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π2 is a generic CORBA proxy platform that is used to support applications in
mobile and wireless environments. π2 consists of two proxies which are
transparently integrated into the application. Due to the broadcast 
characteristics of wireless communication, mobile users have very high
security requirements. Since the CORBA security service as the standard 
approach for securing CORBA applications does not support the transparent
integration of proxies between client and server, we introduce proprietary 
solutions with end-to-end authentication based on the services of a public-key
infrastructure.

1.           INTRODUCTION 

Today’s innovations in the field of processors, displays and battery 
techniques promote the use of portable, mobile computers. Hence, the way 
to nomadic computing is paved. An infrastructure for nomadic users allows 
connectivity anywhere upholding the environment the nomadic user prefers. 
Therefore, such an infrastructure must provide dedicated access nodes (AN) 
to utilize different network technologies as depicted in Figure 1. Nomadic 
users can transparently migrate between these different network technologies 
without obviously noticing any change in the communication behavior of 
their computers (mobile node, MN) apart from different delays. However, 
progress in developing wireless communication architectures cannot 
compete with the introduction of high performance wired networks. This 
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challenge has to be faced in the middleware providing for adaptation in order 
to match the characteristics of the wireless link. 

Figure 1. Nomadic computing scenario 

Our solution for this problem area, the proxy platform π2, is based on a
special equipment on the borders between wireless and wired domains,
where proxies act on behalf of the nomadic users. Proxies can help to reduce
communication requirements for the wireless link and, therefore, integrate 
nomadic users into distributed applications. They have to bridge the
protocols used in the wired domain and in the wireless domain, hence 
dealing with address and format translation, Furthermore, these proxies may 
be enhanced by components allowing value-added services to support 
context- and location-awareness or caching. 

Proxy-architectures and π2 as well suffer from security problems. Proxies
that are transparently integrated into the data stream prohibit the use of end-
to-end security mechanisms like authentication or encryption. The use of 
such mechanisms leaves the proxy behind useless, because the proxy is not 
able work on encrypted data. The decryption of the transmitted data is not
possible due to the transparent integration of the proxy. In this paper we 
present special tailored solutions to the security requirements of mobile 
users.

2. THE CORBA PROXY-PLATFORM π2 

The proxy platform π2 acts as a mediator between a CORBA client and a
CORBA server [1]. π2 works similarly to a request level bridge, but allows a
more common solution for problems often occurring in mobile and 
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heterogeneous environments and the integration of further functionality to
provide value-added services. 

With this architecture we are heading for a client-service paradigm
instead of the client-server paradigm. In the client-service paradigm the 
client is not using or addressing a special server but a service. This service
can be located anywhere and can be offered by different servers thus 
providing more flexibility with service selection. 

2.1 CORBA

In CORBA, the communication infrastructure is an object bus, the Object 
Request Broker (ORB). Whilst the communication architecture within one 
ORB is not specified, there is a standard for the data exchange between 
ORBS, the General Inter-ORB Protocol (GIOP) and its adaptation onto the 
Internet protocol suite, the Internet Inter-ORB Protocol (IIOP). Since GIOP
assumes a connection-oriented, reliable transport connection, IIOP is based
on TCP/IP. A feature of GIOP frequently used in π2 is the so called
service_context. The service_context is realized as an array, 
that is transparently transmitted from one ORB to the other. This enables the 
exchange of data between client and server ORB, transparently to the
application.

2.2        Architecture of π2
 

Figure 2. π2 
    Architecture

π2 consists of two different types of proxies. π m2 is located on the mobile
node and is integrated into the ORB of the client application. πf

2 is placed on
the access node. The two proxies encapsulate the wireless link and can thus
hide the characteristics of the wireless link. π f

2 is realized as a combination
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of a CORBA client and a CORBA server. In order to enable transparent
integration into applications both πf

2 and πm
2 require a modified ORB

(ORB’).
Method invocations of the client application are transparently redirected

to πm
2 in the client ORB. After being processed in πm

2 the requests are
tunneled to πf

2. πf
2 restores the request and passes it to the server. The

response of the server is inversely directed through π2. The end-to-end
semantics of CORBA method invocations are not modified by π2, because
the same invocation type is used on all sub-connections. When using π2 the
client as well as the server applications remain unchanged. This allows a
transparent integration of π2 into existing CORBA-applications. For the
support of different or unknown applications a reconfiguration of π2 is not
necessary since πf

2 uses the dynamic CORBA interfaces (DII and DSI). π2
 

provides generic disconnection handling and network handover mechanisms,
that are especially useful in a wireless environment where sudden
disconnections can occur [2]. 

2.3         Invocation handling 

π2 supports several invocation handling modes. Four of them are
considered here for integration of security features. 

