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Motion Segmentation and Tracking with
Edge Relaxation and Optimization using
Fully Parallel Methods in the Cellular
Nonlinear Network Architecture

I
n this paper we outline a fully parallel and locally connected computation model for the
segmentation of motion events in video sequences based on spatial and motion information.
Extraction of motion information from video series is very time consuming. Most of the

computing effort is devoted to the estimation of motion vector fields, defining objects and
determining the exact boundaries of these objects. The split and merge segmentation of different
small areas, those obtained by oversegmentation, needs an optimization process. In our proposed
algorithm the process starts from an oversegmented image, then the segments are merged by
applying the information coming from the spatial and temporal auxiliary data: motion fields and
motion history, calculated from consecutive image frames. This grouping process is defined
through a similarity measure of neighboring segments, which is based on intensity, speed and the
time-depth of motion-history. There is also a feedback for checking the merging process, by this
feedback we can accept or refuse the cancellation of a segment-border. Our parallel approach is
independent of the number of segments and objects, since instead of graph representation of these
components, image features are defined on the pixel level. We use simple VLSI implementable
functions like arithmetic and logical operators, local memory transfers and convolution. These
elementary instructions are used to build up the basic routines such as motion displacement field
detection, disocclusion removal, anisotropic diffusion, grouping by stochastic optimization. This
relaxation-based motion segmentation can be a basic step of the effective coding of image series
and other automatic motion tracking systems. The proposed system is ready to be implemented in
a Cellular Nonlinear Network chip-set architecture.

# 2001 Academic Press
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Introduction

In this paper we demonstrate a fully parallel methodol-
ogy to solve motion segmentation problems by low-level
algorithms based on limited local neighborhood con-
nectivity. Generally, this class of tasks requires both
low-level and high-level optimization procedures with a
huge amount of computing power. Our efforts are aimed
at finding solutions to these problems that need almost
low-level, simple functions that can be implemented on
special parallel VLSI architectures with superior speed.
Then, the output of these low-level operations can be
forwarded to a high-level processor responsible for
controlling the whole operation and for final interpreta-
tion. Since most of the work would be done on a parallel
processor array, significant speed-up could be achieved
compared to other processor architectures as shown in
later sections.

Parallel architectures and cellular arrays

There is a change in the implementation of special
hardware architectures for image processing tasks.
While in the past a lot of effort has been made to
design real-time hardware systems, today most of those
problems can be solved with high performance general-
purpose personal workstations at low cost. On the other
hand there is an increasing demand for a new generation
of image analysis tasks, such as second generation video
coding [1, 2], virtual reality, etc. These tasks are still far
from being in the range of the computing power of
conventional Complex Instruction Set Computers
(CISC) in the near future. While new CISC processors,
such as the Pentium MMX family, speed up multimedia
applications tremendously, there is still a gap between
real-time multi-object oriented video coding algorithms
and the performance of these digital processors. One
possible breakthrough is the use of cellular processor
arrays (analog or digital) which render a simple
processor for each pixel resulting in fully parallel
operation. Contrary to the CISC class of processors,
which can also show some parallel features as well,
cellular processor arrays can utilize only simple pixel
based functions defining a relatively narrow instruction
set — although at a very high speed.

One simple example is Mitsubishi’s so called ‘‘Arti-
ficial Retina’’ [3] or other smart pixel arrays in optical
computing. These digital architectures’ functionality is
very limited but similar systems can forecast a more
intelligent class of smart cameras of the future. The
typical example for the higher cell complexity of cellular
processor arrays is the family of the Cellular Neural/
Nonlinear Network (CNN) chips [4, 5]. CNN can
process images locally on the pixel level with small
neighborhood connectivity. It can perform convolution,
nonlinear (sigmoid) dynamics, etc. in a feedforward/
feed-back operation mode. CNN Universal Machine
(CNN-UM) [6] is a programmable computer based on
the basic CNN architecture with many additional
features like those possessed by conventional computers
local and global memories, pixel-level logical and
arithmetic functions, digital memories etc., all in a
single chip.

Investigating the success of general-purpose high
performance processors in the image processing area,
it seems to be reasonable to develop new, low-level
algorithms for this new class of cellular processor arrays,
since they can be considered as general purpose image
processing architectures with superior speed, integrated
into VLSI. The key question is how to develop a
successful cellular image processing system containing
local connections and reduced instruction set, consider-
ing the limitations of the cell complexity of VLSI
implementation. Some results have been achieved for
the segmentation of moving image parts by using
optical-flow estimation and Markov Random Field
(MRF) in the CNN architecture using fully parallel
and local functions [7]. Now, our goal is to develop an
object-segmentation method using edge relaxation and
better optical-field estimation.

Our previous work on energy optimization on parallel
processor arrays

Fully parallel cellular processor arrays can be used for
many low-level image processing tasks. However, a
more interesting question is how complex tasks can be
decomposed into low-level operations. This is not
always completely possible, since a CISC-like computer
is always needed at least for controlling the program
cycles or setting global parameters.

In [8, 9] it is described how a high-complexity energy
optimization problem can be approximated by a
solution based on local operations. It has been shown
that a Markovian labeling approach can be implemen-
ted in a fully parallel cellular network using simple
functions and data representations. The main features of
the algorithm are:

. Instead of global parameter estimation, pixel-level
statistical estimation is used.
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. For pseudo-stochastic relaxation the so-called
Modified Metropolis Dynamics (MMD) are applied
[10].

. Monogrid and multigrid implementations are
investigated.

. Simple functions are used: addition, multiplication,
equality-test, simple nonlinear functions (step,
jigsaw).

. Speed-up in case of hardware realization is about 10–
100 ms for 100 iteractions.

. Little degradation in segmentation quality: 1.5%
segmentation error is achieved instead of 1.1% for a
typical test image.

