
7

MODELLING AUDIT SECURITY FOR
SMART-CARD PAYMENT SCHEMES
WITH UML-SEC

Jan Jürjens*
Computing Laboratory

University of Oxford

GB

http://www.jurjens.de/jan

jan@comlab.ox.ac.uk

Abstract To overcome the difficulties of correct secure systems design, we propose formal
modelling using the object-oriented modelling language UML. Specifically, we
consider the problem of accountability through auditing.

We explain our method at the example of a part of the Common Electronic
Purse Specifications (CEPS), a candidate for an international electronic purse
standard, indicate possible vulnerabilities and present concrete security advice
on that system.

1. INTRODUCTION

Designing secure systems correctly is difficult. Many flaws have been found
in proposed security-critical systems and protocols, sometimes years after their
publication (e.g. [Low96]). This motivates using formal concepts and tools
developed for systems design to ensure fulfillment of security requirements.

In this work we concentrate on accountability and the enforcement of audit
policy, which provides the requirements for record keeping.

The Unified Modeling Language (UML) [RJB99] is an industry standard
language for specifying software systems. Following [Jür01c], we use a sim-
plified formal core of UML (for which [Jü01c] gave an extension with security

* Supported by the Studienstiftung des deutschen Volkes and the Computing Laboratory.

http://dx.doi.org/10.1007/978-0-306-46998-5_33

94 Part Three Smart Card

primitives called UMLsec) extended to model and investigate a security-critical
part of the Common Electronic Purse Specifications (CEPS) [CEP00]. CEPS
is a candidate for a globally interoperable electronic purse standard and is sup-
ported by organisations (including Visa International) representing 90 percent
of the world’s electronic purse cards, making its security an important goal.

A more general aim of this line of research started in [Jür01c, Jür01d] is to use
UML to encapsulate knowledge on prudent security engineering and thereby
make it available to developers not specialized in security.

In the following subsection we present some background information and
refer to related work. In Section 3, we give an overview over the Common
Electronic Purse Specifications, specify the part under consideration, explain
the security threat model and give results. We end with a conclusion and indicate
further planned work.

1.1. SECURITY-ASSURANCE USING FORMAL
MODELLING

There has been extensive research in using formal models to verify secure
systems. A few examples are [BAN89, Low96, Pau98, Jür00, AJ01, Jür01a,
WW01], for an overview wrt. security protocols cf. [GSG99, RSG+ 01]. How-
ever, auditing does not seem to have been considered extensively.

An overview on payment systems is given in [AJSW00]. Smart card proto-
cols have been invest igated using formal logic in [ABKL93].
[BCG + 00] considers secure information flow between applets in a multi-appli-
cation smart-card. A different part of the CEPS is investigated in [JW01] using

While many case-studies consider security protocols from the academic lit-
erature (usually presented in a much more tractable form), a notable example of
a verification of a smart-card payment system used in practice can be found in
[And99]. Also, [SCW00] gives a detailed, formal proof of a Smartcard product
for electronic commerce.

Object-oriented systems offer a very suitable framework for considering
security due to their encapsulation and modularisation principles [Eck95, Bd-
VFS98, Sam00]. In [OvS94] the authors formulate a taxonomy for security in
object-oiented databases. An object-oriented data flow model for smart card
security is given in [GHdJF96].

2. MODELLING OBJECT-ORIENTED SECURITY
We use a simplified fragment of the visual modeling language UML (the

industry-standard in object-oriented modelling), following [Jür01c].

the CASE-tool AUTO FO C U S.

Modelling Audit Security for Smart-Card Payment Schemes with UMLsec 95

UML consists of several diagram types describing different views on a sys-
tem. Here we concentrate on using the UML notation to specify security re-
quirements on auditing mechanisms of a system.

We use the following two kinds of diagrams:

Class diagrams define the static structure of the system: classes with attributes
and operations/signals and relationships between classes. We use them
to specify how the objects may communicate.

Statechart diagrams give the dynamic behaviour of an individual object: in-
put events may cause state in change or (output) actions.

