
RACCOON — AN INFRASTRUCTURE
FOR MANAGING ACCESS CONTROL
IN CORBA

Gerald Brose
Institut für Informatik, Freie Universität Berlin, Germany
gerald.brose@acm.org

Abstract Object-level security management of CORBA applications is not sufficiently
supported by current management architectures. This paper presents a language-
based approach and an infrastructure for managing fine-grained access control
policies for CORBA objects at an abstract level.

Keywords: CORBA, Access Control, Security Policies, Management

1. INTRODUCTION
The complexity inherent in distributed systems constitutes a major problem

for overall security because of the significant potential for human error. This
applies especially in the area of security management. A basic premise of
this work is that the correct design, specification, and management of security
policies is a central problem in distributed systems because these tasks are
both error-prone and by their very nature security–critical. We argue that the
potential damage caused by inadequate handling of policies is significant, and
that current methods or management tools do not provide adequate support to
security administrators.

This paper focuses on one particular aspect of security policy management in
CORBA environments, viz. access control. Access control is concerned with
preventing unauthorized accesses to shared resources and is used to enforce a
given set of security requirements. “Commercial” security policies [Clark and
Wilson, 1987] usually concentrate on integrity requirements, but access control
can also be used to enforce confidentiality, general resource usage restrictions
(availability), or even coordination policies in CSCW systems [Edwards, 1996].
These requirements are addressed in access control policies, which describe
which accesses in a system are authorized and which are not. In our use of

http://dx.doi.org/10.1007/978-0-306-47005-9_29

274 MANAGEMENT & MONITORING

the term, policies are represented in terms of a formal access model and can be
evaluated by an access control mechanism.

To support the management of access policies for CORBA objects, it is
necessary to define appropriate management abstractions. These abstractions
serve two purposes. First, they allow managers to deal with large–scale systems
by abstracting from individual entities such as objects, users, and access rights,
i.e., they hide details that are too numerous to handle individually. Examples
of abstractions of this kind include domains of objects, user groups, and views.
Second, they can be used to hide implementation details that are too involved to
be intelligible to security managers, such as an individual operation invocation in
a complex object–oriented application protocol. Roles and views are examples
of abstractions of this second kind.

An important aspect of access control in object–oriented systems is that it
is not sufficient to consider run–time management in isolation. Because of
the potentially large number of objects and complex interaction patterns in
object–oriented applications, a security administrator cannot be expected to
completely understand the internal logic of all applications running under his
supervision. The security implications of, e.g., introducing a new right or
object type into a running system might be unclear, so managers need security
documentation at an adequate level of abstraction. This information can only
be provided by application designers, however, so some form of cooperation
and communication between developers, deployers and managers is required.

We propose a separate design document that must be delivered with an ap-
plication in the form of a descriptor file, which can be read by deployment and
management tools. It is the responsibility of application developers to prepare
this document as an input to the subsequent deployment and management stages
in the application life cycle. To do so, policy designers use a specific design
language, the View Policy Language (VPL).

The remainder of this paper is structured as follows. Section 2 presents a
language–based approach to this problem. In section 3, we describe the security
architecture required for managing access control in CORBA based on VPL.
Section 4 discusses related work. The paper concludes with a summary and an
outlook on future work in section 5.

2. VIEW-BASED ACCESS CONTROL POLICIES
The central concept of the access control model proposed in [Brose, 1999,

Brose, 2000] and presented in this section is the higher–level modelling concept
of a view for authorizations. Using views, policies can be written and understood
in terms of sets of related authorizations. A view is a named set of access rights,
which are both permissions or denials for operations on objects. While access
decisions are based on individual rights, views are the units of description

Managing Access Control in CORBA 275

and authorization assignment. They are defined statically as part of a policy
specification. Figure 1 shows an example of a view definition in VPL.

Figure 1. A view definition.

Views are defined as authorizations for objects of a single IDL interface,
which is referenced in the controls–clause of the view definition. In the
example, the view Reading controls the IDL type Document, which means
that this view can only be assigned on objects of this type or one of its subtypes.
Permissions are listed after the keyword allow, denials would be introduced by
deny. In the example, only operations to read the document and to find words
within the document are allowed. A view can be restricted to the roles listed in
a restricted_to clause so that it is not possible to assign the view to other
roles. The Reading view can only be assigned to the role Staff.

