CHAPTER 10

Protecting File Systems Against Corruption Using
Checksums'

Daniel Barbard, Rajni Goel, and Sushil Jajodia

Abstract:

Key words:

We consider the problem of malicious attacks that lead to corruption of files in
a file system. A typical method to detect such corruption is to compute
signatures of all the files and store these signatures in a secure place. A
malicious modification of a file can be detected by verifying the signature.
This method, however, has the weakness that it cannot detect an attacker who
has access to some of the files and the signatures (but not the signing
transformation) and who replaces some of the files by their old versions and
the corresponding signatures by the signatures of the old versions.

In this paper, we present a technique called Check2 that also relies on
signatures for detecting corruption of files. The novel feature of our approach
is that we compute additional levels of signatures to guarantee that any change
of a file and the corresponding signature will require an attacker to perform a
very lengthy chain of precise changes to successfully complete the corruption
in an undetected manner. If an attacker fails to complete all the required
changes, check2 can be used to pinpoint which files have been corrupted. Two
alternative ways of implementing Check2 are offered, the first using a
deterministic way of combining signatures and the second using a randomized
scheme. Our results show that the overhead added to the system is minimal.

Security, data corruption, integrity

" This work was supported by the Air Force Research Laboratory/Rome under the contract
F30602-98-C-0264.

114 DATA AND APPLICATIONS SECURITY

1. INTRODUCTION

A file system may be a target of an attack that aims to disrupt its correct
functioning so that the files containing user data, applications, or system
executables become degraded and dysfunctional. To date, information
security systems focus on preventing attacks, though experience has
indicated that prevention is not completely successful. Our aim is to
formulate a defence mechanism that is effective against an attacker who
penetrates the prevention system, or an insider attacker. A legitimate user
misusing the system within his or her access domain, or attackers having
sniffed passwords thus appearing as authorized users could pose the insider
threat. Access controls or encryption technologies do not stop this kind of
file data corruption. In this paper we describe a technique called Check? that
is designed to detect malicious changes to a file system. Check2 provides a
protection layer by creating a chain of obstacles that protect a file system
from unauthorized malicious modifications, deletions or additions.

Existing integrity and intrusion detection tools assist the users and
administrators in monitoring and detecting changes in individual files. To
date, integrity-checking tools identify and notify security officials about any
changed, deleted or added files, after the occurrence. Established approaches
identify corruption using statistical or pattern matching techniques, or by
comparing replicated copies of files' contents. Some [3] use securely stored
signatures (usually a message digest) to identify an alteration to a single file.
The functionality of integrity checking tools, such as Tripwire, relies on the
tamper proof security of these signatures. But, this intrusion security system
is susceptible to penetration by an attacker who has managed to gain access
to the signatures. This well-equipped intruder directly alters the stored file
signature to coincide with his or her malicious changes to a file. To detect
such attacks, the latest release of Tripwire signs the database of signatures
with a single signature [8]. In Tripwire, if an intruder gains write access to
stored file signatures, he or she can then be successful in corrupting the
system by completing one extra signature change. We propose to further
complicate the situation for an attacker who gains write access to the
checksums, which can be of concern in particular when the attacker tries to
restore an old version of a file for which the correct signature had been
observed.

Our proposed technique, Check2, operates on the file system as one
entity; each file alteration produces a set of reactions throughout the file
system. These reactions appear as modifications in some pre-calculated
values involving the contents of the files. The algorithm utilizes unique
combinations (subsets) of the set of file signatures to compute a second and a
third level signature. Each level is recomputed upon any change to a file.

Protecting File Systems Against Corruption Using Checksums 115

To significantly increase the workload of the intruder, each file change
triggers numerous changes in these higher-level signatures. When damaging
a single file, the intruder is accountable of updating each of these other
signatures and/or files for the system validation. Accumulating a stock, a
databank of old versions of valid files and matching signatures and
identifying the string of signatures to replace is part of the intruder’s battle.
We aim to make this sfock too large to collect and the chain of reactions
nearly impossible to calculate and unrepeatable. The availability of high-
speed processors results in low maintenance costs for Check2 (the extra cost
is primarily computation time of extra signatures).

Check2 has one additional very desirable property: If the intruder fails to
complete all this work, the system is able to identify the files that have been
corrupted, so that the security officer can take proper action (presumably by
restoring them to the proper versions, safely stored elsewhere).

We present two strategies for Check2. Both use techniques that have
been utilized previously to solve other problems (viz., file comparison and
mutual exclusion) [2]. From the set of file signatures, the Check2 algorithm
utilizes either a randomized or deterministic procedure to produce a set of
subsets. In the randomized algorithm, each file signature appears exactly
once in one of the subsets. The deterministic strategy derives the subsets
where each file signature appears in more than one subset, which abides by
the parities non-null intersection property. In this strategy, the system further
calculates a third level of signatures using the same algorithm except using
the set of second level signatures in place of the file signatures. Furthermore,
the assumption is that authentic changes to the file system occur
occasionally. Although Check2 produces extra system expenses of
calculating signature values beyond the existing file signatures upon each
update in the system, our empirical results, using the MDS [6] signature
algorithm, show that this cost is extremely low. Moreover, this cost is
incurred only occasionally, and it is well justified by the chain of copying
and the enormous data bank the intruder must accumulate in order to
complete a single file corruption.

