
WIDENING TRADITIONAL
MANAGEMENT PLATFORMS FOR
MANAGING CORBA APPLICATIONS

Markus Debusmann, Reinhold Kroeger
Fachhochschule Wiesbaden - University of Applied Sciences
Department of Computer Science, Distributed Systems Laboratory
Kurt-Schumacher-Ring 18
D-65197 Wiesbaden, Germany
{debusman | kroeger} @ informatik.fh-wiesbaden.de

http://wwwvs.informatik.fh-wiesbaden.de

Abstract During the past years, enterprises became more and more dependent on the busi-
ness processes that are often implemented using CORBA middleware. Todays
management platforms ignore the dependency between applications and their
middleware, and thus give up valuable information sources that are required for
proactive management.

In this paper an Integration System is presented by which traditional man-
agement platforms are widened for managing CORBA applications. Thus, the
investments for an existing management platform are protected. The Integra-
tion System consist of a flexible and highly available Integration Agent and the
Generic Management Interface for querying management-relevant information
from CORBA applications.

Keywords: CORBA, application management, management platforms

1. INTRODUCTION
Today, IT-supported business processes are the vital spots of all enterprises.

To cover heterogeneity in hardware and software and to support adaptability,
these business processes are frequently implemented on the basis of multi-
tier architectures using a middleware layer as glue for integrating the various
application components. Due to its rich functionality, CORBA [OMG, 1998b]
has received broad acceptance within industry and is thus used for implementing
business-critical applications more and more.

In addition, novel applications in the area of Web-based electronic business,
require high availability (24x7), short response times and other service-oriented

http://dx.doi.org/10.1007/978-0-306-47005-9_29

246 MANAGEMENT & MONITORING

criteria in order to achieve customer satisfaction and their long-term binding.
These requirements can only be met by establishing an application management
strategy that permanently monitors the status of the running application envi-
ronment. Furthermore, so-called proactive management is necessary which,
based on extracted information from all layers of the system, detects creeping
problems and leads to corrective actions before real failures occur.

Traditional management platforms, like HP IT/Operations [HP, 1997] or
Tivoli Management Environment (TME) [Tivoli, 1998] were more oriented
towards element management and often only provide a very limited type of
application management. Usually, existence of application processes is checked
at the operating system level, and application log files may be parsed locally,
checking for relevant events actively notified by the application.

In many companies large data processing centers operate the business-critical
applications in three shifts. The operation requires an administration center
(''Leitstand'') that reflects a considerable investment also regarding the specific
skills of the administrators. An individual administrator may be responsible
for managing a series of different applications or infrastructure components.
For him, the view upon a managed system must be as simple as possible and
the frequency of events appearing on his console must be kept low in order
to ensure their correct and timely processing. Especially when running a dis-
tributed CORBA application, the multiplicity of components involved and their
static and dynamic relationships are hardly to supervise without any computer-
based assistance. To protect the investment, operating concepts for new types
of applications, like modern multi-tier CORBA-based flight information sys-
tems, have to be invented which ensure a seamless integration into the existing
management environment.

As described in [Hegering et al., 1999] CORBA gains increasing signifi-
cance as a management architecture and thus will serve as a basis for building
management platforms in the future. Approaches like JIDM [OG, 1997] pro-
vide a simple mapping of SNMP and OSI management information models
onto CORBA and vice versa and thus provide interoperability. But for short-
term to mid-term solutions an integration of CORBA applications into existing
management platforms beyond simple interoperability is required.