The introduction of this concept is motivated by the observation that generic
rights such as “read”, “write”, and “execute” are not adequate for describing
authorizations in large–scale systems comprised of typed objects. Generic or
uninterpreted rights are ill–suited for application–level access policies in these
systems because they provide no means to impose external structure by defining
relationships or constraints. Moreover, it is difficult to capture the rich semantics
of operations in object–oriented systems with just a small set of generic rights.
Generic rights thus lead to modelling problems in the design of access policies
and are hard to manage.

To solve the problems outlined above, we propose a new access model that
is based on the classical access matrix model by Lampson [Lampson, 1974].
Unlike Lampson’s matrix or the standard CORBA access model [OMG, 1998],
matrix entries do not contain simple generic rights but named and typed sets of
rights, i.e., views. Matrix rows in the model correspond to roles, so a matrix
entry represents the authorizations assigned to a role for the particular object
denoted by the matrix column. Table 1 illustrates such a matrix.

The notion of roles used here is that of the RBAC3 model [Sandhu et al.,
1996]. In RBAC3, roles can be organized into role hierarchies, and role con-
straints such as mutual exclusion can be expressed. Figure 2 shows role defini-
tions in VPL.

276 MANAGEMENT & MONITORING

Figure 2. Role definitions.

VPL can be used to express implicit authorizations and exceptions, and
allows designers to specify priorities that determine how conflicts between
permissions and denials are resolved. Moreover, it is possible to statically
specify dynamic rights changes using the schema language construct. Figure 3
illustrates how views are assigned and removed in response to the IDL operation
create, which acts as a trigger. The schema in the example is defined to react
to operations on objects whose type has the same name as the schema, i.e.,
on DocumentFactory objects. The modifier with assign option in the
assigns clause is equivalent to SQL’s grant option and means that the receiving
principal may delegate the view Managing to other principals at his discretion.
The identifiers result, caller, and this are dynamically bound to the result
of the create operation, the DocumentFactory object itself, and the caller,
respectively. A second effect of the create operation is that the Creating view
is removed from the caller’s matrix entry for the DocumentFactory object,
assuming that this view was required to call create in the first place.

By fixing the target data model to IDL, it is possible to define a number
of static type checks that help to catch policy specification errors early. For
example, it can be checked that views are well–formed with respect to the IDL

Managing Access Control in CORBA 277

Figure 3. A VPL schema for document creation.

type they control. Additionally, it can be verified that schema clauses comply
with role restrictions defined in views, and that conflicts between permissions
and denials are resolvable at runtime.

3. AN INFRASTRUCTURE FOR ACCESS CONTROL
MANAGEMENT

A number of infrastructure components and tools are required to allow appli-
cation developers and managers to work with the model abstractions presented
in the previous section. The first tool that is required in the life cycle of an access
policy is a VPL compiler, which is needed to type–check policy descriptions
and compile them into a descriptor file format. Similar to EJB descriptors [Sun
Microsystems, 2000], the VPL compiler produces an XML file. The contents of
this file is deployed to a role and view repository, respectively, which make role
and view constructs accessible at runtime. XML was chosen as an intermediate
format so that deployment tools can rely on standard XML parsing libraries and
a document type description (DTD) rather than having to implement a full VPL
compiler. Deploying new roles potentially involves role renaming, either to
prevent name clashes with existing roles, or in order to identify new roles with
already existing roles that have the same function but different names. Figure
4 depicts the development and deployment process.

Figure 4. Policy compilation and deployment.

278 MANAGEMENT & MONITORING

3.1. Operation and Management
Any mechanism for controlling access to CORBA objects must be able to

intercept and check all possible accesses, i.e., the mechanism must be interposed
between the object and its callers and not be bypassable. This property is known
as complete mediation in [Department of Defense, 1985], where the entire
mechanism is termed reference monitor. The most straightforward allocation of
this functionality is to perform access checks in the address space of the process
hosting the object implementation. CORBA interceptors are a convenient way
to implement this mechanism, and the CORBA Security Service specifies an
access control interceptor for this purpose. Our own implementation also uses
interceptors.