Below we will define the (simplified) abstract syntax for these two kinds of
diagrams (on which the formal reasoning relies). Later we will also use the
usual diagrammatic notation for readability.

We define the data type Exp of cryptographic messages that can be ex-
changed between objects. We assume a set D of basic data values. The set
Exp contains the expressions defined inductively by the grammar

E ::=

x

Enc(K , E)
Dec (K , E)
Mac (K, E)
Ver (K, E)

d
K

(E1, . . . ,En)

expression
data value (d ∈ D)
key (K ∈ ∈ Keys)
variable (x ∈ Var)
concatenation
encryption (K ∈ Keys ∪ Var)
decryption (K ∈ Keys ∪ Var)
MAC (K ∈ Keys ∪ Var)
verify MAC (K ∈ Keys ∪ Var)

The part of the CEPS considered here uses symmetric encryption. As usual, we
assume the equations Dec(K, Enc (K, E)) = E and Ver(K, Mac (K, E)) = E
and assume that no equations except those following from these hold.

2.1. CLASS DIAGRAMS

We first give the definition for class models.
An attribute specification A = (att_name, att_type) is given by a name

att_name and a type att_tags.
An operation specification O = (op_name, Arguments op_type) is given

by a name op_name, a set of Arguments, and the type op_type of the return
value. Note that the set of arguments may be empty, and that the return type
may be the empty type Ø denoting absence of a return value. An argument
A = (arg_name, arg_type) is given by its name arg_name and its type arg_type.

A signal specification is just like an operation specification, except that there
is no return type.

96 Part Three Smart Card

An interface I = (int_name, Operations, Signals) is given by a name
ink_name and sets of operation names Operations and signal names Signals
specifying the operations and signals that can be called resp. sent through it.

A class model C = (class_name, Stereotypes, AttSpecs, OpSpecs,
SigSpecs, Interfaces) is given by a name class_name, a set of Stereotypes (for
our present purposes, this may be empty or contain the stereotype « l o g»), a set
of attribute specifications AttSpecs, a set of operation specifications OpSpecs,
a set of signal specifications SigSpecs and a set of class interfaces Interfaces.

A class diagram D = (Cls, Dependencies) is then given by a set Cls of class
models and a set of Dependencies. A dependency is a tuple (client, supplier,
interface, stereotype) consisting of class names client and supplier (signifying
that client depends on supplier), an interface name interface (giving the interface
of the class supplier through which client accesses supplier; if the access is
direct this field contains the client name) and a stereotype which for our present
purposes will be «send». We require that the names of the class models are
mutually distinct.

In the diagrammatic notation (cf. Figure 1), a class model is represented
by a rectangle with three compartments giving its name, its attributes and its
operations (since all values are of type Exp, the type information is omitted in
the diagrams given in this paper for readability).

The concurrenctly executed objects communicate asynchronously by ex-
changing signals, possibly with arguments. Dependency arrows marked with
«send» from a class C to a class C' indicate that (an object instance of) C
may send a signal to (an object of) C'. If the arrow points to an interface of
C' (represented by a circle attached to the class rectangle), C may only use the
signal listed in the corresponding interface specification (the respective rectan-
gle marked «inter face»). For example, in Figure 1 Card may send the signal
CLog with arguments dt, lda, m, nt, bal, s2 to CardLog, and Issuer may send
RespL with arguments ceps, iss, lda, s2 to LSAM (but not the other signals
offered by the LSAM, since they are reserved for Card).

2.2. STATECHART DIAGRAMS

We fix a set Var of (typed) variables x, y, z, . . . used in statechart diagrams.
We define the notion of a statechart diagram for a given class model C: A

statechart diagram S = (States, init_state, Transitions) is given by a set of
States (that includes the initial state init_state) and a set of Transitions.

