
Supporting Secure and Transparent Delegation in the
CORBA Proxy Platform π2

Zoltán Nochta, Rainer Ruggaber and Taufiq Rochaeli
Institute of Telematics, University of Karlsruhe, Germany
[nochta\ruggaber\rochaeli]@telematik.informatik.uni-karlsruhe.de

Key words:

Abstract:

transparent delegation, security, CORBA, mobility

π2 is a generic CORBA proxy platform that is used to support applications in
mobile and wireless environments. π2 consists of two proxies which are
transparently integrated into the application. Due to the broadcast
characteristics of wireless communication, mobile users have very high
security requirements. Since the CORBA security service as the standard
approach for securing CORBA applications does not support the transparent
integration of proxies between client and server, we introduce proprietary
solutions with end-to-end authentication based on the services of a public-key
infrastructure.

1. INTRODUCTION

Today’s innovations in the field of processors, displays and battery
techniques promote the use of portable, mobile computers. Hence, the way
to nomadic computing is paved. An infrastructure for nomadic users allows
connectivity anywhere upholding the environment the nomadic user prefers.
Therefore, such an infrastructure must provide dedicated access nodes (AN)
to utilize different network technologies as depicted in Figure 1. Nomadic
users can transparently migrate between these different network technologies
without obviously noticing any change in the communication behavior of
their computers (mobile node, MN) apart from different delays. However,
progress in developing wireless communication architectures cannot
compete with the introduction of high performance wired networks. This

http://dx.doi.org/10.1007/978-0-306-47001-1_21

272 Zoltán Nochta, Rainer Ruggaber and Taufiq Rochaeli

challenge has to be faced in the middleware providing for adaptation in order
to match the characteristics of the wireless link.

Figure 1. Nomadic computing scenario

Our solution for this problem area, the proxy platform π2, is based on a
special equipment on the borders between wireless and wired domains,
where proxies act on behalf of the nomadic users. Proxies can help to reduce
communication requirements for the wireless link and, therefore, integrate
nomadic users into distributed applications. They have to bridge the
protocols used in the wired domain and in the wireless domain, hence
dealing with address and format translation, Furthermore, these proxies may
be enhanced by components allowing value-added services to support
context- and location-awareness or caching.

Proxy-architectures and π2 as well suffer from security problems. Proxies
that are transparently integrated into the data stream prohibit the use of end-
to-end security mechanisms like authentication or encryption. The use of
such mechanisms leaves the proxy behind useless, because the proxy is not
able work on encrypted data. The decryption of the transmitted data is not
possible due to the transparent integration of the proxy. In this paper we
present special tailored solutions to the security requirements of mobile
users.

2. THE CORBA PROXY-PLATFORM π2

The proxy platform π2 acts as a mediator between a CORBA client and a
CORBA server [1]. π2 works similarly to a request level bridge, but allows a
more common solution for problems often occurring in mobile and

Supporting Secure and... 273

heterogeneous environments and the integration of further functionality to
provide value-added services.

With this architecture we are heading for a client-service paradigm
instead of the client-server paradigm. In the client-service paradigm the
client is not using or addressing a special server but a service. This service
can be located anywhere and can be offered by different servers thus
providing more flexibility with service selection.

2.1 CORBA

In CORBA, the communication infrastructure is an object bus, the Object
Request Broker (ORB). Whilst the communication architecture within one
ORB is not specified, there is a standard for the data exchange between
ORBS, the General Inter-ORB Protocol (GIOP) and its adaptation onto the
Internet protocol suite, the Internet Inter-ORB Protocol (IIOP). Since GIOP
assumes a connection-oriented, reliable transport connection, IIOP is based
on TCP/IP. A feature of GIOP frequently used in π2 is the so called
service_context. The service_context is realized as an array,
that is transparently transmitted from one ORB to the other. This enables the
exchange of data between client and server ORB, transparently to the
application.