The UML diagram in Figure 5 illustrates how accesses are transparently
intercepted and checked in CORBA. The interceptor calls an AccessDecision
object which requires an access policy to determine whether the interceptor can
allow the access and let the request pass, or whether it must deny the access by
signaling the CORBA system exception NO_PERMISSION to the caller. This
exception is not shown in the diagram.

Figure 5. Access Control with Interceptors.

While interceptors are the standard implementation of reference monitor
functionality, they are not the only option. It is just as possible to define ref-
erence monitors on a per–node or even per–subnet basis rather than only per-
process. Moving the reference monitor further away from the protected object
has implications for the extent of the object’s trusted computing base (TCB),
however. In the case of a per–process interceptor implementation, the TCB
comprises the target platform’s hardware, operating system, middleware, and
security service implementation. Delegating this functionality to a component
outside the target node, e.g., to an application–level firewall, means placing
trust not only in the firewall, but also in any machine within the interior net-
work because operation invocations from these machines do not pass through
the firewall and thus remain unchecked.

Managing Access Control in CORBA 279

An interceptor needs access control information to be able to make access
decisions, viz. information about the caller and its roles, about the target, and the
requested access operation. In addition, it needs access to the access policy for
the target object. Figure 6 gives an overview of the components that are involved
in an access decision and need to be adapted to the specific access control model
used here. The interceptor and the AccessDecision object reside within the
server hosting the target object and have been omitted from the diagram. In
the remainder of this section, we discuss these infrastructure components, their
relationships, and their management interfaces in more detail.

Figure 6. Raccoon architecture.

3.2. Sessions and Role Server
In the CORBA security framework, information about callers is represented

as security attributes and stored in Credentials objects. Credentials objects
are created on the client side as the result of authentication and stored in the
client-side context. Before an operation is invoked, the client runtime system
needs to establish a security association or Session with the server and transmit
its credentials. In our approach, the credentials associated with sessions con-
tain information about the caller’s roles. This section describes the necessary
role management components, which are not defined by the CORBA Security
Service.

Role information is provided in the form of X.509v3 certificates that contain
the principal’s public key and a single role name in an extension field of the
certificate. Upon request, these certificates are created, signed, and returned
by a role server component. A role certificate is a binding between a principal
identifier (a public key) and a role name, and this binding can be verified by
checking the role server’s signature.

The role server does not need to establish the identity of clients requesting
role certificates because a role certificate itself does not convey any authoriza-

280 MANAGEMENT & MONITORING

tions to its holders, and because callers must authenticate separately with the
individual servers anyway. However, the role server may still choose to au-
thenticate clients and restrict access to role information if this information is
considered sensitive. Because role information about a principal is used to
derive authorization information, access control interceptors must verify the
authenticity and freshness of the information using the role server’s public key.
They must also verify that the caller is indeed the subject of the role certifi-
cates it presents. Caller authentication is achieved by relying on SSL transport
connections.

The process of requesting certificates and storing them locally as credentials
is performed by the security service on the client side, which is also responsible
for sending these certificates to the server. The basic model of interaction with
the role server is thus “client–pull” and allows security–aware clients to select
a subset of roles for subsequent accesses rather than presenting the full set of
certificates. This can be desirable for two reasons. First, a client might wish to
use only the minimal set of roles required to carry out a certain task in order to
restrict the potential damage of Trojan horses, or of its own mistakes in using
the application. Second, our access model supports assigning explicit denials to
certain roles so that a client might in fact be more restricted in his actions when
using the union of all his roles than when using only a specific subset of roles.
The client can perform this role selection using standard CORBA security API
calls for credentials management.

Figure 7. Role Management GUI.

The role server provides administrators with the GUI shown in Figure 7,
which supports managing groups, roles, and role constraints. The left half of
the window displays information about principals in the form of a group hier-
archy. In the right panel, the example shows three roles and a mutual exclusion
constraint between the two roles OrderApproving and Ordering, which is
shown as a double–headed arrow. This role information itself is not kept in
the role server but stored separately in the role repository. The assignment of

Managing Access Control in CORBA 281

groups of principals to roles is performed by drawing an arrow from a group in
the left panel to a role in the right panel.