In the simple forwarding mode πf
2 passes the request to the server that

was specified by the client in the initial request. In the more advanced modes
the proxy πf

2 can redirect client requests to a different server than the
specified one to support the client-service paradigm. Another field of 
application is fault-tolerance or the transparent change of server interfaces. 
In the static redirection mode a given server object reference is always
mapped to the same server implementation. In the dynamic redirection mode
object references can be mapped to different server implementations in run-
time. In the caching mode πf

2 can respond to client requests without
contacting the server. This is useful in scenarios where operation results can
be cached or computed by πf

2.
These advanced invocation handling modes prohibit the use of end-to-

end encryption as the proxy is not able to decrypt the request and carry out
the redirection. A solution providing security in π2 has to take these
invocation handling modes into consideration to retain the functioning of π2. 
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3. PROVIDING SECURITY IN π2 

In this chapter we introduce two approaches to provide secure and 
transparent delegation in π2. These approaches are based on the services of a
managed X.509 [3] public-key infrastructure. 

In order to retain the transparency of π2 as far as possible, different
security mechanisms and PKI services have to be integrated into the ORB. 

3.1         Using the services of a PKI 

In order to prevent malicious attacks against signature schemes and to 
provide non-repudiation functionality of digital signatures, keys must be 
managed by a trustworthy PKI. The most important management services of
such a PKI are: user registration, key-generation, user certification, 
certificate distribution, cross-certification, certificate revocation, key 
recovery, key-update and key history [4]. In addition, the PKI should 
provide application developers with proper interfaces, in order to use and 
integrate the PKI services transparently into the applications. Respectively to 
the requirements of both of our concepts we use a PKI implementation
which manages two different key-pairs and certificates for each user. We 
assume that the private keys are stored in a secure personal environment, e.g. 
in a smart-card.

3.2          Securing the sub-connections

The most important security requirement in all invocation handling
modes of π2 are the strong authentication and message protection of the
client-to-proxy and proxy-to-server communication. The implementation of 
two separate SSL [5] sockets securing the complete CORBA IIOP 
communication and the integration of a comprehensive PKI that manages 
and distributes X.509 public-key certificates that are being used by SSL in
its authentication process, can meet this basic requirements. [6] discusses the 
most important technical problems and describes an implemented solution of 
the PKI integration in SSL/IIOP. 

3.3          A protocol to build end-to-end security associations 

One drawback of the separation the sub-connections described above is 
the fact that the end-to-end authentication respectively the delegation of 
identities is not supported. Clients do not know which server will respond to 
their requests, because the proxy redirects method invocations unless 
operating in simple forward mode. On the other hand servers targeted by a 
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proxy do not know who originally generated the request they have to 
respond to. In many cases, a server has to know who was the initiator of an 
invocation and vice versa, clients should know who is their server 
counterpart. In addition, ifan intruderor amalicious systemadministratorof
the proxy node knows both session keys used by the SSL sockets, he can 
read and alter any messages without being detected. 

In order to protect end-to-end message integrity and authenticity 
effectively, clients and servers have to share a secret (key) unknown to the
proxy. This key can of course only protect the integrity and authenticity of
message fragments not changed by the redirection. 

Since the CORBA security service as the standard approach to securing
CORBAapplications doesnot support the transparent integration ofproxies
between client and server [7], we introduce proprietary solutions. 

In the following we describe a novel high-level protocol which works on 
the ORB layer and provides mutual end-to-end authentication, message
integrity and non-repudiation functionality between ORBS. Technically, this 
protocol is placed on top of the SSL layer and is transparent to the access- 
node (s. fig. 3). This means that every message protected by this protocol 
will be sent through the SSL socket which protects the whole message 
against wiretapping and more. 

Figure 3. Security in the proxy platform 

Theprotocol starts with mutual authentication. In this phase asecret will
be exchanged. The authentication process is a challenge-response which is
based on digital signatures and on the services of a well managed PKI. The 
shared secret is used to generate one-time-keys for computing message 
authentication codes (MACs). Optionally, in order to prevent the pick-up of 
sensible message fragments by the proxy such fragments can be encrypted 
with this key. 

The information used to build a security association between client and
server is sent in a security context (SC) which is part of the 
service_context. Figure 4 shows the main protocol steps. 
Fig. 4: Protocol steps 
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Figure 4. Protocol steps 

At the first protocol step a client ORB sends his first method invocation
which is automatically converted to an IIOP request (reql) to the server.
Req1 is extended with the security context SC1. SC1 consists of the following
mandatory fields: 

Table 1. Security context SC1 

After getting this request, the server first validates the signature and 
checks the validity of the encryption certificate (EC) the client has sent. If 
both the signature and the EC are valid the server generates a random 
number Rs, encrypts it with the public encryption-key of the client, then
creates SC2 (s. Table 2) and sends the response (rsp1) back to the client. The
most important field of SC2 is the signature field. The sequence signed by 
the server includes not only the plain-text fields of SC2 and the name and the 

Field Description
Message Type (MT) Contet ID (in this case 1)
Rn  16 byte random number generated by the client
CA certificate (CC)    Certificate of the CA the client trusts
Verification certificate (VC)    Certificate containing the client’s public key used for signature

verification
Encryption certificate (EC)

Signature

Certificate containing the client’s public key used for
encryption
Digital signature of the sequence {MT, Rn, CC, VC, EC,
method name, method parameters}
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results of the last method invocation, but also Rn in order to prevent replay-
attacks.