A statechart transition t = (source, event, guard, Actions, target) is given
by a source state, an operation term op_term, a guard, a list of Actions and
a target state. Here an event is the name of an operation or signal with a
list of distinct variables as arguments that is assumed to be well-typed (e.g.
op(x, y, z)). Let the set Assignments consist of all partial functions that assign

Modelling Audit Security for Smart-Card Payment Schemes with UMLsec 97

to each variable and each attribute of the class C a value of its type (partiality
arises from the fact that variables may be undefined). A guard is a function
g : Assigments → Bool evaluating each assignment to a boolean value. An
action can be either to assign a value v to an attribute a (written a := v) , t o
call an operation op resp. to send a signal sig with values v , . . . , v (written1 n

op(v , . . . , v) resp. sig(v , . . . , v)), or to return values v , . . ,v
sponse to an earlier call of the operation op (written return

1 n 1 as a re-n 1
(

n
v , . . . , v)). Inop 1 n

each case, the values can be constants, variables or attributes (and need to be
well-typed). In the case of output actions (calling an operation or sending a
signal) we include the types of the arguments (and possibly of the return value).

To formally reason about statecharts, [Jür01c] gives a formal behavioural
semantics (which has to be omitted here).

In the diagrammatic notation (cf. e.g. Figure 2), the states in a statechart are
represented by rectangles, where the initial state has an ingoing transition from
the start marker (a full circle). As specified in the abstract syntax, the transitions
between states can carry three kinds of information as labels:

Events are names of operations provided by the class together with argument
variables (e.g. RespI(ic, cep, ex, nt, s1) in Figure 2). If another object
sends a signal, the corresponding transition is triggered, and the variables
are bound to the arguments given. If a variable has already been assigned
a value at an earlier point in the execution of the state machine, the
transition is only executed if the two values match (i. e. an implicit equality
conditional is enforced).

Guards are conditionals written in square brackets (e.g.
[Ver(KI , s2) = (bal, cep, , iss, nt, s1) Λ . . .] in Figure 3). A transition
can only be triggered if all labeling guards are fulfilled. Sometimes a
guard involves a variable that has not been assigned a value before (e.g. as
an argument of an input event). Since in our behavioural formal semantics
we implicitly quantify over free variables, this means that the equation
assigns the corresponding value to the free variable and to make this clear
we write the equation then as “:=” (but formally there is no difference to
the usual “=”). An example is [ml := Mac(r, (ic, cep, nt, lda, m, s1))]
in Figure 2. Note that this is different from an action that assigns a value
to an attribute; the variables here are local to the statechart diagram and
are merely syntactic means for describing the object behaviour.

Actions are names of operations provided by other classes, written with a
preceding backslash and including arguments (e.g. \Init(dt, lda, m)
in Figure 2). If a transition is fired, all labeling actions are executed,
which means that the objects supplying the operations are called with the
respective arguments.

98 Part Three Smart Card

E.g., in Figure 4, the transition from Init to Load is fired when the signal Load is
sent and certain validity conditions are fulfilled. Then in turn the signal RespL
is sent.

2.3. MODELLING SYSTEMS

We model a system S by a class diagram D and a set of statechart diagrams
S, one for each object. In general, we also use deployment diagrams e.g. to
distinguish secure from insecure communication links [Jür01c]. We omit these
here because all links between the participants in the CEPS load transaction
considered below are insecure.

We briefly sketch how to formally interpret such system models (for more
details cf. [Jür01c]). When interpreting a system model S, each operation, say
op, communicating along an insecure dependency is replaced by an operation
op_out (for actions) resp. op_in (for events). An adversary A is a state machine
with actions op_in and events op_out (for each operation op in S communicating
insecurely). We only consider adversaries that are computationally bounded in
the sense that they can encrypt or decrypt messages only when in possession of
the relevant key (for a formalisation of this concept cf. [Jür01b]).

Output values are buffered without preserving the order of messages (i. e.
buffers are multi-sets). Values without specified transition in an object are
ignored. In both these assumptions we follow the usual UML point of view.

Histories are sequences of states of all state machines corresponding to the
objects, and buffer contents (where the state machines for the specified objects
are derived from the statechart diagrams as defined in [Jür01c]).

Given a system model S and an adversary A, the execution of S in presence
of A is given as the set of possible histories.