3.3. Domain Server
In large distributed systems, objects are typically not managed individually

but grouped into management domains. For this reason, the individual CORBA
object in Figure 6 is not directly associated with a policy. This allows managers
to structure large systems into manageable subsystems and to model the diverse
spheres of management authority and responsibility that are frequently found in
large organizations. This section presents a model for and an implementation
of a service for CORBA that supports grouping objects into domains, the con-
struction of domain hierarchies, and the assignment of policies to domains. The
service itself is policy–neutral. It can also be used as a generic mechanism to
attach arbitrary dynamic properties to CORBA objects and is more flexible than
the OMG–specified Property Service [OMG, 1997] because it does not require
managed objects to implement service–specific interfaces. More information
on the domain service can be found in [Brose et al., 2001].

The CORBA specification [OMG, 1999a] defines interfaces for policies and
domains but no service API for managing the life cycle of domain objects, the
construction of domain hierarchies, or the membership of objects in domains.
An object may be a member of multiple domains, but CORBA requires that
every object must be a member of at least one domain. Domains may only be
associated with one policy of a given type. Individual domains are thus free of
conflicts between policies of the same type, such as one access control policy
allowing an access and another policy rejecting the same access.

As in [Sloman and Twidle, 1994] and [ISO/IEC, 1996], a policy domain is
basically a relation between a set of member objects and a set of policies. Hier-
archical relationships between domains are an important means of expressing
delegation of responsibility between authorities and can also model refinement
between policies. We model domain hierarchies as acyclic directed graphs,
with edges representing subdomain relationships. A domain’s policies also ap-
ply to the members of its subdomain, and changes in parent domain policies
may affect objects in subdomains. Policy changes in subdomains, however,
only affect the members of that domain and its subdomains.

Assuming that policies of different types are entirely orthogonal, there can
be no direct policy conflicts within a single domain. Policy conflicts are pos-
sible between policies of different domains, however, because objects can be
members of more than one domain, and because a domain’s policies also apply
in its subdomains in a hierarchy. The domain management service therefore
supports the allocation of conflict resolution strategies in the form of meta poli-
cies [Hosmer, 1993]. A meta policy may, e.g., define a general precedence rule

282 MANAGEMENT & MONITORING

for policies in domains, such as “policies closer to the root of the domain graph
take precedence”.

A meta policy is basically another policy that is associated with a domain
and must be interpreted by an enforcement mechanism. We do not attach any
more semantics to a meta policy than that it applies to policies of a given type
that in turn apply to the objects in the domain. As with other policies, the actual
meaning is determined by the mechanism. Meta policies need not be restricted
to conflict resolution as in [Kühnhauser, 1999] and [Lupu and Sloman, 1999],
but can be regarded as general policy operators that are implemented by the
individual policy enforcement mechanisms.

Figure 8. The Domain Browser.

The implementation provides a GUI management tool with which domain
services can be used centrally by an administrator. This Domain Browser is
shown in Figure 8. It includes an editor for generic policies that can be written as
simple lists of name–value pairs and can be conveniently configured to provide
different graphical policy editors for different policy types. VPL, e.g., requires
a different editor, which is shown in Figure 9.

3.4. Policy Server
The editor tool shown in Figure 9 combines information from different

sources. The upper left panel shows information about the objects in the policy
domain, which is part of the domain server. The upper right panel shows the
access policy itself, i.e., assignments of views to roles on the objects selected in
the left panel. In this case, the Staff role holds a Faxing view on the printer
object in the domain. The complete access policy is represented by a sepa-
rate CORBA object of type AccessPolicy, which implements the view–based
access matrix model.

The policy editor supports adding new views on the objects and types in the
domain. In the lower half of the window, the policy editor displays the definition

Managing Access Control in CORBA 283

Figure 9. The VPL Policy Editor.

of the view Faxing that it retrieved from the View Repository in response to
the selection of this view in the upper right panel. Finally, the editor can also
display IDL type information in the lower panel if an IDL type name is selected.
For this purpose, it requires access to a CORBA Interface Repository.