Table 2. Security context SC2

After responding the client, the server creates a so called Client 
Information Object (CIO). This object stores security information about a 
particular client, for example, the fingerprints of the certificates the client
used to authenticate himself. (s. the right side on fig. 5). This information
will be used in later protocol steps. Additionally, each CIO contains two
different pseudo-random-number generators (PRNG). PRNGs are used to
produce and validate one-time-keys which protect messages exchanged by
client and server. PRNGs is used to generate one-time-keys protecting
messages sent by the server. Unlike PRNGs PRNGr generates one-time-keys
for the verification of received messages sent by the particular client. The
random number Rs generated by the server and sent to the client is used to 
initialize both PRNGs and PRNGr.

Figure 5. Client and Server Information Objects 

Field
Message Type (MT)

Description
Context ID (in this case 2)
Random number (Rs) encrypted with the
clients encryption key
Certificate of the CA the server trusts
Certificate containing ther server’s public key
used for signature verification
Digital signature of the sequence
{MT, Rn, ECpub(Rs), CC, VC, method name,
invocation results}

ECpub(Rs)

CA certificate (CC)
Verification certificate (VC)

Signature
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In order to speed-up the protocol and to support the out-of-order delivery 
of requests, PRNGr generates 16 one-time-keys. These keys are stored in the
so called key-pool which is an array. After a received key has been found in
the key-pool it will be always deleted, a new key will be generated by
PRNGr and added to the key-pool. The key-pool is only used to check one-
time-keys a particular client used to compute a MAC of the message (s. later 
protocol steps). The CIO does not store any keys that will be sent by the
server in future protocol steps. 

When CS2 (in rsp1) was received, the client first validates the server's
signature and then decrypts Rs. At this point the mutual authentication is
completed, client and server share the secret Rs. Since public-key encryption 
is used, Rs is unknown to the proxy and to the rest of the world. 

Before sending the next request, the client creates a Server Information
Object (SIO) which is very similar to the CIO object (s. the left side of fig.
5). As mentioned above the shared secret Rs is used as initial seed for both
pseudo-random-number generators (PRNGr and PRNGs). As shown in fig. 5 
the SIO also contains a key-pool which will be filled up by the PRNGr. This
PRNGr must be exactly the same pseudo-random-number generator
implementation as PRNGs on the server side which is used by the server to
generate the one-time-keys for sent messages. Fig. 5 depicts the relationship 
between PRNGs.

The communication continues with client requests (req2) and server
responses (rsp2). The client ORB adds the security context SC3 to each
request which protects integrity and authenticity of the request message (s.
Table 3).

In order to compute the MAC protecting the message the client generates
a Ki key. These keys are being generated by PRNGs of the particular SIO
object. K0 is generated with the aid of the seed value Rs. Every other Ki key
used in further messages is generated by the PRNGs automatically. The 
MAC of the message sequence { MT, i, FP, method name, method
parameters} are computed using the key Ki. This sequence contains i which

Table 3. Security Contents SC3 
Field Description
Message Type (MT)              Context ID (in this case 3)

Fingerprint of the client’s verification certificate
Message Authentication Code of the sequence
MT, i, FP, method name, method parameters}
computed with the one-time-key Ki

Client certificate fingerprit (FP)
MAC
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is the position-index of the particular Ki in the server's key-pool generated
by the server's PRNGr.

After receiving a protected message the server first searches for a CIO
object storing the fingerprint (FP) of the client. If such a CIO exists the
server checks the MAC. The MAC is valid only, if Ki matches with the ith

element of the key-pool stored in the CIO object. In this case, the server
deletes Ki from his pool and responds to the client. Server responses are
protected by SC4 which is very similar to SC3 as shown in Table 4. 

After receiving a protected server response, the client first checks the
MAC. The MAC is valid only, if Ki used by the server matches with the ith

element of the key-pool stored in the particular SIO object. In this case, the
client generates Ki+1 and sends a new protected request (i is then replaced 
with i+1) to the particular server. 

If any error occurs during the communication (s. req3 on Fig. 4), for
example, the client’s fingerprint is unknown to the server or there was an
error (attack) by computing the MAC, the server initializes a new
authentication process by sending a message with the security context SC5
(s. in Table 5).