Although this optimization algorithm is not the key
element of the current article, later on more details are
revealed to ensure the clear understanding of similar
stochastic optimization subroutines that can be used for
segmenting motion fields.

Tasks of motion segmentation and tracking

The jobs in motion segmentation and tracking can be
classified into the following main groups: estimation and
segmentation of motion fields, spatio-temporal segmen-
tation and tracking. Although there is a sequential order
of these tasks in some way, an implicit, iterative
estimation can result in much better performance.
Now, we overview these groups briefly. The investiga-
tion of literature and our answers to these problems can
be found in the next two sections.

Spatio-temporal segmentation can be considered as
the most important information source to detect or to
track different moving objects in a video sequence. One
important application is the analysis of image sequences
for the encoding of objects in the MPEG4 environment.
It uses both spatial and motion information and by
combining the two, it may answer questions such as
whether two image areas belong to the same object or
not. This is often impossible to answer correctly if only
spatial or temporal information is employed. On the
other hand, many times it is difficult to make these
decisions anyway, since the two information sources
cannot only complement but can also conflict each
other. A more perfect solution would be the use of
geometric models of objects but that is beyond this
work.

Estimation of optical flow fields can be crucial for the
performance of the whole problem of spatio-temporal
segmentation since the estimated motion field is a basic
input to all higher level algorithms. For this estimation it
is necessary to assume some constraints such as the local
homogeneity of optical flow vectors. We want to obtain
a smooth motion field so estimation should be followed
by segmentation or estimation and segmentation should
be run simultaneously.

Tracking motion information means that not only the
current velocity of video objects is analysed but also
other characteristics such as the trajectory of moving
objects or the motion in the past frames. But since we
want to keep our attention on low-level processing
rather than on object-level motion analysis we neglect
trajectory information but utilize the history of motion
on a local level.

The organization of the paper

The following two sections discuss the details of our
model. First, main building blocks are listed and
explained. Some of these blocks contain stochastic
optimization algorithms (Markov Random Field
(MRF) based segmentation, gradient based motion
segmentation), while others show some nonlinear
features (nonlinear diffusion). Basic operations are also
listed that are needed by the subroutines. Then we take a
short review of the literature of motion estimation and
explain the parallel implementations and we also explain
how the accumulated motion information of the past
frames is involved in our model. The next section
contains the iterative cycle of spatio-temporal optimiza-
tion with details of how multi-modal information is
utilized. Then, some experimental results can be found.
The last section gives VLSI speed and complexity
estimations based on software simulations [11] and
measured physical running times of already realized
functions on the CNN-UM [6]. A summary of our work
is then presented. Figure 1 shows two sample frames
used in our experiments.

Main Building Blocks of the Method

This section lists those image processing functions that
are used as the building blocks of the whole processing
cycle. These sub-tasks, such as finding edges, filtering
noise and estimating motion parameters, can be con-
sidered as subroutines for solving the spatio-temporal
segmentation problem.

Elementary functions

In our model, the key elements can be executed in
parallel on all image pixels and can be realized by a set



Figure 1. Samples from the video sequences used in our tests. (a) ‘‘Table Tennis’’, (b) ‘‘Mother and Daughter’’.

80 L. CZUŁ NIANDT. SZIRAŁ NYI
of VLSI functions in analog circuits [4]. An important
limit of physical realization is the radius of local
connectivity. We use only first (four neighbors are
connected) or second order (eight neighbors are
connected) neighborhood relations, higher order con-
nectivity would make it difficult to design the circuits for
hardware manufacturers. In some cases larger connec-
tivity [8] can be replaced by multi-scale representation
and processing, e.g. [9, 12] show some results of multi-
scale processing in a pixel-level MRF environment.
Cell functions and components:

. Comparison of neighboring pixels.

. Convolution: a basic function already realized in
many CNN chips. Since it is often used in many image
processing algorithms its execution speed is a key
parameter.

. Arithmetic and logical functions, relations: these
functions are also core elements as they are executed
on the whole pixel array simultaneously. Their
implementation also calls for fast parallel processors.

. Cell memories: results of arithmetic and logical
functions are stored locally in cell memories that
can be analog or logical (storing only binary values).
Naturally, the memory per pixel has an upper limit
depending on hardware technology. So we should
keep it as low as possible.

. Non-linearities: absolute value, gradient, etc.

Nonlinear diffusion

Anisotropic (nonlinear) diffusion [13, 14] is an effective
tool for image enhancement. The main idea can be
well approximated by the next nonlinear state
equation [15,16]:

dIxyðtÞ
dt

¼ DivGrad Ixy 1ÿ k GradðSðIðtÞÞÞj j½ �xy
h i� �

ð1Þ

Here, the state-matrix I (an image) is processed by the
DivGrad heat-diffusion modified by the gradient-content
of the actual image (with S pre-diffusion to avoid noise-
effects), where k is a normalization constant. Figure 2
shows a sample image as the result of this modified
diffusion. Edges are preserved while noise is cleaned up.

Since other non-linear filters, such as rank order
filters, can also be implemented in our parallel frame-
work [17], we will use them (e.g., median filter) for
oversegmentation purposes.

Stochastic optimization on cell arrays

Since the work of Geman and Geman [18] there is a lot
of examples where stochastic optimization and Bayesian
approaches are used for solving image labeling pro-
blems. However, the idea of parallel, low-level cooperat-
ing processes is much older, many basic ideas were
already reviewed in [19].

In a previous work [8, 9], we gave an MRF model
with very simple functions to solve a general segmenta-
tion problem based on local observations of image
intensity. For the easier understanding of the motion
segmentation algorithms in the latter sections, now, we
outline this gray-scale segmentation algorithm. In this
case intensity information is applied, but generally the
algorithm can be used for the segmentation on any
scalar two-dimensional field, e.g., the magnitude of
motion vectors, as illustrated by Figure 3. To introduce
pixel based statistics we assumed that the segmented
image should be between our observation and the



Figure 2. The effect of the proposed nonlinear diffusion for the enhancement of main edges.