2.2 Architecture of π2

Figure 2. π2
 Architecture

π2 consists of two different types of proxies. π m2 is located on the mobile
node and is integrated into the ORB of the client application. πf

2 is placed on
the access node. The two proxies encapsulate the wireless link and can thus
hide the characteristics of the wireless link. π f

2 is realized as a combination

274 Zoltán Nochta, Rainer Ruggaber and Taufiq Rochaeli

of a CORBA client and a CORBA server. In order to enable transparent
integration into applications both πf

2 and πm
2 require a modified ORB

(ORB’).
Method invocations of the client application are transparently redirected

to πm
2 in the client ORB. After being processed in πm

2 the requests are
tunneled to πf

2. πf
2 restores the request and passes it to the server. The

response of the server is inversely directed through π2. The end-to-end
semantics of CORBA method invocations are not modified by π2, because
the same invocation type is used on all sub-connections. When using π2 the
client as well as the server applications remain unchanged. This allows a
transparent integration of π2 into existing CORBA-applications. For the
support of different or unknown applications a reconfiguration of π2 is not
necessary since πf

2 uses the dynamic CORBA interfaces (DII and DSI). π2

provides generic disconnection handling and network handover mechanisms,
that are especially useful in a wireless environment where sudden
disconnections can occur [2].

2.3 Invocation handling

π2 supports several invocation handling modes. Four of them are
considered here for integration of security features.

In the simple forwarding mode πf
2 passes the request to the server that

was specified by the client in the initial request. In the more advanced modes
the proxy πf

2 can redirect client requests to a different server than the
specified one to support the client-service paradigm. Another field of
application is fault-tolerance or the transparent change of server interfaces.
In the static redirection mode a given server object reference is always
mapped to the same server implementation. In the dynamic redirection mode
object references can be mapped to different server implementations in run-
time. In the caching mode πf

2 can respond to client requests without
contacting the server. This is useful in scenarios where operation results can
be cached or computed by πf

2.
These advanced invocation handling modes prohibit the use of end-to-

end encryption as the proxy is not able to decrypt the request and carry out
the redirection. A solution providing security in π2 has to take these
invocation handling modes into consideration to retain the functioning of π2.

Supporting Secure and... 275

3. PROVIDING SECURITY IN π2

In this chapter we introduce two approaches to provide secure and
transparent delegation in π2. These approaches are based on the services of a
managed X.509 [3] public-key infrastructure.

In order to retain the transparency of π2 as far as possible, different
security mechanisms and PKI services have to be integrated into the ORB.

3.1 Using the services of a PKI

In order to prevent malicious attacks against signature schemes and to
provide non-repudiation functionality of digital signatures, keys must be
managed by a trustworthy PKI. The most important management services of
such a PKI are: user registration, key-generation, user certification,
certificate distribution, cross-certification, certificate revocation, key
recovery, key-update and key history [4]. In addition, the PKI should
provide application developers with proper interfaces, in order to use and
integrate the PKI services transparently into the applications. Respectively to
the requirements of both of our concepts we use a PKI implementation
which manages two different key-pairs and certificates for each user. We
assume that the private keys are stored in a secure personal environment, e.g.
in a smart-card.

3.2 Securing the sub-connections

The most important security requirement in all invocation handling
modes of π2 are the strong authentication and message protection of the
client-to-proxy and proxy-to-server communication. The implementation of
two separate SSL [5] sockets securing the complete CORBA IIOP
communication and the integration of a comprehensive PKI that manages
and distributes X.509 public-key certificates that are being used by SSL in
its authentication process, can meet this basic requirements. [6] discusses the
most important technical problems and describes an implemented solution of
the PKI integration in SSL/IIOP.

3.3 A protocol to build end-to-end security associations

One drawback of the separation the sub-connections described above is
the fact that the end-to-end authentication respectively the delegation of
identities is not supported. Clients do not know which server will respond to
their requests, because the proxy redirects method invocations unless
operating in simple forward mode. On the other hand servers targeted by a

276 Zoltán Nochta, Rainer Ruggaber and Taufiq Rochaeli

proxy do not know who originally generated the request they have to
respond to. In many cases, a server has to know who was the initiator of an
invocation and vice versa, clients should know who is their server
counterpart. In addition, ifan intruderor amalicious systemadministratorof
the proxy node knows both session keys used by the SSL sockets, he can
read and alter any messages without being detected.

In order to protect end-to-end message integrity and authenticity
effectively, clients and servers have to share a secret (key) unknown to the
proxy. This key can of course only protect the integrity and authenticity of
message fragments not changed by the redirection.

Since the CORBA security service as the standard approach to securing
CORBAapplications doesnot support the transparent integration ofproxies
between client and server [7], we introduce proprietary solutions.

In the following we describe a novel high-level protocol which works on
the ORB layer and provides mutual end-to-end authentication, message
integrity and non-repudiation functionality between ORBS. Technically, this
protocol is placed on top of the SSL layer and is transparent to the access-
node (s. fig. 3). This means that every message protected by this protocol
will be sent through the SSL socket which protects the whole message
against wiretapping and more.

