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Abstract Forward security has been proposed as a method to minimize the consequences
of key exposure. In this paper we analyze this method and consider a vulner-
ability, which is due to the fact that the exposure may not have been detected.
All forward secure cryptosystems proposed so far are vulnerable during the pe-
riod between key exposure and its detection. We consider the notion of strong
forward security in which cryptographically processed data is protected not only
for the periods prior to key exposure but also after key exposure, and present two
applications with this novel property: a basic public key cryptosystem and an
ElGamal-based key escrow scheme.
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1. INTRODUCTION

A major security concern in every cryptosystem is the protection of secret
keys from exposure. If the adversary appropriates the secret keys of a user in
an encryption scheme, then the adversary can decrypt all ciphertexts intended
for that user and confidentiality is lost. For a signature scheme, the adversary
can masquerade as the legitimate user.

The problem of key exposure is critical in open environments such as the
Internet, where every computer node is a potential victim of hackers. Thus, there
is a need to adopt mechanisms  that minimize the consequences of key exposure.
So far, these mechanisms generally rely on secret distributed computation [9,
14, 15, 17, 22, 29], periodical key updating and key revocation [2, 5, 11, 20,
23, 25, 27].

Gunther [20] was the first to propose an encryption key updating mechanism
that protects the confidentiality of all encrypted messages prior to key exposure.
With this mechanism all encrypted material is protected from key exposure after
the keys are updated. This property was called forward secrecy. With forward
secrecy, disclosure of long-term secret keying material does not compromise
the secrecy of earlier encrypted material [ 11, 20].

A solution that establishes forward secrecy in the context of real-time mul-
ticasting over large dynamic groups was proposed by McGrew and Sherman
in [27]. Burmester, Desmedt and Seberry [5] proposed an escrow system with
forward secrecy. There are also solutions that address the key exposure problem
for digital signatures. Herzberg et al [22] consider threshold signature schemes
(see also [9]) in which the users update their shares proactively. These schemes
offer forward security, however the distribution of shares and the distributed
computation required to compute signatures make them rather inefficient (cƒ.
the discussion in [2]). Bellare and Miner [2] proposed efficient digital signa-
tures with forward security, but their security can only be proven in the Random
Oracle Model [3]. Recently, Krawczyk [25] proposed a solution that can be
used with any signature scheme. In this paper we shall adopt the term forward
security both for encryption and signatures.

There is an inherent weakness in forward security that follows from the fact
that the definition does not specify what happens after an intrusion, when the
secret information has been exposed to the adversary, and until its detection,
when the public key is revoked. During this period the security of the system
is compromised. For example, suppose that the adversary (e.g. a hacker) has
appropriated the secret keys of Alice during the session te but the intrusion
has not been detected (Fig. 1). The adversary will be able to update the stolen
keys in the same way as Alice and then generate secret keys for the sessions
t , until the intrusion is detected. This means that cryptographicallye + 1 , . . . ,  td
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Figure 1 Forward Security

processed data after key exposure is not protected. All forward secure schemes
in the literature [2,5,20,25] are vulnerable during this period. They only offer
protection for sessions prior to key exposure.

Organization. In this paper we analyze forward security and consider a new
threat in which the adversary appropriates all the secret keying material of a user
without being detected. In Section 2 we consider the notion of strong forward
security, in which cryptographically processed data is protected not only during
the periods prior to key exposure but also during the periods after key exposure.
In Section 3 we show how strong forward security can be achieved with any
public key cryptosystem and in Section 4 we propose a strong forward secure
key escrow/recovery scheme which is based on the ElGamal cryptosystem. We
conclude in Section 5.

2 . FROM FORWARD SECURITY TO STRONG
FORWARD SECURITY

Suppose that Alice uses a forward secure cryptosystem and that the adversary
has appropriated (all) her secret keying material during session te – see Figure 1.
The adversary will not be able to obtain the keys for earlier sessions t , butj < t e

will be able to update the key of session t in the same way as Alice, to get keyse

for sessions t , when the intrusion is detected. With thee + 1 , . . . , until session td
encryption scheme in [5], the updating is deterministic so the adversary will
generate an identical key to Alice’s, and thus decrypt all ciphertexts intended
for Alice. A similar argument applies to the signature schemes in [2, 25].
In this case the adversary can forge Alice’s signatures. With the encryption
scheme in [20], which uses randomized updating, the adversary will generate
a different key. However the adversary can prove that this key is “genuine”,
since the adversary has also appropriated the long term authentication keys of
Alice.

