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Abstract  The ability to perform live software upgrades is essential for long-running ap-
plications that provide critical services. Program modifications are necessary as
programmer errors and new user requirements are uncovered. If software is to
remain relevant, it must be upgradable. The Eternal Evolution Manager allows
distributed CORBA applications to be upgraded while they continue to provide
service. In addition to avoiding planned downtime, the Evolution Manager ac-
complishes the difficult tasks inherent to software evolution with minimal help
from the application programmer. With our live upgrade techniques, and the
underlying fault tolerance of the Eternal System, we can allow applications to
run forever.

1. INTRODUCTION
Halting an executing application to modify its source code has traditionally
involved difficult tradeoffs. The importance of the intended code improvement
must be weighed against the revenue loss that is inevitable when an application
incurs planned downtime. It might never be feasible to bring down critical com-
puter systems, such as those that control the life support systems in spacecraft
or hospitals. Oftentimes, software modifications to fix programming errors
or to improve functionality are forsaken because an application must provide
continuous service.

*The research in this paper has been supported by DARPA/ONR Contract N00174-95-K-0083,
DARPA/AFOSR Contract F3602-97-1-0248 and MURI/AFOSR Contract F49620-00-1-0330.
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Figure 1. The Eternal System.

1.1. Fault Tolerant CORBA
The Common Object Request Broker Architecture [12] (CORBA) allows dis-
tributed client/server objects to interoperate, regardless of the operating system,
platform or programming language being used. Clients invoke the methods de-
fined in the server’s Interface Definition Language (IDL) interface, through an
Interoperable Object Reference (IOR) without knowing where the server re-
sides in the network. The Object Request Broker (ORB) routes invocations and
responses between distributed client and server objects.

The Eternal system, shown in Figure 1, provides CORBA applications with
transparent fault tolerance. The Interceptor diverts the CORBA invocations and
responses to the underlying Totem [10] protocol, which reliably multicasts the
messages to all of the members of the recipient object group. The Logging-
Recovery Mechanisms allows objects to recover from faults by initializing a
new replica’s state with the state of its object group. The Evolution Manager
uses the object replication necessary for achieving fault tolerance to achieve
live upgrades of CORBA application objects. 1

The Replication Mechanisms place replicas into object groups. Assuming
an active replication scheme, any invocation to the object group is received
and responded to by all of the object replicas in the same order. Duplicate
invocations and responses are suppressed so that replicas remain consistent.

1 If evolution is required but fault tolerance is not, the objects are replicated only during the upgrade. Because
the Replication Manager already provides replication to achieve fault tolerance, and because an application
that requires no downtime from an upgrade will most likely require no downtime due to faults, replication
for evolution effectively incurs no additional overhead beyond that required for fault tolerance.
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Replicas can be added to (and removed from) object groups and the Replication
Mechanisms ensure that the new replicas receive the proper messages. Thus,
we kill and start individual replicas during an upgrade without interrupting the
behavior of the object group as a whole.

2. THE ETERNAL EVOLUTION MANAGER
The Eternal Evolution Manager (composed of the Preparer and the Upgrader)
upgrades CORBA applications without interrupting their execution. The Pre-
parer, with application programmer assistance, performs static analysis of the
original and new versions of an application. The Upgrader uses the results of
this static analysis to perform a fully-automatic live upgrade. An application’s
performance is minimally impacted while an upgrade is underway, and entirely
unaffected otherwise. The steps that must take effect during an upgrade are
complicated, and would be tedious and error-prone for a human to perform.
We automate most of these steps. The programmer is not required to main-
tain aspects of the old code (such as the old IDL interfaces) when writing the
new version of the code. But objects must inherit from and implement the
Checkpointable interface if they are intended to be upgradable, and, indeed,
if they are to be recoverable by the fault tolerance part of the Eternal system.
The Checkpointable interface contains a method get_state( ) that retrieves
the state of an object and a method set_state() that initializes the state of an
object. We aim to handle all reasonable code modifications, including those
to an object’s interface, method implementations, and renaming, removing or
adding an instance variable, etc. Replacing an old version of an application
with a completely unrelated new version is unreasonable as there is no way to
transition between such “versions”.