MOTIONSEGMENTATIONANDTRACKINGWITHEDGERELAXATION 81
smoothed version of the observation. This assumption
was described with local statistics: for each pixel s
expected value (ms) and variance (ds) of intensity in a
neighborhood were calculated. Then we constructed an
energy model of two components to be minimized in a
pseudo-stochastic optimization process: The first com-
ponent was responsible to characterize the deviation of a
new random state (see 2nd point of algorithm below)
from the local statistics and the second one to ensure
local homogeneity. This way the local energy of any
labeling o at pixel s is defined as:

EsðoÞ ¼
�os
ÿ �sð Þ2

2d2s
þ
X
fs;rg2C

U os;orð Þ; ð2Þ

where �os
corresponds to the gray level value associated

with the class os. U(os, or) is equal to 7b if os¼or and
to þb otherwise (b is a fixed parameter). {s, r}[C means
that the pixels s and r should be in the same clique C (a
set of sites is called a clique if any two distinct sites in the
clique are neighbors). As for the energy optimization, we
proposed to use the Modified Metropolis Dynamics
(MMD) [10] algorithm. MMD is a pseudo-stochastic
relaxation process where new states are generated
randomly and these new states are accepted or rejected:

1. Pick up a random initial configuration o0 and set
temperature: T¼T0

2. Generate a random label (using a uniform
distribution over the set of labels) and compute
the energy difference DES for each new label Zs. The
new label at pixel s is accepted according to the
following rule:

okþ1
S ¼

�S; if DES � 0
�S; if DES40 and lnðaÞ � ÿ�ES

T

ÿ �
ok

S otherwise:

8<:
where a is a constant, a[ ]0, 1[ and it is chosen at the
beginning of the algorithm.

3. k¼kþ1, decrease T and repeat step 2 unless the
global energy change is below a threshold.

To achieve good segmentation results a 2nd order
neighborhood clique system was used in a monogrid
model, but as it is also shown, multi-layer implementa-
tion can reduce these relations to 1st order connections.
Memory requirements were between eight and 15
memories per cell, depending whether the mono- or
multigrid model was used.

Figure 3 shows the application of this segmentation
method to the scalar field of velocity vector magnitudes.
The direct transition of this optimization model to
motion vector segmentation is limited, since the
optimization of optical vector fields would involve too
large number of possible classes. In a later section we
will give modified models to avoid this problem.

Estimating the motion displacement field

Our approach of motion segmentation is based on
estimating and segmenting the dense optical vectors
rather than using an image motion model of six or eight



Figure 3. (a) Magnitude of optical vectors, (b) segmented with the MRF model to 9 classes. The optimization ran for 50
iterations. First the motion field was estimated with the correlation technique, then it was segmented with the MRF based method.

82 L. CZUŁ NIANDT. SZIRAŁ NYI
parameters as in [20]. This is not a serious limitation,
since, if needed, camera ego-motion can be determined
from motion vectors too. Instead of using a 2D or 3D
parametric model, projections of vector flow fields can
be used for ego-motion estimation as described in [21].
On the other hand, our model can be described with a
small number of parameters reducing computation
demands.

Basically, there are three main approaches to estimate
dense optical vectors without involving a model of six or
eight parameters:

. In correlation or block matching techniques each
small patch of the image is compared with nearby
patches in the next frame.

. Gradient based algorithms compute optical vectors
from spatial and temporal derivatives of image
intensity.

. Spatio-temporal filtering methods estimate optical
flow in the frequency domain.

We have investigated several optical flow estimation
and segmentation techniques from the aspects of parallel
implementation. In [22] and [23] good comparisons on
computation complexity and performance can be found.
Correlation based techniques are widely used in MPEG
applications but their serial implementation is very time
consuming. If optimization is required, iterative or
relaxation algorithms are used to obtain reliable results
[24, 25]. However, the iterative revaluation of the
displaced frame difference increases time complexity
and may not fit our computation model based on local
interactions. Generally, correlation techniques seem to
be rejected in the simple-instruction-multiple-data
(SIMD) model that we addressed, but now we show
that if no optimization is needed then our fully parallel
architecture can compute vector estimates with the
correlation technique.

According to [22], gradient based approaches have
good accuracy. However, it is also well known that these
methods need a large temporal support (best results
needed 15 frames to be stored in memory simulta-
neously). In [26] a recursive filter is designed to avoid the
need for large memories, and they report similar results
in accuracy as the original model.

In [27] filter banks had been built for spatio-temporal
filtering. Their method is well suited for parallel
implementation and has good accuracy as reported,
but its application could be limited due to the large
number of filters needed for general image flows.

In the next sections we describe two models for the
estimation and segmentation of motion information.
Both solutions have about the same complexity and can
be used with stochastic relaxation steps. The first is a
correlation technique, which does not combine motion
field estimation with optimization into one step. The
second is basically a gradient approach; it jointly
estimates and classifies optical vectors through an
optimization process.

A fast parallel correlation technique
If motion field estimation itself is reliable then it is not
always necessary to combine the estimation and
segmentation into one process. Its main advantage and
disadvantage originates from the same fact: we do not
re-evaluate motion information during segmentation.
Obviously, this is computationally more effective but no
sophisticated algorithm ensures the confidence of



Figure 4. The spiral movement of the image frame over the
preceding frame. Position after the series of steps: up, right,
down, down, left, left, up, up, up, right, right, right.
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results. Since with this method we can still achieve good
segmentation, results can be satisfactory for many
motion based applications.