A history is a possible history if

� in its first component all states are initial states and the buffer is empty,
and if

� for each n ≥ 0 and each class model C ∈ Cls ∪ {A} that changes state
at time n, there is a transition t C ,n from its state at n to its state at n + 1
such that for given n the multiset of (input) events εn corresponding to
the transitions (tC,n : C ∈ Cls} is contained in the buffer content Bn at
n and Bn + 1 = (Bn \ ε n) ∪ An (for the multiset An of (output) actions
fired by the transitions {t C,n : C ∈ Cls}).

2.4. AUDITING

We incorporate auditing in our framework by specifying a subset Audit ⊆ Cls
of class models used to store the audit data.

Modelling Audit Security for Smart-Card Payment Schemes with UMLsec 99

For completeness we give the following general definition of secure auditing.
Note that the definition only applies to the situation where all the objects in the
system model are honest. Thus in the considerations on CEPS below we need
more specific notions of secure auditing.

Definition 1 A system model S provides secure auditing if, in presence of any
adversary, the corresponding attribute values of all audit objects coincide when
all objects have reached a final state.

Note that here we do not consider the question whether an object may be
kept from reaching its final state.

3. CEPS

We give an overview over the Common Electronic Purse Specifications.
Stored value smart cards (“electronic purses”) have been proposed to allow

cash-free point-of-sale (POS) transactions offering more fraud protection than
credit cards: Their built-in chip can perform cryptographic operations which
allows transaction-bound authentication (while credit card numbers are valid
until the card is stopped, enabling misuse). The card contains an account balance
that is adjusted when loading the card or purchasing goods.

The Common Electronic Purse Specifications (CEPS) define requirements
for a globally interoperable electronic purse scheme providing accountability
and auditability. The specifications outline overall system security, certification
and migration. For more detail on the functionality of CEPS cf. [CEP00].

Here we consider a central part of CEPS, the (unlinked, cash-based) load
transaction, which allows the cardholder to load electronic value onto a card
in exchange for cash at a load device belonging to the load acquirer. The
participants involved in the transaction protocol are the customer’s card, the
load device and the card issuer. The load device contains a Load Security
Application Module (LSAM) that is used to store and process data (and is
assumed to be tamper-resistant). During the transaction, the account balance
in the card is incremented, and the amount is logged in the LSAM and sent to
the issuer for later financial settlement between the load acquirer and the card
issuer.

3.1. SPECIFICATION OF CEPS LOAD
TRANSACTION

We give a specification of the CEPS load transaction (slightly simplified by
leaving out security-irrelevant details, and also leaving out details needed for
exception processing and declined loads). Load transactions in CEPS are on-
line transactions using symmetric cryptography for authentication. We only
consider unlinked load (where the cardholder pays cash into a (possibly unat-

100 Part Three Smart Card

Figure 1 Class diagram for Load transaction

Figure 2 Statechart for LSAM

tended) loading machine and receives a corresponding credit on the card) since
linked load (where funds are transfered e.g. from a bank account) offer fewer
possibilities for fraud [CEP00, Funct. Req. p. 12]. We use class diagram and
statechart diagrams introduced above.

First, we give the involved classes and their dependencies in the class diagram
in Figure 1. For the participants of the protocol, we have the classes Card,
LSAM, and Issuer. Also, each of the three classes has an associated class used
for logging transaction data (marked with the stereotype 〈〈 log 〉〉).

We specify the behaviour of the classes Card, LSAM, and Issuer using UML
statecharts in the remaining figures.

Modelling Audit Security for Smart-Card Payment Schemes with UMLsec 101

Figure 3 Statechart for card

The LSAM (Figure 2) initiates the transaction after the CEP card is inserted
into the load device, by sending the “Init for load” message Init with arguments
the transaction date and time dt, the load device identifier lda and the transac-
tion amount m (which is the amount of cash paid into the load device by the card
holder that is supposed to be loaded onto the card). Whenever the card (Figure 3)
receives this message after being inserted into the load device, it sends back the
“Init for load response” message Respl to the LSAM, with arguments the card
issuer identifier ic (as stored on the card), the card identifier cep, the balance
(prior to load) bal, the card expiration date ex, the card’s transaction number nt
unique to the transaction, and the card MAC s1. s1 consists of the values ex,
bal, dt, cep, ic, lda, m and nt, all of which are signed with the key K C