The Eternal Preparer compares the old version of the code P_old and
the new version of the code P_new in preparation for the live upgrade. This
offline analysis automatically generates state transfer code and, with application
programmer assistance, generates state conversion code [15]. Whenever a
replica is added to an object group, state is transferred from the object group
to the new replica. The Preparer automatically generates the intermediate code
P_inter, a superset of P_old and P_new, which executes during the transition
between P_old and P_new. State conversion is needed during this transition
if the structure of P_old’s state differs from the structure of P_new’s state.
Additionally, the Preparer supplies the Upgrader with the necessary upgrade
steps.

2.1. The Eternal Upgrader
The Upgrader performs a series of individual replacements which “nudge”

the application towards an upgraded state but which neither affect its behav-
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ior nor interrupt the executing application. The replicas being upgraded are
replaced, one at a time 2, by their intermediate versions, which continue to ex-
ecute the old methods. While one replica is down during this replacement, the
other member(s) of the object group continue to provide service, masking the
replacement from the application. Once all of the intermediate versions are ex-
ecuting, and once the object group is quiescent, we effect an atomic switchover
after which only the new methods are executed. Because of the underlying
reliable totally-ordered multicasts within the Eternal system, all of the replicas
receive the switchover messages at the same logical time and, thus, the state
of the upgraded replicas remains consistent. Then, to clean up the application,
the intermediate object replicas are replaced, one at a time, with final versions
containing only the new version of the code.

2.2. An Example Upgrade
The upgrade process is simplest when the new version of an object has an
interface that is syntactically and semantically identical to the interface of the
old version. An interface-preserving upgrade can be isolated from the other
application objects. When an object’s interface changes during an upgrade, the
situation becomes more complex. Consider a coordinated upgrade in which
the original server contains a method B.m(void) that is upgraded to B.m(int).
Upgrading the B servers before upgrading the A clients can result in invalid
client invocations of B.m(void) on the new server.

We use coordinated upgrade sets to upgrade multiple objects concurrently.
The clients that invoke a method undergoing an interface change must be up-
graded at the same time as the modified server to provide the correct parameters
for the invocation. The mechanics of a coordinated upgrade strongly resemble
those of an interface-preserving upgrade. We therefore only describe the more
complicated scenario, shown in Figure 2. The figure shows the sequence of
invisible replacements performed during the coordinated upgrade of a simple
application.

2.3. Quiescence
An object cannot be upgraded unless it is quiescent (not executing any of its
methods). For example, consider a method A.m() that invokes a method B.n().
If B.n() has been invoked but has not completed, then B is not quiescent, because
it is executing, and A is not quiescent because it is stalled waiting for a response
from B. Note that the invocations discussed here are synchronous. We cannot

2 The replicas are replaced individually because we aim to preserve the fault tolerance of the application
during the upgrade.
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Figure 3. Upgrading without waiting for quiesence yields indeterminate results.

completion of those operations is signaled to the Upgrader.
An object must be quiescent when it undergoes an invisible replacement

and during the atomic switchover, both of which involve a transfer of state.
To see why this condition is necessary, consider transferring the state of three
replicas A1, A2 and A3 of the same object when they are executing aMethod( ).
The replicas have finished executing the lines of code indicated by the arrows in
Figure 3, and hence have different states. Eternal suppresses duplicate messages
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Figure 4. The old and new versions of the Count class.

so we cannot predict which of the replicas’ get_state() operations will return,
and a deterministic state cannot be returned. Similarly, receiving the state at a
non-quiescent point would result in an inconsistent result.

3. UPGRADE CODE GENERATION
Our live upgrade methodology utilizes an intermediate period, during which
the old code coexists with the new code within the automatically generated in-
termediate code. Before the switchover, the intermediate code behaves like the
old version of the code and after the switchover, the intermediate code behaves
like the new version of the code. By encapsulating the old and new function-
ality within a single object, switching between the executing code versions is
expedited.