This paper presents a solution to this dilemma. The focus of the paper
is on a solution, the Integration System and its central component the Inte-
gration Agent, for integrating CORBA-based applications into a traditional
management environment. The approach presented here was developed in a
joint research and development project between the Distributed Systems Lab-
oratory of Fachhochschule Wiesbaden - University of Applied Sciences, and
Lufthansa Systems GmbH, Kelsterbach, Germany. The project focussed on
integrating CORBA-based flight information applications into traditional man-
agement platforms, HP IT/Operations in this case. To achieve this, a so-called

Widening Management Platforms for Managing CORBA Applications 247

Integration System has been developed which is placed between the manage-
ment platform and the CORBA application. The integration system hides the
complexity of the managed distributed application from the administrator and
allows a seamless integration into the management platform. The integration
system is itself also based on CORBA.

The paper is organised as follows. Section 2 identifies the requirements
for managing CORBA applications from the perspective of a data processing
center in more detail. The overall architecture of the proposed solution is
outlined in section 3. It mainly identifies General Management Interfaces and
the Integration Agent as constituent components of the integration system. The
Generic Management Interface is presented in section 4 while the concept of
the Integration Agent is described in section 5 with special emphasis on its
modularity and reliability. In section 6 the cascaded configuration of Integration
Agents is described which solves the distributed case in general. The paper
closes with a summary in section 7.

2. REQUIREMENTS FOR MANAGING CORBA
APPLICATIONS

In large scale data processing centers any viable solution for managing
CORBA applications has to be integratable into the existing management plat-
form. Typical simple interfacing procedures are based on processing various
application and system logs, on checking the existence of processes and on
executing commands/scripts in order to launch some actions in the managed
system. To achieve this, the management station of an administrator commu-
nicates with its management agents running locally on the managed nodes.
Furthermore, any acceptable solution has to be as generic as possible, i.e. it
should be easily adaptable to other upcoming CORBA applications, and should
be highly independent of the ORB used, taking into account that no OMG
management interfaces have been standardised so far.

Managing highly available applications (99,98%) as stated for modern e-
business applications requires a management system that is also highly avail-
able. Generally it is expected that the management system itself is even more
reliable and robust than the managed system.

In contrast to classical centralised mainframe applications, for CORBA ap-
plications the management system has to control a possibly large number of
nodes and components involved. Furthermore, a CORBA application is es-
sentially dependent upon the CORBA middleware components and the used
CORBA services. Thus, all the underlying components and services have to be
taken into account as well. But even modern management platforms generally
have no specific build-in model which reflects the structure and the capabilities
of a CORBA-based environment. While this simplifies and unifies the view

248 MANAGEMENT & MONITORING

of all the managed systems, it also gives up a number of valuable information
sources especially needed for proactive management which aims at early de-
tection and removal of latent faults. In this case knowledge of the internal state
of the application is generally required. This is especially true when a dynamic
reconfiguration of the application during runtime has to be supported in order
to meet the availability requirements.

As a result, in order to advice corrective actions the management system has
to determine a global picture of the managed CORBA application by aggregat-
ing and correlating status information from the individual application compo-
nents and all the underlying middleware, system and network components the
application is relying on.

3. GENERAL ARCHITECTURE
Figure 1 depicts the high-level architecture of the proposed Integration Sys-

tem (IS) for managing CORBA applications using existing management plat-
forms. The IS consists of the Integration Agent (IA) and the Generic Managing
Interface (GMI). The IA collects management-relevant information from all
layers of the managed environment: from the application layer, the CORBA
layer, the system layer, and the network layer.

Figure 1 . Overall architecture of a solution for managing CORBA applications

From each layer the information is extracted via a layer-specific instrumenta-
tion, respectively. In the application layer generic Portable Interceptors [OMG,
1999] in combination with an Application Response Measurement (ARM) in-
strumentation [TOG, 1998] have been successfully evaluated for performance
management [Kloos, 2000] and will be the method of choice in the future.
Currently hand-coded instrumentation is often used. Due to missing standard-
isation, the extraction of information from the CORBA layer depends on the
facilities provided by the middleware platform used. If management support
is provided, the CORBA layer typically appears as an SNMP private MIB ex-

Widening Management Platforms for Managing CORBA Applications 249

tension, e.g. for IONA OrbixManager [IONA, 1998] or BEA Manager [BEA,
1998]. For the system layer and the network layer a number of information
sources exist, like UNIX syslog and utilities, NT event log and system monitor,
or SNMP MIBs [Stallings, 1999].