Regardless of whether the updating mechanism is deterministic or random-
ized, all cryptographically processed data is at risk during the period between
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Figure 2 Strong Forward Security

key exposure and its detection. Protection from intrusions in which all the
secret keying material of Alice is stolen can only be achieved by using non-
cryptographic means. However, with randomized key updating this task should
be easier, because Alice’s updated key will be different from the key generated
by the intruder (with high probability).

Definition. A system is strongly forward secure if disclosure of secret keying
material does not compromise the security of the system for sessions both prior
to exposure (t j < te ) and after exposure (t j > te ) – see Figure 2.

A practical but expensive solution. Strong forward security can be achieved
with any public key cryptosystem by using threshold cryptography [9, 16, 17].
For this purpose the secret key is shared among several entities, which jointly
execute the cryptographic application. The shares are then proactively up-
dated [ 15, 23, 22]. Strong forward security is clearly achieved, provided that
the threshold is sufficiently large.

With such schemes each application (encryption or digital signature) requires
a distributed computation and therefore may be quite costly (as noted in [2]).
Furthermore, the distribution of shares may be costly.

Our solution. Our goal is to achieve strong forward security in a practical and
affordable way. The user must be able to certify new session keys with minimum
cost, without out-of-band authentication. Furthermore, this should not involve
costly distributed computations for each application (encryption or signature).
For this purpose we combine randomized key updating with certification.

If a hacker appropriates the secret keying material of a legitimate user and
then tries to certify an updated stolen key, then two valid public keys corresponding
to the same user will be submitted for certification: the legitimate key and an
alias key. The intrusion will be detected and thus the cryptographic security
will only be compromised during the session of the intrusion.
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3. A BASIC SOLUTION FOR ANY PUBLIC KEY
CRYPTOSYSTEM

Based on our discussion above we can make any public key cryptosystem
strongly forward secure. First let us consider digital signatures.

Suppose that the public/secret key pair of Alice for session t, is (P K A , t ,  S K )A ,t
and that Cert ( IDA , PK A,t ) is a certificate for it, issued by the Certifying Au-
thority CA, where I DA is a unique identifier of
Alice. For the next session, Alice selects a random public/secret key pair
(PK A,t+1 , SK A, t+1 ), and digitally signs it together with IDA , using her pre-
vious key: sig ) . Alice then sends this together with herS K A , t  ( IDA , PK A,t +1
old certificate Cert(ID ) to the CA, which verifies Alice’s signatureA , PK A,t

using the old key P K A,t . If this is correct, the CA sends Alice a new certificate
C e r t ( I DA , PK A,t +1 ).

If an intruder appropriates (all) the secret keys of Alice during the session t
(and in particular S KA,t ) and if the intruder submits an updated public key to
the CA for certification, then two public keys will be submitted, both on behalf
of Alice. If this happens the CA will revoke (all) the public keys of Alice.

A similar approach can be used for public key encryption. In this case
however Alice needs two pairs of public keys, one for encryption and the other
to authenticate her encryption key.

This basic scheme achieves strong forward security and is as secure as the
underlying cryptosystem. Furthermore, it is very efficient. In particular, the
certification of the public keys in each session does not require out-of-band
methods. In addition, the size of keys and of the signatures does not expand as
the keys are updated. However, we have a linear expansion in the number of
certificates.

Remark 1. Although the protection of strong forward security is obvious in
the case of encryption, one could argue that in the context of digital signatures
it does not offer any additional protection to forward security. Consider for
example the case when Bob has appropriated Alice’s signing key. Then, even
though Bob will not be able to update the stolen key without being detected,
he could indirectly bypass the security of the system for future sessions. For
example, he could sign postdated checks on behalf of Alice.

However, there are cases when strong forward security makes sense in the
context of signatures. For example, when the lifetime of the signing key also
restricts the scope of the signed message. This would make postdated checks
(for later sessions) invalid.