Figure 3. Security in the proxy platform

Theprotocol starts with mutual authentication. In this phase asecret will
be exchanged. The authentication process is a challenge-response which is
based on digital signatures and on the services of a well managed PKI. The
shared secret is used to generate one-time-keys for computing message
authentication codes (MACs). Optionally, in order to prevent the pick-up of
sensible message fragments by the proxy such fragments can be encrypted
with this key.

The information used to build a security association between client and
server is sent in a security context (SC) which is part of the
service_context. Figure 4 shows the main protocol steps.
Fig. 4: Protocol steps

Supporting Secure and... 277

Figure 4. Protocol steps

At the first protocol step a client ORB sends his first method invocation
which is automatically converted to an IIOP request (reql) to the server.
Req1 is extended with the security context SC1. SC1 consists of the following
mandatory fields:

Table 1. Security context SC1

After getting this request, the server first validates the signature and
checks the validity of the encryption certificate (EC) the client has sent. If
both the signature and the EC are valid the server generates a random
number Rs, encrypts it with the public encryption-key of the client, then
creates SC2 (s. Table 2) and sends the response (rsp1) back to the client. The
most important field of SC2 is the signature field. The sequence signed by
the server includes not only the plain-text fields of SC2 and the name and the

Field Description
Message Type (MT) Contet ID (in this case 1)
Rn 16 byte random number generated by the client
CA certificate (CC) Certificate of the CA the client trusts
Verification certificate (VC) Certificate containing the client’s public key used for signature

verification
Encryption certificate (EC)

Signature

Certificate containing the client’s public key used for
encryption
Digital signature of the sequence {MT, Rn, CC, VC, EC,
method name, method parameters}

278 Zoltán Nochta, Rainer Ruggaber and Taufiq Rochaeli

results of the last method invocation, but also Rn in order to prevent replay-
attacks.

Table 2. Security context SC2

After responding the client, the server creates a so called Client
Information Object (CIO). This object stores security information about a
particular client, for example, the fingerprints of the certificates the client
used to authenticate himself. (s. the right side on fig. 5). This information
will be used in later protocol steps. Additionally, each CIO contains two
different pseudo-random-number generators (PRNG). PRNGs are used to
produce and validate one-time-keys which protect messages exchanged by
client and server. PRNGs is used to generate one-time-keys protecting
messages sent by the server. Unlike PRNGs PRNGr generates one-time-keys
for the verification of received messages sent by the particular client. The
random number Rs generated by the server and sent to the client is used to
initialize both PRNGs and PRNGr.

Figure 5. Client and Server Information Objects

Field
Message Type (MT)

Description
Context ID (in this case 2)
Random number (Rs) encrypted with the
clients encryption key
Certificate of the CA the server trusts
Certificate containing ther server’s public key
used for signature verification
Digital signature of the sequence
{MT, Rn, ECpub(Rs), CC, VC, method name,
invocation results}

ECpub(Rs)

CA certificate (CC)
Verification certificate (VC)

Signature

Supporting Secure and... 279

In order to speed-up the protocol and to support the out-of-order delivery
of requests, PRNGr generates 16 one-time-keys. These keys are stored in the
so called key-pool which is an array. After a received key has been found in
the key-pool it will be always deleted, a new key will be generated by
PRNGr and added to the key-pool. The key-pool is only used to check one-
time-keys a particular client used to compute a MAC of the message (s. later
protocol steps). The CIO does not store any keys that will be sent by the
server in future protocol steps.

When CS2 (in rsp1) was received, the client first validates the server's
signature and then decrypts Rs. At this point the mutual authentication is
completed, client and server share the secret Rs. Since public-key encryption
is used, Rs is unknown to the proxy and to the rest of the world.

Before sending the next request, the client creates a Server Information
Object (SIO) which is very similar to the CIO object (s. the left side of fig.
5). As mentioned above the shared secret Rs is used as initial seed for both
pseudo-random-number generators (PRNGr and PRNGs). As shown in fig. 5
the SIO also contains a key-pool which will be filled up by the PRNGr. This
PRNGr must be exactly the same pseudo-random-number generator
implementation as PRNGs on the server side which is used by the server to
generate the one-time-keys for sent messages. Fig. 5 depicts the relationship
between PRNGs.