4. RELATED WORK
An existing management product that supports security management in CORBA
environments is [Tivoli, 2001], which comprises a comprehensive suite of tools.
Tivoli does not specifically address access control management at the level
of application objects, and provides no separate specification language. The
CORBA security service product by [Adiron, 2001] does provide an access
control language, but this language is not object–oriented and limited to the
restricted standard model of access control in CORBA.

Our basic approach of relying on a separate, abstract language for the speci-
fication of non–functional aspects of applications can be compared to Aspect–
Oriented Programming (AOP) [Kiczales et al., 1997]. AOP also relies on
separate aspect languages that are processed by a tool called aspect weaver.
This tool generates code for aspects such as concurrency and distribution, and
performs the integration of functional code with aspect code. There is currently
no aspect language in AOP that addresses access control. The use of descriptor
files that are processed by deployment tools is common in environments such
as EJB [Sun Microsystems, 2000] or the CORBA Component Model (CCM)
[OMG, 1999b], both of which also support the expression of simple access
policies in descriptors. Both descriptor languages do not provide adequate

284 MANAGEMENT & MONITORING

management abstractions, however, and only support access control decisions
at the granularity of types, not individual objects.

In the context of policy–based management, a number of general–purpose
policy languages have been proposed, e.g. [Sloman and Twidle, 1994, Koch
et al., 1996, Tu et al., 1997]. The information models underlying these lan-
guages are more general than the CORBA object model, and they do not offer
higher–level authorization concepts like views. These languages are thus not
suitable for collaborative use by CORBA application developers, who have
to provide an initial policy design, and security managers, who subsequently
deploy, refine and manage the policy. We argue that for such an approach,
it is necessary to sacrifice some generality for better integration with design
abstractions, i.e., IDL interfaces.

A general framework for defining arbitrary access control policies is proposed
in [Jajodia et al., 1997], where policies are formulated as a set of rules in
a logic–based language. This model leaves open all design decisions about
how implicit authorizations are derived, how rights propagate in groups, which
conflict resolution strategies are used, and how priorities are employed. Rules
embodying these design decisions have to be defined first as part of a policy
library. The data model for protected objects is also left open and has to be
described separately.

5. SUMMARY AND FUTURE WORK
This paper presented a language–based approach to the problem of managing

application–level access control policies in CORBA. We discussed a view and
role–based access model and presented the runtime infrastructure required to
manage policies according to our access model. A prototypical Java implemen-
tation of the Raccoon architecture was done using the CORBA implementation
[JacORB, 2001]. The prototype implements the subset of the CORBA Secu-
rity Service that is relevant for access control and replaces its standard access
model. Moreover, it extends the security service with role and domain man-
agement components.

To demonstrate the feasibility of the approach, we plan to evaluate the per-
formance implications of the proposed architecture, and to conduct a more
complex application case study. The prototypical implementation has not been
specifically designed to withstand denial of service attacks, which would re-
quire appropriate replication of services. Another direction for future work is
to use VPL for managing application–level firewalls for CORBA.

Acknowledgments
This work is funded by the German Research Council (DFG). The author

would like to thank Peter Löhr and Nicolas Noffke for fruitful discussions.

Managing Access Control in CORBA 285

References
[Adiron, 2001] Adiron (2001). http://www.adiron.com/.

[Brose, 1999] Brose, G. (1999). A view–based access model for CORBA. In Vitek, J. and
Jensen, C., editors, Secure Internet Programming: Security Issues for Mobile and Distributed
Objects, LNCS 1603, pages 237–252. Springer.

[Brose, 2000] Brose, G. (2000). A typed access control model for CORBA. In Cuppens, F.,
Deswarte, Y, Gollmann, D., and Weidner, M., editors, Proc. ESORICS 2000, LNCS 1895,
pages 88–105. Springer.

[Brose et al., 2001] Brose, G., Kiefer, H., and Noffke, N. (2001). A CORBA domain manage-
ment service. In Proc. KiVS 2001.