Remark 2: “Imprisonment” attack. The proposed solution assumes that
the attacker and the legitimate user have access to a Certifying Authority CA
to update keys. This forces the attacker to “publish" the fact that a key has
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been exposed. If the attacker can somehow prevent the legitimate user from
accessing the CA, then the attacker can impersonate the user for as long as he
can confine the user. There seems to be no cryptographic way to handle such
attacks.

4. AN ELGAMAL KEY ESCROW SCHEME WITH
STRONG FORWARD SECURITY

The solution proposed above is not satisfactory for key escrow because the
updated keys must be distributed among escrow agents (an excellent survey of
key escrow systems is given by Denning and Branstad in [8]). The following
scheme reduces the cost of key distribution and key updating by having the
escrow agents regulate the timing process for key updating.

For simplicity, we describe a basic 2-out-of-2 key escrow scheme with escrow
agents EA1 , EA 2 , a in which the Law Enforcement Agency LEA also acts as a
Certifying Authority. The escrow agents and the LEA are trusted to adhere to
the protocol.

Each user, say Alice, during setup, chooses a long-term secret key and shares
this among the escrow agents in a verifiable way. Then, at the beginning of each
session t the escrow agents select a time-control identifier ht . This is broadcast
by the LEA and will be used by all the users of the system for key updating. In
particular, Alice will update her private key SKt –1 to S Kt by using her long-
term secret key, some randomness and the time-control identifier ht . After each
updating, Alice and the escrow agents delete all information that might be useful
to an adversary who may attempt to recover previous keys. Additionally, Alice
updates her public key to PKt , and proves to the LEA in zero-knowledge [19]
that this has been properly constructed. The LEA then certifies the updated
public key PK t .

A hacker who succeeds in appropriating Alice’s secret keying material may
attempt to update the stolen session key and to get the updated key certified by
the LEA. However, Alice will also submit her updated key for certification. The
two keys are different (with overwhelming probability). The LEA will notice
that different keys corresponding to the same user are submitted for certification,
and thus detect the intrusion and revoke all the public keys of Alice.

p of order q with generator g
For simplicity, and when there is no ambiguity, we drop the modulus operators.

The Diffie-Hellman [10] operator DH is defined by DH (ga , gb ) = g ab.
Given the numbers ga and gb, the problem of computing DH (ga, gb ) is called

Background. We use an ElGamal encryption scheme [12]. Let r, q, p be large
primes with q = 2r + 1, p = 2 q + 1, and let H be a subgroup of Z *

q of order
r with generator h, and G be a subgroup of Z * .

Also, we write a ∈R A to indicate that the element a is chosen randomly with
uniform distribution from the set A.
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the Diffie-Hellman problem. The problem of deciding whether
for a given z ∈ Zp , is called the Decision Diffie-Hellman DDH problem [10].

Setup. Alice chooses a long term private key and computes y A =
g x A . Alice gives her long term public key to the LEA,
authenticates it by non-cryptographic (out-of-band) means, and gets a certificate
Cer t( IDA , PK A). Then,

1 Alice chooses shares and Alice gives the
shares x1 , x2 privately to the escrow agents EA1 , EA2 , respectively.

2 The escrow agents check that If not, Alice is
reported to the LEA.

Key updating (session t = 1, 2, . . . ). Agents EA

using the Diffie-Hellman key exchange protocol [10]. The agents send h
the LEA which publishes it. This number identifies the session t, and is used by
all the users of the system. It represents the randomness of the escrow agents
in the key updating procedure and is the same for all users. The agents then
discard the exponents 
Then:

1 Alice chooses a number computes h rA,t and sends this to
the LEA. Alice also computes the Diffie-Hellman key

1 , EA 2 choose numbers r1 , t ,
respectively, and jointly construct in a secure way by

rt to

r1 , t–1  and r2 , t – 1 of the previous session (when t > 1).

2 Alice updates her secret key for session t to She
then computes and sends to the LEA her public ses-
sion key Alice then proves in zero

knowledge (see the Appendix) that where
DL (g xA ) is the discrete logarithm of g x A . If the proof is correct, the
LEA certifies the updated public key and issues Alice with a certificate
C e r t ( IDA , PK A,t ). Then Alice discards rA,t and the previous session
key.

all ciphertexts intended for Alice during session t. Then the LEA will wiretap
the communication of Alice. Let be an ElGamal encryption
of a message m sent to Alice during this session. The LEA will send gk and
h rA,t to the escrow agents. The agents first compute the Diffie-Hellman key

and then the factor They send ( yA,t )k

to the LEA for decryption.