In this approach, the most time consuming task is the
computation of the displaced frame difference, or the so-
called sum-of-squared-differences (SSD):

Eðx0; y0; tþ 1; Vðx0; y0; tþ 1ÞÞ
¼

X
x;y2Nx0 ;y0

Iððx; y; tþ 1ÞÞ½

ÿIðxÿ Vxðx0; y0; tþ 1Þ; yÿ Vyðx0; y0; tþ 1Þ; tÞ
�2 ð3Þ

That is the SSD at point x0, y0 at time tþ1 is calculated
by shifting a small neighborhood of the previous frame
with the supposed motion vector Vðx0; y0; tþ 1Þ (by Vx

and Vy components accordingly).

To speed up this search to find the most appropriate
vector with the least SSD value, there are two basic
approaches: The first is to reduce the number of patches
(by critical features) used in the matching, the second is
to use sophisticated search methods to avoid a full
search. Instead of these techniques we propose a five-
step algorithm, where each step can be easily imple-
mented in cell array architectures:

1. Spiral movement of the whole current frame. In each
step the current frame is shifted with one pixel
position in a spiral order. So the spiral scan (see
Figure 4) is performed for each neighborhood Nx0,y0
simultaneously.

2. Subtraction from the next frame to get the difference
image.

3. Self-multiplication to get the square.
4. Smoothing in a local neighborhood with a heat

diffusion or convolution.
5. If the resulted correlation value is smaller than the

previously stored reference value on the pixel level,
store it as a new reference and store the recent para-
meters of the spiral-offset too, as the motion vector.

This way not only one patch but all pixels’ neighbor-
hoods are correlated with the succeeding frame in one
computation step of the processor array. To run the
search for all image pixels in a 565 window, 24 steps of
one-pixel shifts (in spiral order) of the image frame is
necessary. See Figure 3 showing motion fields for the
‘‘Table Tennis’’ sequence obtained with the correlation
technique.
One possible answer for noise filtering is to apply
statistical change detection [28]. The differences
(changes) of succeeding image frames are smoothed
and thresholded. This threshold can be based on a
general noise model or on the specific noise parameter of
the camera. Where no change is detected by statistical
change detection between two subsequent frames, the
displacement can be neglected. Figure 5 illustrates
motion of the ‘‘Mother and Daughter’’ sequence in the
xð5aÞ and yð5bÞ directions. The corresponding filtered
motion fields (5c and 5d ) were obtained with statistical
change detection.

Optimization of the motion field is not possible during
motion field estimation in the correlation approach,
since the iterative revaluation of the SSD does not
match the spiral-translation model. Instead, segmenta-
tion is carried out after the estimation process as
illustrated in Figure 3.

A gradient based method: simultaneous estimation and
segmentation by energy minimization
When estimated motion information is not satisfactory
due to heavy noise and temporal aliasing, then we
should run optimization during segmentation. In this
case, we reconsider motion information that can be very
time consuming in many cases. In [24] and [25] this
technique is used with the correlation approach. On the
contrary, we have chosen the gradient approach for
optimization, because the continuous revaluation of the
SSD in the correlation based model does not fit our
parallel framework. In other words: the spiral move-
ment of the whole image bridged the problem of
communication of processing elements for the calcula-
tion of the SSD, but such an optimization would require
the repetition of this spiral image-translation process.



Figure 5. Motion field estimation of the frame #76-77 of the ‘‘Mother and Daughter’’ sequence. (a) x component, (b) y
component of velocity vectors, (c) x component and (d) y component filtered with statistical change detection.
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This problem is superable with the gradient based
method, where the revaluation of the SSD can be
achieved for all pixels simultaneously. Starting from the
intensity conservation law:

Iðx; y; tÞ ¼ Iðxÿ
Zt
0

Vxðx; y; tÞ; yÿ
Zt
0

Vyðx; y; tÞ; 0Þ; ð4Þ

the gradient constraint approach can be formulated into
the following well-known equation:

Mðx; yÞ � Vðx; yÞ þ bðx; yÞ ¼ 0; ð5Þ

where V is the optical flow field and M and b are:

M ¼
PP

WI2x
PP

WIxIyPP
WIxIy

PP
WI2y

� �
b ¼

PP
WIxItPP
WIyIt

� �
:

I, with corresponding lower indices, means spatial and
temporal derivatives of the image, and W is a Gaussian
window for spatial support [22]. This description
introduces a constant model for V in a small neighbor-
hood, giving further constraints to solve the problem in
the least square sense, as to find the most appropriate
vectors V, obviously, we must choose the vector that
approximates the constraint equation with the least
error.
It is easy to see that the elements of M and b can be
directly computed in a parallel way, well suited to our
framework and this calculation is required only once per
each video frame. The evaluation of a motion vector
candidate in each pixel position at time t, carried out by
some multiplications and additions with the elements of
M and b, foretell that the evaluation can be a part of a
motion optimization/segmentation algorithm. This way,
motion vector estimation and segmentation can be
combined into one model and can be processed by the
simultaneous change of V.

The segmentation algorithm itself is very similar to
the MRF based method described in the section on
stochastic optimization. By the labeling process, during
which V is changed, our aim is to get a homogenous
vector field that mostly satisfies the motion equation.
This is forced by one component of the energy function
of the label field. Besides this energy component, which
is responsible for the fidelity of motion observations, a
second part is necessary to encourage the formation of
homogenous regions. This second smoothness term can
be calculated as the sum of the Euclidean distance
between the velocity vector and its local neighbors.
Another case is when the local similarity is measured by
a simple penalty function similar to our pervious model:
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U(os, or) is equal to7b, if os¼or and to þb otherwise.
Then the energy function to be minimized is:

EsðoÞ ¼ jM � VsðoÞ þ bj þ
X
fs;rg2C

UðVsðoÞ;VrðoÞÞ; ð6Þ

where o is the appropriate label field and Vs(o) is the
corresponding velocity candidate. As we want to
optimize a vector field, there might be too many possible
candidates and so it would make it impossible to achieve
fast convergence. Due to this reason we made two
restrictions on the label field:

. For the initial vector field we use the vectors obtained
by the first estimation. During the optimization no
new values are introduced.