Receiving a message with SC5, the client must re-authenticate himself. In
order to do that, the client must re-start the authentication process by sending 
the failed req3 request embedding SC1 again.

3.4 Providing delegation with X.509 certificates 

An alternative approach to solve the delegation problem is the modified 
use of restricted proxies as proposed by B. C. Neuman [8]. In order to 

Table 4. Security Contents SC4 

Table 5. Security Contents SC5 

Field Description
Message Type (MT)               Context ID (in this case 4)

Fingerprint of the server’s verification certificate
Message Authentication Code of the sequence
{MT, i, FP, method name, results}
computed with the one-time-key Ki

Server certificate fingerprint (FP)
MAC

Field Description
Message Type (MT)        Context ID (in this case 5)

Certificate of the CA the server trusts
Certificate including the server’s public key used for signature
verification
Digital signature of the sequence {MT, CC, VC}

CA certificate (CC)
Vertification certificate (VC)

Signature
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provide this delegation mechanism in π2, the certificate verification
procedure of existing SSL implementations has to be modified. At this point,
we only describe the main steps that are necessary to propagate the client’s
identity to the server. 

After establishing an SSL connection to the proxy, the client ORB can 
authorize πf

2 to act on his behalf The client ORB signs a sequence S
including the fingerprint of the signature verification certificate of πf

2, the
fingerprint of the client’s signature verification certificate and the expiration
time of S. Then the client ORB sends S to the proxy by embedding it in the
first CORBA method invocation using the service_context. After that 
the proxy finds a suitable implementation of the target and establishes an
SSL connection to that server. Normally, in the mutual SSL authentication
process one X.509 certificate of each participant is needed. In this case, the
proxy does not only send its own certificate to the server, but also the signed 
S. Then the targeted server verifies the proxy ′s certificate which is signed by 
the trusted certification authority of the PKI. After that he verifies the
client’s signature on S and compares the fingerprint of certificate presented 
by the proxy with the fingerprint of the proxy’s certificate sent in S. Finally, 
the server checks the expiration time of S. This way, the server knows who
initiated the given revocation. The server’s access control decisions can be
made by using this securely delegated identity. 

3.5         Implementation de tails 

In order to support different operating systems the complete π2 

architecture is based on pure Java technology. In our prototype we used the 
ORB implementation of the Object Oriented Concepts (OOC). The Java
version of ORBacus v. 3.3 is available with source code and it is free of 
charge for non-commercial use. This is important since we had to modify the 
ORB in order to provide proxy functionality (s. ORB’ in fig. 2). OOC offers
for his different ORBS a Java based SSL implementation, called FreeSSL. 
This product as well its source code are free available by OOC. 

The public-key infrastructure utilized for our key-management purposes
was the developer edition of the Entrust/PKI v. 4.0 which is free 
downloadable by Entrust Technologies. In order to integrate the PKI services 
into FreeSSL we took the Entrust’s Java toolkit (Entrust/Toolkit for Java v.
5.1) which is also free available by Entrust. 

The communication protocol we introduced applies the Java based 
crypto-library of IAIK (Institute for Applied Information Processing and 
Communications) including the PRNG implementations. The most important 
cryptographic algorithms applied in our prototype are RSA for asymmetric 
encryption and digital signatures, and H-MAC in order to compute MACs. 
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4.           CONCLUSIONS 

In this paper two solutions for the problem of secure and transparent 
delegation in the CORBA proxy platform π2 are presented. π2 supports
applications in mobile and wireless environments by transparently
integrating two proxies which encapsulate the wireless link, and thus are
able to hide its characteristics. 

Standard mechanisms providing end-to-end authentication and
encryption like SSL or the CORBA security service do not work in a proxy
architecture, as these leave the proxy behind useless. Therefore special 
tailored solutions are needed. Both solutions presented in this paper are 
using SSL and the services of a PKI in order to secure the sub-connections. 
SSL provides authentication and encryption on the sub-connections client- 
to-proxy and proxy-to-server. The protocol we first introduced provides end-
to-end authentication which is based on a PKI and the use of asymmetric 
encryption to exchange a shared secret only known to client and server. This 
shared secret is used to initialize pseudo-random-number generators. The 
generated random numbers are used as one-time-keys in the computation of 
message authentication codes ensuring message integrity and authenticity. In
the case of the redirection of request to a different server in an advanced 
invocation handling mode, this new server can force a new mutual 
authentication. The second approach which is a slight modification of the 
key-exchange procedure in SSL, makes it possible to delegate the client’s 
identity to the proxy, securely. 

The solutions fulfill the security requirements of the mobile user on the 
one hand and retain the functioning of π2 by supporting the different
invocation handling modes on the other hand. 
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