The main focus of the Integration Agent is the monitoring of the upper two
layers. To provide high-quality metrics, information collected from the appli-
cation layer and the CORBA layer is validated against information collected
from the two lower layers.

In order to check the correct functioning of the application logic, to ensure
progress and to compute service-oriented performance metrics the IA issues
probing test transactions against all critical application objects and middleware
services. In analogy to the network ’ping’ utility for checking reachability these
probing transactions have been called ’application pings’. The corresponding
functions have been realised as part of the GMI which is a CORBA interface
attached to all relevant CORBA application components. The GMI is covered
in detail in section 4. As described above, the CORBA services which cannot be
enhanced by a GMI have to be monitored as well in an appropriate manner. For
them, service requests are issued which are used for error detection and measur-
ing response times thus excluding stuck-at problems or overload situations. As
an example, the CORBA Naming Service [OMG, 1998a] is queried to assure
that all necessary CORBA application objects are registered. Subsequently,
these can be checked via test transactions supplied through their management
interfaces.

All the described checking and validating logic is encapsulated in the IA
which constitutes the second type of components of the Integration System.
An Integration Agent collects information from different sources, processes
incoming notifications, executes validating logical functions, computes metrics
and communicates with the traditional management platform, if so desired. The
needed high level of adaptability of an IA and its basic fault-tolerance are its
main non-functional properties. As will be seen, an IA can exhibit CORBA
client and CORBA server functionality. Thus, IAs may be cascaded for covering
distributed environments and for supporting aggregation and abstraction (see
section 6).

The computed metrics and events generated by the IA are offered to tra-
ditional management platforms. The mechanism for providing these types of
information is an implementation issue. A possible solution is using the API
provided by the management platform directly from the Integration Agent.

250 MANAGEMENT & MONITORING

4. A GENERIC MANAGEMENT INTERFACE FOR
CORBA APPLICATIONS

The Generic Management Interface extends the CORBA application via a
static CORBA IDL interface and enables management applications to access
management-relevant information from the application objects. The GMI sup-
ports the following functions defined in CORBA IDL: list (query the informa-
tion model offered by the application object), get (read a variable), set (write to
a variable), action (invoke an operation through the GMI), and ping (execute a
test transaction, a so-called application ping).

The information exchanged via the methods of the GMI is encoded using
the Extensible Markup Language (XML) [W3C, 2000]. An XML Document
Type Definition (DTD) defines the formats of the exchanged XML documents.
This solution has the advantage that the methods of the management interface
are always the same, i.e. all application objects that support the GMI can be
managed by the same manager. The concrete management information and
functionality is individually defined for each managed object type by its asso-
ciated information model.

Compared to the CORBA any type, the use of XML has several advan-
tages. XML supports the definition of grammars that determine the format
of the interchanged information which provides great flexibility. In addition,
XML is in a human readable format and is supported by numerous tools which
enormously support the development and test phase. From a performance per-
spective, the integration of an XML parser is not a lightweight solution. But on
the other hand, the use of CORBA any and their dynamic decomposition using
the CORBA DynAny is also a very expensive approach.

Figure 2 depicts the integration of the GMI into an application object. Of
course, the taken approach requires application-specific code for defining and
supporting the offered information model. Requests to the GMI are passed
to an XML parser that analyses the XML documents given as parameters to
the requests. After parsing the XML documents, an access controller handles
the interaction with the application logic, e.g. the value of some application
variables may be read or a reconfiguration action may be executed. The result
is transformed back into an XML document and returned to the caller of the
GMI.