. In the optimization process a label can be changed
only to the value of one of its neighbors.

By these restrictions, fast convergence can be reached
within cc. 100 iterations by the MMD optimization
method. We found several authors applying the same
constraints with success under similar conditions [24,
29]. In our example in Figure 6 we show one dense
motion field from the ‘‘Table Tennis’’ sequence. Frame
#2 has been processed. The first motion field is the initial
state obtained with the gradient technique. Only two
image frames had been stored in the memory simulta-
neously to compute time derivative It, that is the reason
why the estimation can be weak [22]. Utilizing the
described optimization process we obtained the motion
fields (c, d, e, f ) of Figure 6.

Pixel level tracking: motion history

As we will see, accumulated motion information of the
recent frames is an important part of our spatio-
temporal segmentation model. In many cases the
currently measured motion field itself cannot describe
the motion very well. With the help of motion history
information, temporal uncertainty of estimation can be
reduced and long-range information can be accumu-
lated. We track the motion of each point and register if
it has stopped or was in motion within a given period of
time:
IMHðx; y; tþ 1Þ

¼
IMHðxÿ Vxðx; y; tþ 1Þ; yÿ Vyðx; y; tþ 1Þ; tÞ þ 1 if Vðx; y; tþ 1Þ 6¼ 0 and IMHðx; y; tÞ5M

IMHðxÿ Vxðx; y; tþ 1Þ; yÿ Vyðx; y; tþ 1Þ; tÞ ÿ 1 if Vðx; y; tþ 1Þ ¼ 0 and IMHðx; y; tÞ > ÿM

� � ð7Þ
This way we get a motion history field denoted IMH,
where V is the corresponding motion field (with
components Vx and Vy and the magnitude of M
determines the memory-length of the process. In this
motion history, areas with greater value mean regions
that have been moving longer in the last M frames.
Greater M means that the algorithm has longer memory
and thus motion transparency is weaker. Figure 7 shows
two succeeding motion maps and the corresponding
motion history maps of the sequence ‘‘Mother and
Daughter’’.

Morphology operators on cell arrays

The implementation of morphology operators on
parallel machines is very reasonable [30], since these
functions are simple and operate on a close neighbor-
hood of a pixel. Just to hug to the CNN-UM computer
model, we refer to [31] where the implementations of
many gray-scale and binary morphological operators on
the CNN-UM are described. For our purpose we need
only binary operators especially for thinning edge maps
obtained during the optimization process. Small patch
removal is also useful in motion analysis e.g., to mask
out moving regions below a given size.

Disocclusion removal in parallel

Vector fields, obtained by any motion field estimation
technique, generally suffer from errors of disocclusion.
It is a systematic error, since we know that estimating
motion from image projections is an ill posed problem.
The removal of disocclusion effects needs higher
interpretation of motion, at least (observable) back-
ground areas should be recognized. If we assume that
background regions are separated from objects in the
front, then we can give an approximation to the solution
of the problem of disocclusion with low-level steps in
parallel. Measuring the optical vector for every pixel, the
false stripes (disoccluded background areas) can be
removed from the estimated motion field in a con-
secutive series of steps. In our approximation we are
able to handle a finite number of directions and
magnitude of velocity vectors. The number of iterations
of the disocclusion removal algorithm depends on the
maximum velocity and the number of directions present



Figure 6. Estimation of the motion displacement field by the gradient method with only 1 memory support without and with
stochastic relaxation on ‘‘Table Tennis’’ #2. Estimations and results are given in x and y directions and as the magnitude and
direction of velocity vectors. (a) motion in direction x after first estimation; (b) motion in direction y after first estimation; (c)
motion in direction x after optimization; (d) motion in direction y after optimization; (e) speed of velocity; (f) direction of velocity.
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in the segmented motion field. We should repeat the
following steps below for all featuring directions �.�
can take a value from the eight basic orientations: E, W,
S, N, NE, NW, SW, SE and can be represented
numerically in the cell memories of every pixel. V�

equals the maximum speed in direction �, the initial
state of algorithm is the segmented motion field.

0. Choose � as one possible direction present in the
motion field and initialize V�.

1. Set every pixel to ‘‘background’’ if there is a
‘‘background’’ neighbor on the opposite direction
(E–W, S–N, etc.) and has different value than ‘‘P’’
(for the definition of ‘‘P’’ see the next step).
2. Decrease the speed of those pixels that lay in the
direction of the pixels that are set to ‘‘background’’ in
the previous step (#1). If the speed of them reduces to
zero, mark them ‘‘P’’ (as ‘‘processed’’, a new value
different from ‘‘background’’ and any other speed.

3. Decrease V�. If V� is greater than zero then go to
step #1 otherwise go to step 0.

While most of the algorithm is a deterministic parallel
labeling process based on local operations and decisions,
some serial functions are still needed. Such as those for
histogram analysis of the initial segmented motion field
to determine the possible directions of motion and
estimation of the maximum speed in all directions.



Figure 7. Motion and motion history of the sequence ‘‘Mother and Daughter’’. (a) Speed #81; (b) speed #82; (c) motion history
#81; (d) motion history #82.
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Edge Optimization for Spatio-Temporal
Segmentation and Tracking

The basis of the segmentation algorithm

While many probabilistic approaches use labeling
algorithms for spatio-temporal segmentation [29, 32,
33] in our model we employ fast contour based
segmentation. In this contour based optimiza-
tion method there is no need for registering regions
or to deal with graph based representations that
is not possible in the framework of cell array
processors.

Our algorithm is mainly based on three inputs:
the oversegmented image (based on gray-scale informa-
tion), the estimated/segmented optical flow and
the motion history information. We found that in
many cases the joint utilization of intensity values
and the current motion information (motion
estimated between two consecutive frames) were not
enough to satisfactorily define the objects’ contours.
On the other hand, the probability that two
neighboring image blobs belong to the same object is
the higher the more the following requirements are
satisfied:
. The two blobs have similar color (or gray-scale
intensity value).