–1 shared
between a particular card and the corresponding card issuer. The LSAM then
sends to the issuer the “load request” message Load with arguments bal, ex, dt,
cep, ic, lda, m, nt, rn, s1, Enc(K L I , r), and ml. rn is the reference number
assigned by the LSAM to the transaction. Enc(K LI , r) is the encryption of a
random number r generated by LSAM under a key KLI shared between the
LSAM and the issuer. ml is the MAC of the following data using the fresh key
r generated by the LSAM: ic, cep, nt, lda, m, and s1. The issuer (Figure 4)
checks if ic is a valid issuer identifier, cep a valid card identifier and the expi-
ration date ex has not been exceeded. The issuer verifies if s1 is a valid MAC
generated from the values ex, bal, dt, cep, ic, lda, m and nt with the key K C I
(i. e. if Ver(KCI , s1) = (bal, ex, dt, cep, ic, lda, m, nt)). The issuer retrieves r
from Enc(KL I , r) (using the key KL I shared between the LSAM and the issuer,
i.e. r := D e c(KLI , R)) and checks if ml is a valid MAC of the values ic, cep, nt,
lda, m, and s1 using the key r, i. e. if Ver(ml, r) = (ic, cep, nt, lda, m, s1, hc) .
Lastly, the issuer checks that the key KLI is actually shared with the LSAM
named lda (we write this as Shared(KLI) = lda assuming a function Shared

102 Part Three Smart Card

Figure 4 Statechart for Issuer

which assigns LSAMs to keys). If all these checks succeed (which in Figure 4
are abbreviated by the conditional Issuercheck), the issuer sends the “respond
to load” message RespL with arguments cep, ic, lda, rn, and s2 to the LSAM.
s2 consists of the following values, signed with the key KCI : bal, cep, iss, nt,
and s1.

Next, the LSAM sends the “credit for load” message Credit with argument
s2 to the card. Finally, the card (on successful verification of s2) answers by
sending the “response to credit for load” message RespC with argument s3 back
to the LSAM. s3 consists of the following values, signed with the key KCI : bal ,
dt, cep, ic, nt, lda, m, and nt. The card also sends the logging message CLog
to the object CardLog, with arguments dt, lda, m, nt, bal, and s2. Finally, the
LSAM sends to the issuer the “transaction completion message” Comp with
arguments cep, ic, lda, m, and nt. Also, the LSAM sends the logging message
LLog to the object LSAMLog, with arguments dt, cep, iss, m, nt, and bal.
On receipt of the messsage Comp from the LSAM (and provided the contained
values match the corresponding values communicated earlier), the issuer sends
the logging message ILog to the object IssuerLog, with arguments dt, cep, lda,
m, nt, and bal.

The logging objects simply take the arguments of their operations and update
their attributes accordingly.

3.2. SECURITY THREAT MODEL

We consider the threat scenario for the load transaction and derive audit
security conditions. The general assumption is that the card, the LSAM and
the security module of the card issuer are tamper-resistant (in particular that the

Modelling Audit Security for Smart-Card Payment Schemes with UMLsec 1 0 3

contained secret keys cannot be retrieved). The protocol can be attacked e.g.
by inserting adapters or relays between the LSAM and the card loading device
or by intercepting the communication with the card issuer.

We concentrate on the load acquirer as a possible attacker of the transaction.
The cardholder could try to attack the protocol by interrupting it e.g. by pulling
out the card (thus one needs to make sure that money is not returned to the
cardholder after the card has been loaded) or could try to duplicate the loaded
money by loading it on two cards simultaneously using an adapter (at an unat-
tended load device). We do not consider these kinds of attacks here. Also, the
card issuer is not so interesting as an attacker since she controls the settlement
scheme that is performed after the transactions, so the cardholder and the load
acquirer have to trust her to some degree anyway (and my disputes would have
to be settled in court).

Given the participants of the protocol, the load acquirer can attack either the
cardholder, or another load acquirer, or the card issuer, with the goal either to
keep the amount paid by the cardholder (and not have to pass it on to the card
issuer), or to credit a card owned by the load acquirer himself without having
to pay any money to the card issuer.