Using the application ping the business logic of the application object can
be checked. During an application ping all relevant parts of the application
object should be involved. To the outside world the result generally is a simple
boolean value representing the status of the application object (red/green deci-
sion). But it is also possible to have a more fine-grained result represented as a
numerical value or an enumeration. Furthermore, the caller of the application
ping may take a timestamp immediately before the call and when it returns.

Widening Management Platforms for Managing CORBA Applications 251

From measuring this response time of the probing transaction the caller may
also deduce some load information.

The GMI enables a flexible monitoring and customizing of application ob-
jects during runtime as needed by the IA. Furthermore, not discussed here in
detail, a CORBA client for the GMI with a graphical user interface has been
developed which allows for visualising internal variables and metrics of the
running application according to the exposed information model.

Figure 2. Integration of the Generic Management Interface into an application object

5. CONCEPT OF THE INTEGRATION AGENT
This section describes the Integration Agent with special emphasis on how its

main design goals, namely modularity and high availability, have been achieved.
Due to these features, it is well-suited to extend existing management platforms
for the ability to manage CORBA applications.

Modularity is required in order to integrate a large number of different infor-
mation sources and to adapt the management logic to the specific project needs.
The IA provides a framework for dynamically loading modules at runtime that
provide the actual functionality of the IA. This framework is also the basis for
defining a hierarchy of operating modes to cope with failure situations.

The principal structure of the IA is depicted in Figure 3. The central compo-
nent is the Module Manager. It provides a generic mechanism for dynamically
loading modules into the IA and activating them during runtime. Loaded mod-
ules are under control of the Module Manager.

Furthermore, the Module Manager provides a framework for concurrent
communication between modules. Communication is based on asynchronous
messaging, and thus enables concurrency within the IA. To achieve this, the
Module Manager has an internal pool of threads that handle incoming mes-
sages. The number of threads in the thread pool is limited and all threads
are created during initialisation. This prevents performance losses because of
thread creation and deletion. In addition, an inflation of the process is prevented.

Modules are divided in so-called action modules, event modules, and logic
modules respectively. Action modules are used for carrying out desired actions

252 MANAGEMENT & MONITORING

Figure 3. Internal architecture of the Integration Agent

in the managed system, e.g. querying an information source or starting/stopping
a process. An action module has to implement a simple generic interface
that is used by the Module Manager to communicate with the module. All
functionality required to communicate with the outside world is encapsulated
by an action module and thus transparent for the Module Manager. In principle,
action modules are of relatively small complexity. Compared to the Module
Manager, action modules are passive. They are activated if a thread of the
Module Manager executes methods of an action module.

Event modules are used for integrating event sources into the IA. In contrast
to action modules, event modules are active and wait for the monitored system
to submit an event, e.g. sending an SNMP trap or writing a log entry. In case
an external event is detected, the event module generates an internal event that
is handled by the logic modules.

The logic modules are the driving components of the IA and implement the
intrinsic management algorithms. Logic modules are started by the Module
Manager. Subsequently, they run concurrently to the Module Manager, i.e.
they normally create their own internal threads that handle the necessary tasks.
Logic modules are able to send commands to action modules and process their
results. Furthermore, logic modules can handle events that were sent from event
modules. In addition, logic modules can also sent their own events, e.g. if one
logic module detects a critical situation it may advertise this by sending events
to other logic modules.

The adapter implements a common interface between the Module Manager
and the modules. It abstracts from the various module types and is responsible
for the dynamic loading and unloading of a module.

So far, a number of concrete modules are available. Action modules exist
for sending SNMP requests, for executing shell scripts and programs, and for

Widening Management Platforms for Managing CORBA Applications 253

performing CORBA method invocations (CORBA client). An event module
is implemented that analyses a proprietary log format. Furthermore, logic
modules exist for checking system configurations, for writing a logfile to the
IT/O management platform, and for offering a Generic Management Interface
(CORBA server) as described in section 4. The latter module enables the
distribution of Integration Agents as described in the following section.