(In case of textured areas, texture filters [34] can be
applied to colorize these regions.)

. The two blobs have similar velocity.

. The two blobs had similar activities in the recent past.

In our spatio-temporal segmentation process we apply
a split & merge algorithm to find coherent image areas
based on these three features of neighboring regions.

To reduce the dimensionality of the problem it is
possible to replace motion vectors with scalars by a
clustering method. In our experiments we simply
dropped one component, the segmentation algorithm
seemed to be quite robust and gave satisfactory results
when we considered only the magnitude of velocity
vectors.

The segmentation process

Instead of constructing an explicit energy model as in
previous sections we introduce an implicit optimization
algorithm where contours are responsible to get an
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optimal spatio-temporal segmentation of video se-
quences.

Three edge maps are generated during the algorithm:
edges separating areas of different intensity values (Ein)
edges separating different motion fields (Em) and edges
separating fields of different motion history values
(Emh). Edge-fragments of these three maps are different
subsets of the spatio-temporal binary edge map Esegm,
which is a subset of the edge map of the oversegmented
image (Eos). The three edge maps (Ein, Em, Emh) are
weighted and then added to form a unified edge map
(Eu) that is thresholded and used to modify the actual
Esegm. Then the intensity, motion and motion history
fields are updated by diffusion inside the contours of the
new Esegm. If the difference between the new state of the
three feature fields and their previous state is too large,
some edges may be restored. Then at the next iteration
the three different edge maps are measured again and a
new unified map is formed, etc.

The optimization is based on the following implicit
model:

When the three edge maps are added to form a new
unified edge map, the applied threshold criterion is
analogous to evaluating a Dam-potential between the
neighboring segments Si and Sj:

DðSi;SjÞ ¼
X3
k¼1

wk LkðSiÞÿLkðSjÞ
�� �� ð8Þ

where L1 = intensity, L2 = motion (magnitude of the
segmented motion field), L3 = motion history (see
section on pixel level tracking), while wk is a weighting
coefficient. If D(Si, Sj) is above a threshold, then the
edge is kept, otherwise deleted at that location.

The reconstruction of edges is a necessary part of the
algorithm, because the merging of similar neighboring
regions in one step can result in the merging of distant
areas that have very different values (see Figure 9).
Hence we use the following expressions to measure the
effects of the edge removal. First, we define the new
average feature values over a segment:

LkðSMÞ ¼
X

Si�SM

AiLkðSiÞ
AM

Lk is the kth feature value of the unified region SM

obtained by merging regions Si, corresponding segment-
areas are denoted by AM and Ai. The change due to the
formation of a new region SM is expressed for each Si
(Si (SM) by the difference of the old and the new levels:

QðSM ;SiÞ ¼
X3
k¼2

LkðSMÞ ÿ LkðSiÞj j: ð9Þ

If Q(SM, Si) is above a predefined value, then the
previously eliminated but stored edge-fragments around
Si are reconstructed again. Notice, that no intensity is
considered in the edge reconstruction process. It means
that regions with different intensity can be merged more
easily than with different motion information.
Alternatively, instead of measuring the change for each
Si separately, we can measure the accumulated error
over SM as a volumetric average:

QðSMÞ ¼
1

AM

X3
k¼2

X
8Si2SM

jLkðSiÞAi ÿ LkðSMÞAij: ð10Þ

In this case the reconstruction of edges applies for the
whole area of SM, causing the restoration of all previous
edges over SM. This second solution results in larger
areas while the other is rather to maintain smaller
segments with large contrast. Note that in eqns (9) and
(10) averaging over an area means the running of
diffusion inside the edge-defined borders.

The individual steps of the proposed algorithm are
the following (see Figure 8 for illustration, Figure 10
shows some examples):

1. Segment the input image, based on intensity
observations, possibly to a large number of
segments of characteristic closed regions. The
resulted segmented image is called over-
segmentation, and it gives the finest partitioning
that could be achieved in the whole spatio-temporal
segmentation process. Good oversegmentation can
be generated with the help of anisotropic diffusion or
median filtering of the input frame. Both can be
implemented in the parallel framework [15, 17].

2. Produce the edge map of the oversegmented intensity
field (Eos) by an edge-detector [31]. Eos is a binary map
showing the more-or-less closed segment-borders of
the oversegmented image parts. In the segmentation
process the state variable is the current edge map, the
binary Esegm.

. Starting condition: Esegm = Eos.

3. Diffuse intensity, motion and motion history fields
inside the regions defined by Esegm with the help of
external edge controlled diffusion. Then make the
gray-scale edge maps of these fields, namely Ein, Em



Figure 8. Iterative edge based spatio-temporal segmentation.
Dotted lines symbolize feedback of the new contour to the
following iterations and to the error computation. The broken
lines mean data transfer only for the first iteration.
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and Emh respectively. These non-binary (gray-scale)
maps contain the edge-strength values between the
different diffused areas in the same points where the
oversegmented binary edge-segments are in Esegm.

External edge controlled diffusion is similar to aniso-
tropic (nonlinear) diffusion (see previous section),
however the edge control should act from the external
Esegm edge map. We found that in some cases the
anisotropic diffusion may not smooth feature fields
inside strong contours uniformly—in spite of the large
Figure 9. Edge reconstruction in the edge based optimization
model. In the first step all five regions are merged but then at
the next step the one on the right is separated. The difference
between its value and the average of the five blocks was over a
threshold of 1.0.
number of iteration steps of the numerical approxima-
tion of the formula (eqn 1). Naturally, we do not expect
precise averaging like in a region based segmentation
method with conventional numerical solutions. Instead,
after a given number of steps we stop the diffusion
process. Then, as a supplement, a new series of
operations begin when we change every pixel’s value
to its greatest neighbor, except if a pixel has at least two
neighbors with corresponding edge points represented in
the external edge map Esegm. This last condition ensures
that we get homogenous areas inside contours and it
prevents averaging between regions separated by the
‘‘external’’ edges. This last series of steps is also
responsible to get rather continuous contours than
leaking edge lines and curves.