We consider attacks against the cardholder. Smart cards can not commu-
nicate directly with the cardholder. Thus there is the usual threat that a load
device (possibly belonging to a corrupt load acquirer) is manipulated so that the
transaction is performed as if the cardholder had only paid part of the amount
that was actually paid, or so that the transaction is not performed at all. Then the
load acquirer would not have to pay the amount to the card issuer. However, we
assume that the cardholder can verify after the transaction if the correct amount
has been loaded (possibly using a portable card reader), and that a complaint
settlement scheme settles any disputes arising from such attacks. The correct
functioning of the settlement scheme relies on the fact that the cardholder should
only be lead to believe (e.g. when checking the card with a portable card reader)
that a certain amount has been correctly loaded if he is later able to prove this
using the card – otherwise the load acquirer could first credit the card with the
correct amount, but later in the settlement process claim that the cardholder
tried to fake the transaction. Thus we have to check the following audit security
condition on the attributes of CardLog after Card has reached its final state:

Correct amount: s2 and s1 verify correctly (say Ver(KCI , CardLog. s2) =
(bal', cep', iss', nt', s1') and Ver (KC I, s 1') =

(bal" , ex" , dt" , cep", ic", lda" , m" , nt ") for some values bal', bal",. . .) ,
and additionally we have CardLog. m = m" (i. e. the correct amount is
logged).

A load acquirer could also try to attack the protocol in order to masquerade
as another load acquirer for the purpose of the settlement process, in order not

104 Part Three Smart Card

to pay the amount paid in by the cardholder to the card issuer. To prevent this,
we need to ensure the following audit security condition:

No masquerade: We have Shared(K LI , IssuerLog.lda).

ml is supposed to provide a guarantee that the load acquirer owes the trans-
action amount to the card issuer [CEP00, Funct.spec. ,6.6.1.6]. To be able to
make use of this guarantee, the card issuer needs to be able to show that her
possession of the guarantee implies that the load acquirer owes her the amount
(and that the card issuer could not just produce ml himself). Thus we have the
audit functionality condition

Acquirer guarantee functionality: If

IssuerLog.ml = Mac(IssuerLog.r,(ic', cep', nt', lda', m', s1', hl '))

then the LSAM lda' has received m'.

Also, we would like to ensure that this guarantee is always given, i. e. that
the following audit security condition (the converse of the above functionality
condition) is fulfilled:

Acquirer guarantee security: If the state machines of card and card issuer
have reached the final state and CardLog. m = m' then

IssuerLog.ml = M a c(IssurerLog. r,(ic', cep', nt', lda', m' s1', hl '))

Note that the precondition that card and card issuer have reached their final
states is necessary. In particular, if the load device simply takes the inserted
cash without taking any further action, the cardholder has no proof of this (but
this is the usual risk taken at automatic purchase machines), and if the LDA
does not complete its last action, exception processing on the side of the card
issuer would have to be followed (not considered here).

3 3. . RESULTS

Theorem 1 Acquirer guarantee functionality is not provided in the proposed
scheme.

The reason for this is that the security of the data elements in ml are only
protected by the random value r, which in turn is communicated encryted under
the secret key KL I shared between load acquirer and card issuer. This means
that the card issuer would in principle be capable of manufacturing ml and r
herself. Therefore possession of ml does not suffice for the issuer to be able to
prove that the load acquirer manufactured ml.

This is not a serious threat since one would expect that in practical situations
any dispute arising from this could be resolved in a settlement process. However,

Modelling Audit Security for Smart-Card Payment Schemes with UMLsec 105

the CEPS explicitely postulate this requirement. This should either be clarified,
or the data element ml be changed to involve a signature with a private key of
the load acquirer.

Theorem 2 The audit security conditions Correct amount, No Masquerade,
and Acquirer guarantee security are fulfilled.