High availability is an essential characteristic of a management system when
managing business-critical applications. To assure high availability the IA
applies a self-checking process pair, continuous self-diagnosis, and hierarchical
operating modes.

Figure 4. Relationship between the Starter Process and the Integration Agent

The operating system's view upon the IA is illustrated in Figure 4. The IA is
a process under the control of a so-called starter process which starts and stops
the IA. The complexity of the starter is relatively small thus ensuring a high
level of correctness. The IA and the starter process regularly exchange heartbeat
signals to indicate each other that they are working correctly. If the starter does
not receive a signal it assumes that the IA is no longer running or hangs and
restarts it again. In case the IA does not receive a heartbeat signal from the
starter it shuts down itself. To complete a supervising chain, the existence of
the starter is ensured by the traditional management platform.

The status memory, a shared memory segment that is created by the starter
during initialisation and loaded from a file, is used for storing relevant status
information of the IA which is intended to survive crashes of the IA. After a
restart the IA reads from the status memory and thus can immediately resume
from its saved state. Each module has its own section within the shared memory
segment and is responsible to assure the consistency of its part of the shared
memory segment by setting a consistency flag after all write operations to its
section have been processed successfully. The last consistent state of the module
is kept in the shared memory segmentt itself and is used after a crash.

By self-diagnosis of the loaded modules and the Module Manager error de-
tection takes place. If loaded modules are considered faulty or if their operating
preconditions are no longer valid they are swapped out of the IA. To provide an
orderly service, so-called operating modes have been introduced. Each mode
is characterised by a set of successfully running modules. The modes depend
successively on each other, i.e. the higher the operating mode the more func-

254 MANAGEMENT & MONITORING

tionality is integrated into the IA by the loaded modules. The Module Manager
will always try to be in the highest possible operating mode thus automatically
adapting to the current problem situation.

Within the cooperation with Lufthansa Systems the following three modes
were identified and realised. Mode 0 (Hardcore) comprises the basic functional-
ity. Within this mode the IA only depends on services provided by the operating
system, i.e checking the existence of processes through a system module, log
processing and SNMP. In Mode 1 (CORBA Client) the IA has the ability to
invoke methods of CORBA server objects. Within Mode 2 (CORBA Server)
the IA exports its internal information through a logic module with Generic
Management Interface (see section 4), i.e. the information may be queried by
other IAs that are at least running in Mode 1.

6. CASCADING INTEGRATION AGENTS
In general, the CORBA client functionality of the Integration Agent enables

the supervision of a distributed CORBA application by a single IA. If the infor-
mation collected through the CORBA client module has to be validated against
node-specific constraints, local views of other IAs are required. For example,
the overall application may be in a correct state if a certain number of appli-
cation objects run on the available server machines. This requires a two-level
checking: first, the application objects have to be reached via an application
ping, and second, the number of object instances on the different nodes have to
be checked. This problem can be solved by cascading IAs.

Figure 5. Hierarchical arrangement of Integration Agents

Widening Management Platforms for Managing CORBA Applications 255

By establishing a hierarchical configuration of IAs as illustrated in Figure 5
several views of individual IAs can be aggregated into a more complex view.
The local IAs export their information model through their CORBA server
module (logic module). A superior IA uses its CORBA client module (action
module) to query the CORBA server modules of the secondary lAs. The in-
formation queried by the superior IA through its CORBA client module can be
reexported through its CORBA server module so that a hierarchy of any depth
can be configured.

The aggregation of several local IA views by one superior IA simplifies the
view upon the managed system. For management tools querying information
from the superior IA the distribution of the managed components is transparent.
This simplifies the integration of the IA into an existing management platform.

7. SUMMARY

Traditional management platforms have deficiencies in managing CORBA
applications. Application-internal information that is a prerequisite for proac-
tive management can often not be extracted because processes are regarded as
black boxes. This paper presents an Integration System consisting of the Inte-
gration Agents and the Generic Management Interface for managing CORBA
applications using existing management platforms. The central component is
the Integration Agent that collects and aggregates metrics from the managed
system and interacts with traditional management platforms.