Note that while diffusion takes a long computation
time on a conventional digital computer (or any SISD
architecture), this time is proportional with the diffusion
radius on the parallel array. For comparison, on the
CNN chip a diffusion process on the whole image of
radius r takes a time similar to the one needed to read
out r different values from a memory!

4. Weight and add together the three maps Ein, Em and
Emh to form a map Eu. With the increase of the weight
of one component we can control how much the
segmentation process should lean on that given type
of information. In our experiments we applied about
the same weights (w) for the two motion type maps
and a significantly smaller weight for the intensity
map:

wðEinÞ : wðEmÞ : wðEmhÞ ¼ 0:2 : 1:2 : 1:2:

5. Threshold the superimposed edge-map Eu and reduce
the edges in Esegm:

Esegm :¼ Esegm\E
ðthresholdedÞ
u :

Edges of Esegm below a threshold in Eu are neglected:
closed contours can leak or whole edges can
disappear this way.

6. Approximate the average motion and motion history
feature fields by external edge controlled diffusion
inside the contours of the modified Esegm. This
diffusion is just similar to step 3.

7. Correct Esegm with reconstruction (Erec). Naturally,
the optimal control of the merging of different areas
with different intensity, motion and motion history
must be a reversible method [1]. Although our cell
array framework does not enable us to process a
graph based optimization or higher-level
understanding, we can still make a feedback to



Figure 10. Spatio-temporal segmentation of the sequence ‘‘Table Tennis’’. (a) Oversegmentation obtained by nonlinear diffusion,
median filtering and edge detection; (b) magnitude of velocity vectors; (c) motion history; (d) edge map of color; (e) edge map of
velocity and (f) edge map of motion history after the 2nd iteration; (g) edge map of color; (h) edge map of velocity; (i) edge map of
motion history after the 8th iteration; (j) map of velocity; (k) map of motion history after the 10th iteration; (l) final contours after
the 10th iteration, (m) final contours projected onto the input image.
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Figure 11. Edge optimization for the spatio-temporal segmentation of ‘‘Mother and Daughter’’. (a) Oversegmented input frame,
(b) motion of the current frame, edges of the (c) Ist, (d) 3rd, (e) 5th, (f) 9th, iterations. (g) final edge map (10th iteration) projected
onto the input image.
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rebuild some lost edges. In every cycle, the change
between the current motion fields and the previously
segmented motion fields is measured. Over those
areas, where the difference of the old and the new
features (given by eqns (9) or (10)) is greater than a
predefined value, a mask is generated (Erec). Then
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with the help of this mask we can reconstruct edges
from the stored edge map of the previous iteration
cycle: Esegm:=Esegm | Erec. Figure 9 illustrates a
typical situation (applying eqn (9)) when a cascade of
edges are removed because neighboring areas were
similar to each other, but the regions at the two
margins had significant differences. One may think
that the contour based segmentation is very sensitive
for leaks on edges but this feedback can interact and
correct the segmentation process.

8. Cycle controlling
. Decrease edge weights. In our experiments we

decreased edge weights by 0–20%. If this
relaxation-factor is small, then edge destruction is
slow; otherwise the different regions merge into
each other faster.

. Go to step 3.

According to our test results, approximately 10–15
iterations were sufficient to get stable edge contours.
Morphology operators may then be used to get
thin lines as a final result. The segmented motion
history of the last iteration cycle can also be used as the
input for calculation of motion history of succeeding
frames. The resulted map (Esegm) contains the contours
of the spatio-temporal objects. This map can be
forwarded to a vector based DSP process for further
analysis, such as MPEG-4 video transmission or motion
analysis applications.

Experimental Results

The following examples are the results of a parallel
simulation (with the help of a parallel VLSI program-
ming language (Analogic Macro Code [11]). All steps,
Figure 12. A moving person with detected object borders. In sp
detected as a moving area (Some artifacts are also present, e.g., t
except the controlling and global parameter-setting
operations, are defined with simple analog low-level
operations, such as those in the previous section on
elementary functions.

Figures 10 and 11 contain some results of the
proposed algorithm. We also show some images of
segmentation of motion/motion history at different steps
of the iteration cycle (Figure 10 (d),(e),(f),(g),(h), (i)).
In the first example (‘‘Table Tennis’’ sequence) the
algorithm marked those parts that had different
motions. The upper part of the arm was handled
separately from the hand since it had different color
and either motion, or motion history was far from being
uniform within the object’s borders. Figure 10 (j) and
(k) shows the average speed and motion history within
the detected region’s borders after the 10th iteration.
Edge maps are also demonstrated at two different
iteration levels.

Figure 11 illustrates how edges are being optimized
through an iteration cycle of ten steps. The optimization
for this image is stable after ten steps. Small moving
areas were removed because no spatial content was
present at those blobs, however the effect of shadow was
only partly removed. Figure 12 is another example of
how incomplete motion field is reconstructed by spatio-
temporal segmentation.

VLSI Chip Speed and Complexity Estimation

Since spatio-temporal segmentation is a high-complexity
task, even our fully parallel solutions require fast
hardware implementations. We give computation com-
plexity and running time estimations for the proposed
ite of the scanty motion field, the upper part of the body is still
he shadows on the background.)