Consider a class Count  whose update Count() method increments or decre-
ments countVar. The new version of the method increases or decreases
countVar by inc. Both classes are shown in Figure 4.

The Preparer parses the two classes and automatically generates the inter-
mediate class Count_inter shown in Figure 5. It contains a member variable
switchFlag, indicating whether the switchover has occurred, and which de-
termines whether incoming messages are “handled” by the old code or the new
code. The methods defined in the intermediate object are a superset of those
defined in both the old and the new code versions. The old state variables are
kept distinct from the new state variables by appending the variables with either
the _old or the _new suffix. The state of the old variables is transferred (and
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Figure 6. The old, intermediate and new versions of the Count  class.

converted, if necessary) to the new variables entirely within the intermediate
object, avoiding an unnecessarily time-consuming encoding and decoding of
state. By breaking the method implementation encapsulation of Count  and
Count_new within Count_inter, the set_state() method can assign the (most
likely) private state variables directly, without using their (possibly lacking)
accessor functions.

Methods cannot be overloaded in IDL interfaces, so the Count_inter IDL
code shown in Figure 5 (which contains both UpdateCount() and Update-
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Count(int)) will not compile. We have presented the sample intermediate code
this way for the sake of simplicity. The Preparer actually generates two differ-
ent intermediate objects (see Figure 6), temporarily renaming the UpdateCount
method. The atomic switchover occurs when intermediate IDL1 is executing.

4. WRAPPER FUNCTIONS

Wrapper functions translate between syntactic and semantic differences in
methods and their synthesis requires significant programmer assistance. Some
method signature upgrades cannot be masked with wrapper functions. The ex-
amples shown in Table 1 illustrate the feasibility of using wrapper functions for
different types of method upgrades.

The first method upgrade in Table 1 eliminates a parameter from the new
method. After receiving user verification that the i variables are equivalent,
translation between the two methods is accomplished by not passing the sec-
ond parameter to the new method. The wrapper function that is automatically
generated is
aMethod(int i, int r) {
wrappedObj aMethod(i);

}

The second method upgrade in Table 1 changes the type of a method pa-
rameter. It is simple to convert from a float to an integer, and, with input from
the application programmer, translation between less obvious types changes is
tractable.

It is much more difficult to write a wrapper function for an upgrade that adds
information to a method. The Preparer cannot automatically generate wrapper
code that initializes i for the third upgrade in Table 1, although the application
programmer might be able to provide an initialization routine.

4.1. Wrapper Functions to Handle Pure CORBA Clients
In Figure 7, ClientObj invokes InvokeMiddleTier (int iDelay, int rDelay) on
MiddleObj. After waiting iDelay seconds, MiddleObj invokes UpdateCount()
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Figure 7. Example illustrating the use of wrapper functions during an upgrade.

on ServerObj, incrementing currentCount. MiddleObj then waits rDelay
seconds before returning. One possible upgrade, the middle component in
Figure 7, is for MiddleObj to pass an integer c to ServerObj,  instructing
Serverobj to increase currentCount by c. The coordinated upgrade set for
this upgrade consists of the ServerObj replicas and the MiddleObj replicas,
both of which are upgradable.

But how can the application programmer upgrade InvokeMiddleTier (int,
int) to the method InvokeMiddleTier (int) (the lower component of Figure 7)?
Because ClientObj invokes InvokeMiddleTier, it too must be upgraded. But
ClientObj is a pure client; it does not implement the Checkpointable interface
(it does not implement any interface), so it cannot undergo a live upgrade.
MiddleObj can undergo an coordinated upgrade without disturbing ClientObj
by using a wrapper function. A wrapper function is easy to generate for the
InvokeMiddleTier upgrade, however, not all method upgrades can be masked
by a wrapper function. The presence of pure clients in an application can make
it impossible for otherwise upgradable objects to undergo certain upgrades, and
the pure clients themselves cannot be upgraded. Even if the interfaces used by
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Figure 8. The single-tier and two-tiered applications undergoing upgrades.

pure clients can be modified, wrapper functions will permanently reside in the
application.

