUANT curve may be represented by a decreasing
exponential [14], it is to be noted that the MPQM metric
exhibits a linear relationship with MQUANT. We
5 Two to three times above the threshold of vision which
corresponds to the threshold of visibility of the noise.



Figure 6. PSNR versus quantizer scale factor for three di�erent
scenes.
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veri®ed this important behavior for all the GOPs of the
four sequences constituting our testbed. The same
characteristic has recently been observed through user's
subjective evaluation [15]. Computer simulation results
as well as the corresponding ®ts are represented on
Figure 7 for both the ``Barcelona'' and ``News''
sequences. The encoding quality QE is approximated
by a function of the form:

QE � wQ �MQUANT�Q0 �1�
Figure 7.MPQM versus quantizer scale factor for two di�erent
scenes. Fitting parameters for Eqn (1): News: (wQ=70.025,
Q0=5.062), Barcelona: (wQ=70.045, Q0=5.226).
where parameters wQ and Q0 have been obtained by the
least mean squares method (see Figure 7). The slope
wQ is directly related to the complexity of the sequence:
the higher the encoding complexity, the higher the
absolute value of wQ. This remark may be veri®ed on the
graph. The video sequence ``News'' is a Head and
Shoulder type of sequence and does not contain any high
spatio-temporal complexity. The absolute value of the
slope is thus smaller than for the ``Barcelona'' video
sequence. The value of Q0 will always be close to 5
(highest quality).

The linear relation between the video quality and
quantizer scale factor may have several impacts on the
design of, for instance, perceptual rate controllers or
consistent quality regulators operating in real-time.

Now, we have an idea of how the encoding quality
behaves according to the MQUANT. We need then to
study how the average output bit rate if a�ected by this
MQUANT. In [4], it was demonstrated that a power
function curve was a good approximation to represent
the relation between the quantizer scale factor and the
average bit rate:

�R � wR �MQUANTÿxR �2�
in which �R represents the average output bit rate and the
parameters wR and xR are related to the encoding
complexity of the set of frames over which the
Minkowski summation is performed (a GOP in this
case).

Figure 8 illustrates this behavior very well. The
parameters wR and xR have been obtained again by
minimizing the mean square error.

Finally, by combining Eqns (1) and (2), we derive a
model for describing how the video quality behaves
according to the average encoding bit rate:

QE � wQ �
�R

wR

� �ÿ 1
xR�Q0 �3�

As stated before, the three main parameters wQ, wR
and xR are somehow related to the spatio-temporal
complexity of the set of frames considered (Q0 will
always be around 5.0). However, in this work, we did
not investigate this relation any further.

Computer simulation results and the corresponding
®tting curve using the equation herebefore are repre-
sented in Figure 9.



Figure 8. Average output encoding bit rate versus quantizer
scale factor (MQUANT) for Barcelona. Fitting parameters for
Eqn (2): (wR=124.762, xR=1.116).

Figure 10. MPQM versus PLR (ALB=1, PLS=188) for
MQUANTs={28, 32} using the Barcelona sequence. Fitting
parameters for Eqn (4): MQUANT=28, (QE=4.352, w�L �
168:162) and for MQUANT=32, (QE=3.934, w�L � ÿ98:351�.
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An important result that can be extracted from the
graph is that the perceptual quality saturates at high bit
rates. Increasing the bit rate may thus result, at some
point, in a waste of bandwidth since the end-user does
not perceive an improvement in quality after a certain
bit rate. However, such saturation of quality is not well
captured by the PSNR.

The average bit rate after which the quality does not
increase signi®cantly may be shifted to the left by means,
Figure 9.MPQM video quality versus average output encoding
bit rate for the Barcelona sequence. Fitting parameters for
Eqn (3): (wQ=70.045, Q0=5.225, wR=124.761, xR=1.116).
for instance, of an adaptive quantization scheme [16].
Indeed, adaptive quantization aims at spatially unifor-
mizing the coding noise by adjusting the MQUANT
value on a macroblock basis. Therefore, the same
perceptual quality may be reached at a lower average
bit rate.

Data loss impact on video quality

Up to this point, we did not consider any data loss in the
video stream. Figure 10 illustrates how the video quality
is a�ected by uniformly distributing TS packet losses
over a 400-frame long MPEG-2 transport stream6. It is
shown that, on a semi-logarithmic scale and for a given
MQUANT (average bit rate), ®rst the video quality
remains constant with the PLR. This constant value
corresponds to the encoding quality (QE). Then, beyond
a certain PLR, the perceptual quality quickly drops.

The higher the average bit rate, the lower the PLR
after which the video quality drops, and inversely. The
PLR is indeed de®ned as the number of lost packets per
time unit divided by the number of packets transmitted
during the same time unit. In MPEG-2 video delivery,
the packet size does not depend on the encoding bit rate
[17, 18]. Therefore, the higher the encoding bit rate, the
higher the number of packets transmitted per time unit.
6 It turned out to be meaningless to perform data loss
simulations over a smaller set of frames.
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Thus, for a given PLR, the higher the encoding bit rate,
the higher the number of packets lost per time unit7.