The communication continues with client requests (req2) and server
responses (rsp2). The client ORB adds the security context SC3 to each
request which protects integrity and authenticity of the request message (s.
Table 3).

In order to compute the MAC protecting the message the client generates
a Ki key. These keys are being generated by PRNGs of the particular SIO
object. K0 is generated with the aid of the seed value Rs. Every other Ki key
used in further messages is generated by the PRNGs automatically. The
MAC of the message sequence { MT, i, FP, method name, method
parameters} are computed using the key Ki. This sequence contains i which

Table 3. Security Contents SC3
Field Description
Message Type (MT) Context ID (in this case 3)

Fingerprint of the client’s verification certificate
Message Authentication Code of the sequence
MT, i, FP, method name, method parameters}
computed with the one-time-key Ki

Client certificate fingerprit (FP)
MAC

280 Zoltán Nochta, Rainer Ruggaber and Taufiq Rochaeli

is the position-index of the particular Ki in the server's key-pool generated
by the server's PRNGr.

After receiving a protected message the server first searches for a CIO
object storing the fingerprint (FP) of the client. If such a CIO exists the
server checks the MAC. The MAC is valid only, if Ki matches with the ith

element of the key-pool stored in the CIO object. In this case, the server
deletes Ki from his pool and responds to the client. Server responses are
protected by SC4 which is very similar to SC3 as shown in Table 4.

After receiving a protected server response, the client first checks the
MAC. The MAC is valid only, if Ki used by the server matches with the ith

element of the key-pool stored in the particular SIO object. In this case, the
client generates Ki+1 and sends a new protected request (i is then replaced
with i+1) to the particular server.

If any error occurs during the communication (s. req3 on Fig. 4), for
example, the client’s fingerprint is unknown to the server or there was an
error (attack) by computing the MAC, the server initializes a new
authentication process by sending a message with the security context SC5
(s. in Table 5).

Receiving a message with SC5, the client must re-authenticate himself. In
order to do that, the client must re-start the authentication process by sending
the failed req3 request embedding SC1 again.

3.4 Providing delegation with X.509 certificates

An alternative approach to solve the delegation problem is the modified
use of restricted proxies as proposed by B. C. Neuman [8]. In order to

Table 4. Security Contents SC4

Table 5. Security Contents SC5

Field Description
Message Type (MT) Context ID (in this case 4)

Fingerprint of the server’s verification certificate
Message Authentication Code of the sequence
{MT, i, FP, method name, results}
computed with the one-time-key Ki

Server certificate fingerprint (FP)
MAC

Field Description
Message Type (MT) Context ID (in this case 5)

Certificate of the CA the server trusts
Certificate including the server’s public key used for signature
verification
Digital signature of the sequence {MT, CC, VC}

CA certificate (CC)
Vertification certificate (VC)

Signature

Supporting Secure and... 281

provide this delegation mechanism in π2, the certificate verification
procedure of existing SSL implementations has to be modified. At this point,
we only describe the main steps that are necessary to propagate the client’s
identity to the server.

After establishing an SSL connection to the proxy, the client ORB can
authorize πf

2 to act on his behalf The client ORB signs a sequence S
including the fingerprint of the signature verification certificate of πf

2, the
fingerprint of the client’s signature verification certificate and the expiration
time of S. Then the client ORB sends S to the proxy by embedding it in the
first CORBA method invocation using the service_context. After that
the proxy finds a suitable implementation of the target and establishes an
SSL connection to that server. Normally, in the mutual SSL authentication
process one X.509 certificate of each participant is needed. In this case, the
proxy does not only send its own certificate to the server, but also the signed
S. Then the targeted server verifies the proxy ′s certificate which is signed by
the trusted certification authority of the PKI. After that he verifies the
client’s signature on S and compares the fingerprint of certificate presented
by the proxy with the fingerprint of the proxy’s certificate sent in S. Finally,
the server checks the expiration time of S. This way, the server knows who
initiated the given revocation. The server’s access control decisions can be
made by using this securely delegated identity.

3.5 Implementation de tails

In order to support different operating systems the complete π2

architecture is based on pure Java technology. In our prototype we used the
ORB implementation of the Object Oriented Concepts (OOC). The Java
version of ORBacus v. 3.3 is available with source code and it is free of
charge for non-commercial use. This is important since we had to modify the
ORB in order to provide proxy functionality (s. ORB’ in fig. 2). OOC offers
for his different ORBS a Java based SSL implementation, called FreeSSL.
This product as well its source code are free available by OOC.