Therefore, it is desirable to minimize the number of pure clients in an ap-
plication. If the clients are made to implement the Checkpointable interface,
the formerly pure client objects are effectively transformed into client/server
objects. However, the server functionality is invoked only by the Eternal in-
frastructure. As far as the application is concerned, the object remains a client.

5. PERFORMANCE MEASUREMENTS
The Evolution Manager is implemented using Vertel’s e*ORB2.1 and runs over
a network of 360 MHz UltraSparc 5’s running Solaris 8. Measurements were
taken to ascertain the performance degradation experienced by an application
during an upgrade.

We took measurements on an interface-preserving upgrade of a single-tier
application, and an interface-changing upgrade of a two-tier application, both
of which are shown in Figure 8. In the single-tier application, the client sends
a constant stream of invocations to a doubly replicated server. In the two-
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tier application, the client sends a constant stream of invocations to a doubly
replicated middle object, which then invokes a doubly replicated server. Both
upgrades change one of the server’s methods, but the second upgrade changes
a server’s interface.

Five experiments were performed on each application. The first two exper-
iments measure the throuhput of the application in an isolated configuration
(not connected to the Evolution Manager). The third and fourth experiments
measure the throuhput of the application in a non-isolated configuration with-
out starting the upgrade. The non-isolated configuration includes all of the
objects and connections shown in Figure 8. The isolated and non-isolated case
were tested separately to determine how connection establishment alters ap-
plication performance. We also wanted to determine how much killing and
restarting replicas degrades performance. For the second and fourth measure-
ments, we manually killed and restarted the application objects, mimicking the
object group membership changes that occur during an upgrade’s invisible re-
placements. The final throuhput measurements were performed while the live
upgrade was underway.

The experimental results are shown in Table 2. The single-tier (two-tier)
application experienced four (eight) kill/restarts, and hence four (eight) transfers
of state. To maintain replica consistency, replicas queue messages while state
is transferred. Also, the underlying Totem relable multicast protocol [10] is
slowed down during membership changes. These two effects decrease the
throuhput by 13% (9%).
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Both applications experience performance degradation while running in the
non-isolated configuration. The extra Evolution Manager objects run on addi-
tional hosts, and because Totem is based on a logical token passing ring, extra
hosts increase the round-trip time of the token. The extra hosts and the ex-
tra connections combine to decrease the throuhput of the single-tier (two-tier)
application by 11% (16%).

The combined effects of killing and restarting replicas, and running the ap-
plication in a non-isolated configuration result in a 24% (25%) decrease in
throuhput. The performance penalty for performing a live upgrade is not sub-
stantially larger. The single-tier (two-tier) upgrade takes 8.9 (19.5) seconds and
decreases throuhput by 35% (33%). The Evolution Manager competes with the
application for computing resources, and the upgraded objects are briefly stalled
during the switchover.

These are preliminary results. Neither the Evolution Manager, nor the un-
derlying protocols has been performance tuned. In particular, the underlying
protocols are not optimized for the frequent object group membership changes
that live upgrades require. However, it is our assessment that these are ex-
tremely reasonable results, especially because these experiments represent a
worst-case scenario in several ways. It is unlikely that the applications being
upgraded will undergo the message invocation bombardment experienced by
these example applications. Also, the upgrades were performed very rapidly
for these experiments. The Evolution Manager performed one invisible re-
placement after the other, as quickly as possible. The upgrade’s impact would
be dampened by spreading the upgrade out over a larger timescale. Future ex-
periments will investigate more reasonable upgrade durations and the impact
of state size and achieving quiescence on the performance of an application
undergoing an upgrade.3