The Generic Management Interface was developed for extracting manage-
ment-relevant information from CORBA applications. The interface consists
of a static CORBA IDL interface that is integrated into the application. The
exchanged messages are flexibly defined using XML.

The Integration Agent is characterised by two main concepts: modularity and
high availability. Flexibility is achieved by modules that can be dynamically
loaded into and swapped out of the Integration Agent. High availability is
achieved by implementing the Integration Agent as a self-checking process pair.
In addition, the Integration Agent runs in various operation modes whereas the
current mode is determined by continous self-diagnosis. Several Integration
Agents may be configured in a cascading manner. This hides the distribution of
the managed application to the administrator and thus simplifies management.

The Integration System is implemented and was easily integrated into an HP
IT/Operations management environment. The Generic Management Interface
was well accepted by application developers and administrators. Currently, the
Integration System is in its test phase.

256 MANAGEMENT & MONITORING

Acknowledgments

The authors like to thank Christoph Weyer from Fachhochschule Wiesbaden
for his ideas and implementation work concerning the module manager frame-
work. We also thank Dirk Lindner, Arno Schaefer, Thomas Kullmann, Pascal
Mougnon, and Thomas Piwek from Lufthansa Systems for their support and
numerous valuable discussions.

References
[BEA, 1998] BEA (1998). BEA Manager Reference Manual 2.0. BEA Systems.

[Hegering et al., 1999] Hegering, H.-G., Abeck, S., and Neumair, B. (1999). Integrated Man-
agement of Networked Systems: Goals, Architectures, and their Operational Application.
Morgan Kaufmann Publishers.

[HP, 1997] HP (1997). HP Open View IT/Operations Concepts Guide. Hewlett Packard. B4249-
90011, Version A.04.00.

[IONA, 1998] IONA (1998). OrbixManager User’s Guide. IONA.

[Kloos, 2000] Kloos, D. (2000). Performance Management of CORBA Applications Using a
Generic Instrumentation. Diploma thesis, Distributed Systems Laboratory, Fachhochschule
Wiesbaden - University of Applied Sciences, Germany, (in German).

[OG, 1997] OG (1997). Inter-Domain Management: Specification Translation. The Open
Group. Document No. 509.

[OMG, 1998a] OMG(1998a). CORBAServices: Common Object Services Specification. Object
Management Group.

[OMG, 1998b] OMG (1998b). The Common Object Request Broker: Architecture and Specifi-
cation. Object Management Group. Revision 2.3.

[OMG, 1999] OMG (1999). Portable Interceptors. Object Management Group. Document no.:
orbos/99-12-02.

[Stallings, 1999] Stallings, W. (1999). SNMP, SNMPv2, SNMPv3, and RMON 1 and 2. Addison-
Wesley, 3rd edition.

[Tivoli, 1998] Tivoli (1998). TME 10 Framework User’s Guide. Tivoli Systems. Version 3.6.

[TOG, 1998] TOG (1998). Systems Management: Application Response Measurement (ARM)
API. The Open Group. Document no.: C807.

[W3C, 2000] W3C (2000). Extensible Markup Language (XML) 1.0. World Wide Web Con-
sortium. Second Edition, W3C Recommendation.

	WIDENING TRADITIONALMANAGEMENT PLATFORMS FORMANAGING CORBA APPLICATIONS
	1. INTRODUCTION
	2. REQUIREMENTS FOR MANAGING CORBAAPPLICATIONS
	3. GENERAL ARCHITECTURE
	4. A GENERIC MANAGEMENT INTERFACE FORCORBA APPLICATIONS
	5. CONCEPT OF THE INTEGRATION AGENT
	6. CASCADING INTEGRATION AGENTS
	7. SUMMARY
	References