The formal proof of this theorem has to be omitted for space limitations and will
be included in the long version of the paper. The proof proceeds inductively
along the lines of ideas in [Pau98] and uses results in [Jür01b, Jür01a]. Here
we can only give some informal remarks:

Correct amount: Essentially, one has to show that the key KCI shared be-
tween the card and the card issuer established end-to-end security be-
tween card and issuer.

No masquerade: This amounts to showing that the load device identifier, as
stored in the issuer log, corrsponds to the load device with which the
issuer shares the key KLI .

Acquirer guarantee security: Here one has to show that the integrity of the
information passed between card and card issuer is preserved.

4 . CONCLUSION AND FUTURE WORK

We investigated the security of the currently developed Common Electronic
Purse Specifications (CEPS) using the object-oriented modelling language UML.
Benefits of our approach include the possibility to investigate security in the
context of general system development. Since security violations often oc-
cur at the boundaries between security mechanisms (such as protocols) and
the general system [And94], this is very helpful. We choose UML among the
various object-oriented modelling languages since it is the current de-facto in-
dustry standard and thus many developers will be able to take advantage of an
extension of UML by security primitives.

Apart from these methodological benefits, this work delivers concrete results
on the security of the payment systems that are to be developed and fielded
according to the CEPS. Our investigation exhibited a weakness arising from the
fact that the card issuer does not obtain a sound proof of transaction from the
load acquirer. As usual, the positive results given here should not be interpreted
as proving the CEPS secure (as well-known, such a proof is impossible).

Due to space constraints we could only consider one part of the CEP speci-
fications, the other parts are left for further work. Since UML offers a variety
of modelling mechanisms with varying degrees of abstraction, considering a
large part of a system seems relatively feasible. It may also be interesting to

106 Part Three Smart Card

consider reevaluation of security after system changes. Also, we will extend
this approach beyond reasoning about accountability.

Acknowledgments

This idea to use UML to specify security properties arose when doing security consulting for

a project during a research visit with M. Abadi at Bell Labs (Lucent Tech.), Palo Alto, whose

hospitality is gratefully acknowledged. Comments or advice from participants of the summer

school “Foundations of Security Analysis and Design 2000” and the Dagstuhl seminar “Security

through Analysis and Verification” (especially D. Gollmann) are gratefully acknowledged, as

well as useful comments from G. Wimmel and the anonymous referees on a draft.

References
[ABKL93] M. Abadi, M. Burrows, C. Kaufman, and B. Lampson. Authentication and delegation

with smart-cards. Science of Computer Programming, 21(2):93 – 113, 1993.
[AJ01] M. Abadi and Jan Jürjens. Formal eavesdropping and its computational interpretation,

2001. Submitted.
[AJSW00] N. Asokan, P. Janson, M. Steiner, and M. Waidner. The state of the art in electronic

payment systems. Advances in Computers, 53, 2000.
[And94] R. Anderson. Why cryptosystems fail. Communications of the ACM, 37(11):32–40,

November 1994.
[And99] R. Anderson. The formal verification of a payment system. In Mike Hinchey and

Jonathan Bowen, editors, Industrial-Strength Formal Methods in Practice, pages 43–
52. Springer, 1999.

[BAN89] M. Burrows, M. Abadi, and R. Needham. A logic of authentication . Proc. Royal
Society of London A, 426:233–271, 1989.

[BCG + 00] P. Bieber, J. Cazin, P. Girard, J.-L. Lanet, V Wiels, and G. Zanon. Checking secure
interactions of smart card applets. In ESORICS, 2000.

[BdVFS98] E. Bertino, S. De Capitani di Vimercati, E. Ferrari, and P. Samarati. Exception-
based information flow control in object-oriented systems. ACM Transactions on
Inƒormation and System Security, 1 (1): 26–65, 1998.

[CEP00] CEPSCO. Common Electronic Purse Specifications, 2000. Business Requirements
vers. 7.0, Functional Requirements vers. 6.3, Technical Specification vers. 2.2, avail-
able from http://www.cepsco.com.

[CFMS94] S. Castano, M. Fugini, G. Martella, and P. Samarati. Database Security. Addison
Wesley, 1994.