6. RELATED WORK
Kramer and Magee’s classic evolving philosophers paper [8] concerns itself

with the structural issues involved in dynamic reconfiguration. All of the ob-
jects being upgraded are passivated, as are all of the objects that can invoke
these objects. This passive set includes all of the objects that can initiate a
nested operation that eventually invokes an object being upgraded. In a highly
connected system, this technique can significantly hinder the application’s  avail-
ability during an upgrade. Goudarzi and Kramer [6] quiesce a group of objects
being upgraded, the BSet, by only blocking the non-BSet objects that invoke
the BSet during the quiescence algorithm. Bidan et al [1] have developed a

3 The state in both of these examples was small, and the nature of these applications ensured that quiescence
would be reached quickly.
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Dynamic Reconfiguration Manager (DRM) for CORBA that passivates a group
of objects undergoing reconfiguration. Only the links between the group being
made passive and the objects external to that group are blocked, not the external
objects themselves.

The Simplex architecture [5] executes multiple versions of a program simul-
taneously and shields the old code from the new version until its correctness is
established. However, the types of upgrades allowed by Simplex are limited.
Feiler [3] has developed an offline analysis tool that determines when the up-
grade of one component will require the upgrade of additional components in
the system. Syntactic, type and semantic incompatibilities in the component
connections are considered.

Senivongse [16] has developed a mediator that makes the evolution of server
objects transparent to their clients. A mapping operator (similar to Eternal’s
wrapper functions) transforms and forwards the client’s old requests to the new
server, and then transforms and forwards the new server’s responses to the old
client. The generation of these mapping operators is semi-automatic. One
problem with this technique is that multiple upgrades to a server yield multiple
mapping operators performing multiple forwards, degrading performance. The
application programmer ensures that an upgrade can be masked by mapping
operators.

Bloom [2] used the Argus system [9] to replace modules while preserving
their state. The lack of subtyping in Argus limits the types of upgrades that can
be performed. Adding a method to an object changes the object’s type, and if
an invocation returns an object of this changed type, type correctness is violated
and the upgrade cannot be performed.

Hauptmann and Wasel [7] accomplish live upgrades by including the up-
grade code within a separate application thread. This code must exist in any
upgradable application object even when no upgrade is underway. Additionally,
significant programmer assistance is required to generate the upgrade-specific
code, although the authors state that a tool could be written to automate much
of this work. The authors assume that as long as the interfaces remain the
same, the upgrade of multiple components can be broken up into a sequence
of independent upgrades, but do not explain how correct program semantics
is maintained. Felber [4] includes a brief conceptual discussion a replication-
based solution to on-line upgrades using the Object Group Service (OGS) in his
dissertation, but does not provide much discussion of on-line upgrade issues.

Podus [14] is an example of a system that loads new code into memory
and changes the binding of procedures to perform live upgrades. Methods are
upgraded when they are not executing, and the method upgrades are ordered
such that a new version of a method cannot invoke an old version of another
method. The drawback of this approach is that the mechanisms used to achieve
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the dynamic upgrade are complicated and require specialized compilers and
linkers.

7. CONCLUSIONS AND FUTURE WORK
The Eternal Evolution Manager enables live upgrades of distributed CORBA
applications by exploiting a reliable totally-ordered multicast protocol and ob-
ject replication. The aim is to automate as much of the upgrade process as
possible both to reduce programmer errors and to encourage previously infea-
sible application upgrades.

We have successfully performed interface-preserving and interface-changing
live upgrades on simple applications and are convinced that our live upgrade
mechanisms work properly. The next step is to perform an upgrade with alarge
coordinated upgrade set. We plan to investigate ways to circumvent the antic-
ipated coordinated quiescence bottleneck, including using wrapper functions
to reduce the size of the coordinated upgrade set, and using semantic program
knowledge (obtained from the application programmer) to break an application
version change into multiple upgrades with smaller coordinated upgrade sets.
We also plan to investigate programming styles and techniques that minimize
the amount of time that the Upgrader must wait for a coordinated upgrade set
to become quiescent.
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