Theorem 1 If the Decision Diffie-Hellman problem is hard then the proposed
escrow scheme has strong forward security.

Getting an escrowed key. Assume that a court order has been issued to decrypt

z = DH (g , g ),a b
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Proof. Suppose that there is a polynomial time algorithm A that breaks the
proposed escrow scheme. Let be an input for the Decision
Diffie-Hellman problem. We shall use A to break the DDH problem.

Choose at random a secret key and let be the long-
term public key. Next, prepare a history of ciphertext-message pairs (c, m)
for A, for earlier sessions j, by choosing at random and

and take
Give to A: and instead of the public (session)

key a history of ciphertext-message pairs and the “ciphertext”:
Let the output of A be m'. If m' = m then the decision is that

z = h ab, else z ≠ h .ab

Remark 3. The interactive zero knowledge proof in Step 2 of the key updating
can be replaced by a signature, using the Fiat–Shamir heuristic [13], which
requires a hash function. However it should be noted that if we use such
signatures then the security of the scheme can only be proven in the Random
Oracle Model [3].

Remark 4. In Section 2 we considered a solution involving the distribution
of the secret keys via secret sharing in a proactive way. In our protocol above
we also distribute the keys and use an updating mechanism similar to proactive
mechanisms. However, our encryptions do not require a distributed computa-
tion.

Remark 5. The escrow agents are safe repositories for the long-term secret
keys of all the users of the system. In our protocol the agents also generate a
random number hr t . This number is for a specific time period and is the same
for all the users of the system. In the next session a new random number is
chosen and the old one is discarded. Observe that the addition or the removal
of a user from the system does not affect the functionality of the agents.

Remark 6. The ElGamal escrow scheme described above can easily be modi-
fied to get a Key Recovery scheme by replacing the LEA and the escrow agents
with a Data Recovery Agency and recovery agents respectively. Observe that if
the keys to be recovered encrypt archived data, then there is no point in adopting
a Key Recovery scheme with forward secrecy, as observed in [1]. Consequently,
the proposed scheme can only be used to recover encrypted traffic.

Generalizations

1 It is easy to see how to generalize this scheme to a t-out-of- l key escrow
scheme. Robustness can be achieved by using the approach in [ 16, 17].
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Furthermore, our scheme can be easily modified to prevent subliminal
channel attacks, as described in [24].

2 It is well known that the ElGamal encryption scheme is not semantically
secure [18]. To extend our scheme to a semantically secure scheme we
can use the Cramer-Shoup extension of ElGamal [7].

5. CONCLUSION

Forward security protects cryptographically processed data prior to key exposure.
However in many applications it is difficult to detect intrusions. Indeed, hack-
ers will not necessarily use the appropriated keys until this is expedient or
profitable. It is therefore important to consider mechanisms, which also protect
cryptographically processed data after an intrusion. Strong forward security
offers such protection.
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Appendix

Let

primes,
g a generator of a generator of and

mod p}.

An interactive zero-knowledge proof of membership in L

Input:

Repeat l times (l = Θ  (log p)):

1 The Prover chooses computes u = ka mod q,
v = c + t mod r, and then sends to the Verifier:

2 The Verifier sends to the Prover a bit query e ∈ {0,1}.

3 The Prover sends to the Verifier:

(u, v), if e = 0
(k , t) , if e = 1.

Verification: The Verifier checks that:

when e = 0,

when e = 1,

The Verifier accepts (that x ∈ L) if the verification is satisfied for all k rounds.

Proof of correctness

Completeness: If x ∈ L then the Verifier will always accept.

Soundness: If the Verifier accepts with non-negligible probability
(≥ 1/ poly (log p)), then the Prover must answer correctly both queries e = 0,
e = 1 for some triple X, Y, Z. Therefore,
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It follows that x ∈ L.

Simulation (zero-knowledge):

when e = 0, choose random u, v and construct X, Y, Z as in Step 1;

when e = 1, choose random k, t and construct
and Z = h c ht .
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