Table 1. Comparison of execution times on different image processor platform. Image size is 64664, t is the time constant of the
analogue chip [5]

Technology CNN t = 200ns
l= 0.5 mm

Pentium1II.
@ 400MHz & MMXTM

TMS320C80
@ 40MHz

Matrox Genesis with
C80 & NOA ASIC @ 50MHz

l= 0.25mm l = 0.35mm l = 0.35 mm

Image Save/Load 90 ms 40 ms 80 ms 80ms
Arithmetic Operation 500 ns 38 ms 156 ms 47ms
Logical Operation 100 ns 30 ms 125 ms 40ms
Conversion from
analogue values to
binary values/Memory
Transfer

200 ns

Convolution, 363 2ms 125ms 383 ms 28ms
Feedback Convolution
(Dynamic IIR Spatial Filter)

5ms
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algorithms on the CNN-UM parallel computation
platform. With the help of our test programs, most of
which ran on a software simulator [11], we estimated
the number of different steps and the executions-
times on the CNN-UM. For VLSI chip speed of
basic operations we used data based on empirical tests
[5]. Table 1 contains some physical parameters of a
CNN chip [4] compared to other computation plat-
forms.

Table 2 gives estimations about how fast our
algorithms would run on a fully parallel architecture
(like the CNN-UM). The full operation time would
satisfy real-time requirements.

The following conditions are supposed in our
comparison:
Table 2. Execution-time estimations for the different algorithm
the columns there are the necessary numbers of steps per iterati
displacement field with the correlation technique. DR: disocclus
MRF: Markov Random Field based segmentation. NLDIF: no
temporal segmentation

Number of
iterations

Number of

Parallel
Data-Transfer

in Chip

Serial Data-
Transfer

MDF 120 11 —
DR 100 7 —
MRF 100 7 —
NLDIF 30 4 —
MH 120 5 —
STS 15 22 2

S

1. Test image size: 64664 (currently available CNN
chip is of size 64664).

2. Gray-scale image (8bit/pixel).
3. DSP is used for parameter setting and controlling the

segmentation cycles.

On the other hand, there are other physical parameters
than speed: area, power consumption, pin-number etc.
Table 3 shows the most important technical data of
common image processing platforms. This table shows
that with a CNN chip we can achieve extremely fast
computation at low power consumption on a small area.
And what is about the technology? While the CNN-UM
technology parameters are restrained: 0.5 mm VLSI
technology with very low clock-speed, the computing
power of the CNN-UM is still superior regarding the
other image-processor architectures.
s. The table gives typical data for processing a 64664 image. In
on and estimated time given in msecs. MDF: estimating motion
ion removal.
n-linear diffusion. MH: estimating motion history. STS: spatio-

instructions per iterations Time

Arithmetic
Operations

Logical
Operations

Convolution
Template

ms

12 — 2 1.4
11 6 1 1.1
16 6 5 2.4
10 — 8 0.7
3 — 1 0.6
13 2 3 5.6

11.8



Table 3. Comparing some physical properties of different image processing platforms

Processor Technology
[mm]

Chip area
[mm2]

Pin count Worst case
power consumption [W]

Clock speed [MHz]

Pentium1II 400
MHz & MMXTM

0.25 230 242 25.0 400

TMS320C80
40MHz

0.35 *240 305 8.3 40

TMS320C626250MHz 0.25 n.a. 352 1.9 250
CNN
t = 200 ns
cP4000

0.5 90 120 1.2 Digital: 10 Analogue: 1
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Conclusion

In our paper we outlined a fully-parallel spatio-temporal
segmentation scheme based on small-neighborhood
local computations and optimizations. The approach
consists of two main modules:

1. Algorithms for image and motion segmentation of
spatial and temporal information by optimization.

2. Contour-based split-and-merge spatio-temporal
segmentation to utilize the information obtained in
the first module.

Both parts can be realized with the same set of simple
operations, the need for high-level control is minimized.
Basic local instructions are dynamic convolution opera-
tors, simple arithmetic steps, logical relations and the
simplest nonlinear functions (sigmoid and gradient in a
neighborhood). As we have found in the current and
previous tests [8, 9], these optimization algorithms are
fast and give stable results in a reasonable number of
steps

Our aims were to design optimal algorithms for fast
implementation on parallel processor arrays. As time
complexity estimations in the last section show, our
approach can result in real-time operation if implemen-
ted in VLSI. The parameters of the latest CNN chip
have been applied to estimate the possible implementa-
tion of our complex system. This work proves that
global (semi-global) optimization of very complex image
analysis problems is possible through simple parallel
functions interpreted in local neighborhood.
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Szirányi, T. & Roska, T. (1997) A 0.8 mm CMOS Two-
Dimensional Programmable Mixed-Signal Focal-Plane
Array Processor with On-Chip Binary Imaging and
Instructions Storage. IEEE Journal of Solid-State Circuits
32: 1013–1026.

5. Linan, G., Espejo, S., Dominguez-Castro, R., Roca, E. &
Rodrı́guez-Vázquez, A. (1999) A Mixed Signal 64664
CNN Universal Machine Chip Proceedings of MicroNeuro
’99. IEEE, Granada, Spain, pp. 61–68.

6. Roska, T. & Chua, L.O. (1993) The CNN Universal
Machine: An Analogic Array Computer. IEEE Transac-
tions on Circuits and Systems-II 40: 163–173.
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31. Zarándy, Á, Stoffels, A., Roska, T. & Chua, L.O. (1998)
Implementation of Binary and Gray-Scale Mathematical
Morphology on the CNN Universal Machine. IEEE
Trans. on Circuits and Systems 1: Fundamental Theory
and Applications. (CAS-1) 45: 163–168.

32. Gelgon, M. & Bouthemy, P. (1996) A Region-Level Graph
Labeling Approach to Motion-Based Segmentation.
Technical Report, INRIA.

33. Kato, Z., Pong, T.C. & Lee, J.C.M. (1998) Motion
Compensated Color Video Classification Using Markov
Random Fields. Proceedings of ACCV 1: 738–745.
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