The public-key infrastructure utilized for our key-management purposes
was the developer edition of the Entrust/PKI v. 4.0 which is free
downloadable by Entrust Technologies. In order to integrate the PKI services
into FreeSSL we took the Entrust’s Java toolkit (Entrust/Toolkit for Java v.
5.1) which is also free available by Entrust.

The communication protocol we introduced applies the Java based
crypto-library of IAIK (Institute for Applied Information Processing and
Communications) including the PRNG implementations. The most important
cryptographic algorithms applied in our prototype are RSA for asymmetric
encryption and digital signatures, and H-MAC in order to compute MACs.

282 Zoltán Nochta, Rainer Ruggaber and Taufiq Rochaeli

4. CONCLUSIONS

In this paper two solutions for the problem of secure and transparent
delegation in the CORBA proxy platform π2 are presented. π2 supports
applications in mobile and wireless environments by transparently
integrating two proxies which encapsulate the wireless link, and thus are
able to hide its characteristics.

Standard mechanisms providing end-to-end authentication and
encryption like SSL or the CORBA security service do not work in a proxy
architecture, as these leave the proxy behind useless. Therefore special
tailored solutions are needed. Both solutions presented in this paper are
using SSL and the services of a PKI in order to secure the sub-connections.
SSL provides authentication and encryption on the sub-connections client-
to-proxy and proxy-to-server. The protocol we first introduced provides end-
to-end authentication which is based on a PKI and the use of asymmetric
encryption to exchange a shared secret only known to client and server. This
shared secret is used to initialize pseudo-random-number generators. The
generated random numbers are used as one-time-keys in the computation of
message authentication codes ensuring message integrity and authenticity. In
the case of the redirection of request to a different server in an advanced
invocation handling mode, this new server can force a new mutual
authentication. The second approach which is a slight modification of the
key-exchange procedure in SSL, makes it possible to delegate the client’s
identity to the proxy, securely.

The solutions fulfill the security requirements of the mobile user on the
one hand and retain the functioning of π2 by supporting the different
invocation handling modes on the other hand.

Supporting Secure and ... 283

REFERENCES

[1] R. Ruggaber, J. Seitz, M. Knapp: π2 − a Generic Proxy Platform for Wireless Access
and Mobility in CORBA, In Proceedings of the 19th Symposium on Principles of
Distributed Computing (PODC'2000). Portland, Oregon, USA, July 2000

A Transparent Network Handover for Nomadic CORBA Users
In Proceedings of the 21st International Conference on Distributed Computing
Systems (ICDCS-21), Phoenix, Arizona, USA, April 2001

Information Technology – Open Systems Interconnection – The directory: Public-
Key and Attribute Certificate Frameworks, September 2000

Understanding Public-Key Infrastructure: Concepts, Standards, and Deployment
Considerations
Macmillan Technical Publishing, 1999
Transport Layer Security Working Group
A. O. Freier, P. Karlton, P. C. Kocher: The SSL Protocol Version 3.0
Internet-draft November 18, 1996
Z. Nochta, S. Abeck, G. Augustin, M. Becker, M. Friedmann:
Integration of Public-Key Infrastructures in CORBA-Systems (in German)
In Proceedings of the Conference “Communication Security” (KSI’2001), Germany,
March 2001

[7] Object Management Group: Security Service Specification vl.7,2000
[8] B. Clifford Neuman:

Proxy-Based Authorization and Accounting for Distributed Systems
In Proceedings of the 13th International Conference on Distributed Computing
Systems (ICDCS), Pittsburgh, May 1993

[2] Rainer Ruggaber, Jochen Seitz:

[3] ITU-T Recommendation X.509

[4] Carlisle Adams, Steve Lloyd:

[5]

[6]

	Supporting Secure and Transparent Delegation in the CORBA Proxy Platform π2
	1. INTRODUCTION
	2. THE CORBA PROXY-PLATFORM π2
	2.1 CORBA
	2.2 Architecture of π2
	2.3 Invocation handling

	3. PROVIDING SECURITY IN π2
	3.1 Using the services of a PKI
	3.2 Securing the sub-connections
	3.3 A protocol to build end-to-end security associations
	3.4 Providing delegation with X.509 certificates
	3.5 Implementation de tails

	4. CONCLUSIONS
	REFERENCES