Hence, the relation between video quality Q and PLR
may be represented by a straight line on a linear scale:

Q � QE� w�LPLR; �4�
where QE corresponds to the encoding quality (given by
Eqn (3)) and w�L depends on both the complexity of the
sequence and the average bit rate. In other words, for a
given sequence and a ®xed MQUANT, the video quality,
averaged over the whole sequence, linearly decreases
with the PLR.

This relation still holds if we multiply the PLR by a
constant. We observed that, for a given MQUANT, the
relation between the end-to-end video quality Q and the
product �R� PLR could be well approximated by a
straight line of slope wL. Therefore, Eqn (4) becomes:

Q � QE � wL� �R� PLR�; �5�
where wL is almost independent of the MQUANT
especially for low to medium bit rates.

It is to be noted that PLR after which the quality
quickly drops may be shifted to the right by means, for
instance, of error correction mechanisms (e.g. syntactic
protection [19], FEC [20]).

Joint Impact of MPEG-2 Rate and Data Loss
on Quality

In this section, we demonstrate why a joint analysis of
the impact of both the MPEG-2 encoding bit rate and
the data loss ratio on the video quality is the only way to
get correct conclusions. We explain, for example, why
the video quality may decrease when the encoding bit
rate is increased in an error-prone environment.

Joint impact analysis

As stated at the end of the previous section, the PLR
and the encoding bit rate (packet rate) are intimately
related to each other in regards to their impact on video
quality. For example, the higher the bit rate, the higher
the encoding quality (up to saturation) but the lower the
PLR after which the video quality quickly drops, and
7 The number of video frames transmitted per time unit is
independent of the encoding bit rate.
conversely. Therefore, the relation between quality and
encoding bit rate for a non-zero PLR should somehow
exhibit an optimum value. This behavior is illustrated in
Figure 11. We indeed see that the video quality ®rst
increases (encoding quality) with the average bit rate
and then decreases after around 4 MBits/s for the
``Barcelona sequence'' (data loss). This optimal average
bit rate directly depends on the video scene type. We
observed that it was fairly independent of the PLR
though. Furthermore, we can extend the bit rate range
over which the quality is optimal by implementing
mechanisms such as adaptive quantization and/or FEC-
based protection, as mentioned herebefore.

Such a result is crucial for the design of network-
aware rate controllers or e�cient error concealment
algorithms. The former algorithm would consist in
adjusting the encoding rate (MQUANT) in order to
follow the optimal working point in a network environ-
ment where the PLR may signi®cantly vary over a video
transmission duration (e.g. broadcasting via radio links,
the Internet network).

Tri-dimensional representation

The purpose of this subsection is to put all results
together and represent them by a single graph. Thus, by
putting together Eqn (3) and Eqn (5), we obtain a good
model of the end-to-end video quality Q:

Q � 5� wQ �
�R

wR

� �ÿ 1
xR�wL � � �R� PLR�; �6�
Figure 11. MPQM versus average encoding bit rate for
PLR=561073 for the Barcelona sequence.



Figure 13. Q versus average bit rate and PLR: Fitting function
with parameters: (wQ=70.045, Q0=5.22, wR=124.76,
xR=1.12 and wL=733.9).
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in which the two ®rst terms of the sum represent the
encoding quality (see Eqn (3)).

We then performed a complete set of measurements in
order to verify this relation. The same simulation setup
as the one presented in the previous section has been
used. Figure 12 presents the resulting surface for the
``Barcelona'' sequence while Figure 13 shows its
corresponding ®t using Eqn (6).

Several results may be extracted from these graphs.
Most of these results have already been discussed
throughout this paper. In general, when considering
video transmission over lossy networks, not only it is
bandwidth consuming to increase the encoding bit rate
above a certain threshold due to saturation of quality
(which varies according to the scene complexity), it may
also be quality consuming. In other words, when the
user-oriented QoS is not high enough, an increase of the
encoding bit rate at a ®xed PLR may even degrade the
quality, depending on the position of the working point
on the 3D graph presented herebefore. These is an
optimal bit rate to be determined that maximizes the
end-user perception of the service under certain given
network conditions (i.e. network impairments).

Conclusion and Future Works

The combined e�ect of the coding bitrate and the
network impairments on the user-perceived quality is
Figure 12. Q versus average bit rate and PLR: Simulations on
the Barcelona sequence.
still not well understood. However these results are
needed for the design and deployment of packet video
services. One of the common misleading intuitions is
that increasing the coder bit rate enhances image
quality. In this paper we have shown that this intuition
is proper to a lossless communication channel and that
the quality-rate function is no longer a strictly increasing
function when video packets are subject to loss.

The major conclusion is that image quality cannot be
improved by acting on the coding bit rate only:
increasing the bit rate above a certain threshold results
in quality degradations. For a given packet loss ratio,
there is a quality-optimal coding rate that has to be
found. Although the relationship between coding bit
rate, packet loss ratio and user-level quality is intrinsi-
cally complex, it can be characterized by a simple
expression and parameters set. These parameters seem
to depend on properties of the video scene (e.g. encoding
complexities). They have to be predicted when video is
coded and transmitted in real-time over lossy networks.
Therefore, this work is being extended to on-line
prediction of the 3D quality graph in the context of
MPEG-2, as well as other emerging encoding standards.
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