[Clark and Wilson, 1987] Clark, D. D. and Wilson, D. R. (1987). A comparison of commercial
and military computer security policies. In Procs. IEEE Symposium on Security and Privacy,
pages 184–194.

[Department of Defense, 1985] Department of Defense (1985). Department of Defense Trusted
Computer System Evaluation Criteria. DoD 5200.28-STD.

[Edwards, 1996] Edwards, W. K. (1996). Policies and roles in collaborative applications. In
Proc. Computer Supported Cooperative Work (CSCW), pages 11–20.

[Hosmer, 1993] Hosmer, H. H. (1993). The multipolicy paradigm for trusted systems. In Procs.
ACM New Security Paradigms Workshop, pages 19–32.

[ISO/IEC, 1996] ISO/IEC (1996). Information Technology — Open Systems Interconnection —
Security Frameworks for Open Systems: Overview. International Standard, ISO/IEC 10181–
1:1996(E).

[JacORB,2001] JacORB (2001). http://www.jacorb.org.

[Jajodia et al., 1997] Jajodia, S., Samarati, P., Subrahmanian, V. S., and Bertino, E. (1997). A
unified framework for enforcing multiple access control policies. In Proc. International
Conference on Management of Data, pages 474–485.

[Kiczales et al., 1997] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loin-
giter, J.-M., and Irwin, J. (1997). Aspect–oriented programming. In Proc. ECOOP, LNCS.
Springer.

[Koch et al., 1996] Koch, T, Krell, C., and Krämer, B. (1996). Policy definition language for
automated management of distributed systems. 2nd International Workshop on Systems
Management, IEEE Computer Society.

[Kühnhauser, 1999] Kühnhauser, W. (1999). Metapolitiken. GMD Research Series. GMD.

[Lampson, 1974] Lampson, B. W. (1974). Protection. ACM Operating Systems Reviews,
8(1): 18–24.

[Lupu and Sloman, 1999] Lupu, E. C. and Sloman, M. (1999). Conflicts in policy–based dis-
tributed systems management. IEEE Transactions on Software Engineering, 25(6):852–896.

[OMG, 1997] OMG (1997). CORBAservices: Common Object Services Specification.

[OMG, 1998] OMG (1998). Security Service, Revision 1.5.

[OMG, 1999a] OMG (1999a). The Common Object Request Broker: Architecture and Specifi-
cation, Revision 2.3.

[OMG, 1999b] OMG (1999b). CORBA 3.0 New Components Chapters. OMG, TC Document
ptc/99-10-04 edition.

286 MANAGEMENT & MONITORING

[Sandhu et al., 1996] Sandhu, R. S., Coyne, E. J., Feinstein, H. L., and Youman, C. E. (1996).
Role-based access control models. IEEE Computer, 29(2): 38–47.

[Sloman and Twidle, 1994] Sloman, M. and Twidle, K. (1994). Domains: A framework for
structuring management policy. In Sloman, M., editor, Network and Distributed Systems
Management, chapter 16. Addison–Wesley.

[Sun Microsystems, 2000] Sun Microsystems (2000). Enterprise JavaBeans Specification, Ver-
sion 2.0, Final Draft.

[Tivoli, 2001] Tivoli(2001). http://www.tivoli.com.

[Tu et al., 1997] Tu, M., Griffel, F., Merz, M., and Lamersdorf, W. (1997). Generic policy man-
agement for open service markets. In Proc. International Conference on Distributed Appli-
cations and Interoperable Systems (DAIS’97), pages 212–222, Cottbus, Germany. Chapman
& Hall.

	RACCOON — AN INFRASTRUCTUREFOR MANAGING ACCESS CONTROLIN CORBA
	1. INTRODUCTION
	2. VIEW-BASED ACCESS CONTROL POLICIES
	3. AN INFRASTRUCTURE FOR ACCESS CONTROLMANAGEMENT
	3.1. Operation and Management
	3.2. Sessions and Role Server
	3.3. Domain Server
	3.4. Policy Server

	4. RELATED WORK
	5. SUMMARY AND FUTURE WORK
	References