[Eck95] C. Eckert. Matching security policies to application needs. In J. H.P. Eloff and S.H.
von Solms, editors, IFIP TC11 11th International Conference on Information Security,
pages 237–254. Chapman & Hall, 1995.

[GHdJF96] H. Glaser, P. Hartel, and E. de Jong Frz. Structuring and visualising an IC - card
security standard. In in [HPQ96], pages 89–110, 1996.

[GSG99] Stefanos Gritzalis, Diomidis Spinellis, and Panagiotis Georgiadis. Security protocols
over open networks and distributed systems: Formal methods for their analysis, design,
and verification, Computer Communications Journal, 22(8):695–707, 1999.

[HPQ96] P. H. Hartel, P. Paradinas, and J. - J. Quisquater, editors. 2nd Smart card research
and advanced application conference (CARDIS). Stichting Mathematisch Centrum,
Amsterdam, 1996.

Modelling Audit Security for Smart-Card Payment Schemes with UMLsec 107

[Jür00] Jan Jürjens. Secure information flow for concurrent processes. In CONCUR 2000 (11th
International Conference on Concurrency Theory), volume 1847 of LNCS, pages 395–
409, Pennsylvania, 2000. Springer.

[Jür01a] Jan Jürjens. Composability of secrecy. In International Workshop on Mathematical
Methods, Models and Architectures for Computer Network Security (MMM-ACNS
2001), LNCS, St. Petersburg, 21-23 May 2001. Springer.

[Jür01b] Jan Jürjens. Secrecy-preserving refinement. In Formal Methods Europe (International
Symposium), LNCS. Springer, 2001.

[Jür01c] Jan Jürjens. Towards development of Secure systems using UMLsec. In Fundamen-
tal Approaches to Software Engineering (FASE/ETAPS, International Conference),
LNCS. Springer, 2001.

[Jür01d] Jan Jürjens. Transformations for introducing patterns – a secure systems case study.
In WTUML: Workshop on Transformations in UML (ETAPS 2001 Satellite Event),
Genova, 7 April 2001.

[JW01] Jan Jürjens and Guido Wimmel. Security modelling for electronic commerce: The
Common Electronic Purse Specifications. Submitted, 2001.

[Low96] G. Lowe. Breaking and fixing the Needham-Schroeder Public-Key Protocol using
FDR. Software Concepts and Tools, 17:93–102, 1996.

[OvS94] M. Olivier and S. von Solms. A taxonomy for secure object-oriented databases. ACM
Transactions on Database Systems, 19(1):3–46, 1994.

[Pau98] Lawrence C. Paulson. The inductive approach to verifying cryptographic protocols.
Journal of Computer Security, 6(1–2):85–128, 1998.

[RJB99] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language Reference
Manual. Addison-Wesley, 1999.

[R S G+01] P. Ryan, S. Schneider, M. Goldsmith, G. Lowe, and B. Roscoe. Modelling and
Analysis of Security Protocols. Addison Wesley, 2001. (to be published).

[Sam00] P. Samarati. Access control: Policies, models, architectures, and mechanisms. Lecture
Notes, 2000.

[SCW00] S. Stepney, D. Cooper, and J. Woodcock. An Electronic Purse: Specification, Re-
finement, and Proof. Oxford University Computing Laboratory, 2000. Technical
Monograph PRG- 126.

[WW01]
neering. In IFIP SEC, 2001.

G. Wimmel and A. Wißpeitner. Extended description techniques for security engi-

	7 MODELLING AUDIT SECURITY FOR SMART-CARD PAYMENT SCHEMES WITH UML-SEC
	1. INTRODUCTION
	1.1. SECURITY-ASSURANCE USING FORMALMODELLING

	2. MODELLING OBJECT-ORIENTED SECURITY
	2.1. CLASS DIAGRAMS
	2.2. STATECHART DIAGRAMS
	2.3. MODELLING SYSTEMS
	2.4. AUDITING

	3. CEPS
	3.1. SPECIFICATION OF CEPS LOADTRANSACTION
	3.2. SECURITY THREAT MODEL
	3 3. . RESULTS

	4 . CONCLUSION AND FUTURE WORK
	Acknowledgments
	References