We begin in Section 2 by presenting a motivating example. In Section 3,
we present our deterministic and randomized techniques. Finally in section
4, we offer some conclusions and future directions.

2. MOTIVATING EXAMPLE

To illustrate, Figure 1 displays a simplified application file system with
seven files Cl, C2, ..., to C7. Each column i represents a file name, its
content, and its signature value, CK'..

116 DATA AND APPLICATIONS SECURITY

C G G C C C G
Contents @® © A & V o
Ck'; Ck'; Ck's Ck's Ck's C'ks C'ks
Figure 1. An example of a signature protected file system. The symbols indicate different
contents, and these in turn determine the signatures

The system utilizes a trusted and secret one way hashing function f (in
reality the function is not the “trusted” part, rather the function will be driven
by a trusted, presumably inviolable key that is likely to be stored in a safe
place), to compute a checksum value [6,7] involving the contents of each
file: f(#) - Ck';. Here “#” represents the contents of the file i (i.e., one of the
symbols in {®,®,0,A,¢,V,e}). In this paper we use the term signature in a
general manner: a fixed-size “fingerprint” generated by a one-way hashing
function on any set of data. These checksums are stored in a highly secure
database, where the value automatically is recalculated when a file contents
changes. When an unauthorized user corrupts a file item, the stored
signature will no longer be valid, thus indicating intrusive behavior.

Now, consider a scenario in which the software application new release is
to be installed. Some files have been altered from a prior version. The
process of installing these new releases of information consists of securing
the validity of many separate files. Since each of these files is protected by
one signature whose value is unlikely to be calculated by an intruder, a
malicious altering appears improbable.

Unfortunately, one may circumvent this protection. A legitimate system
user (or an intruder who has broken into the system) may have extensive
knowledge of the layout of the file information storage and security system.
This intruder tracks previous versions of the software and collects copies of
the files and associated signatures. Having accumulated previous copies of
numerous combinations of the valid file versions with the corresponding
matching checksums associated to them, he or she can compromise the
integrity of the file system as follows. He replaces a current new version of
a file by copying over it an entire old valid file, and copy the matching
signature into the database. If the system performs a checksum validation on
this block, it will not discover any anomaly in the file data. In our example
above, an intruder has copies of the files of the system at time ¢, as it is in
Figure 1. After several updates and/or new releases take place, the state of
the file system at time t; is as shown in Figure 2:

G G G C C C G
Contents ¢ ® © € 4 &E
Ck'y Ck'y Ck';Ck's Ck's Ck's Ck's

Figure 2. The file system of Figure 1 after a new release

Protecting File Systems Against Corruption Using Checksums 117

To maliciously modify file C; back to the content at #, the attacker
replaces the current column 3 in figure 2, with a copy of the previous
contents, column 3 in figure 1 (checksum changed in the database), resulting
on the status shown in Figure 3. File corruption has been successfully
completed.

C C G C C C G
Contents ¢ ©®© © €« 4 &
Ck'y Ck'y Ck's Ck'y Ck's: Ck'g Ck's
Figure 3. The corrupted file system

To detect this attack, we propose a technique that employs a second set of
checksums. The system determines subsets of the file signatures and applies
a predetermined one way hashing function, g, on the contents of each subset,
as in figure 4. These 2" level signatures, CI; , are also stored in a secure
database.

Ck?, = g(Ck'1,Ck's,Ck's) Ck?;=g(Ck'\,Ck's,Ck's) CIZs = g(Ck';,Ck's,Ck'7)
CK2, = g(Ck'»,Ck'4,Ck's) CK’s = g(Ck'y,Ck's,Ck'y) CK% = g(Ck'5,Ck',Ck'7)
Ck?; = g(Ck'y,Ck's,Ck's)
Figure 4. Possible subsets of example system to link the seven file signatures of revised files
with 2nd level signatures

With this layer of signatures, when the intruder copies signature Ck's to
match the old copy of the file 3, all second level signatures involving Ck's in
their calculations must also be replaced, namely Ck?;, Ck?;, and CK*;. In
order to successfully complete this, two conditions must have occurred.
First, at some prior time, the system must have been in such a state where
CK, = g(Ck',Ck';,Ck'), CKs = g(Ck';,Ck'y,Ck's), and CK =
8(Ck';,Ck's,Ck's); implying that files 1,2,4,5,6, and 7 contained contents as
in Figure 2, and file 3 has contents as in Figure 1. Second, the intruder
copied the signatures at that instance into his stock. Now, not only must the
attacker consistently track prior behavior of the system, store and make the 3
extra signature copies, but also track any other file modifications that occur
concurrently in the system during the copying process.

Furthermore, if the intruder fails to change all these files properly and
simply performs the change shown in Figure 3, the security administrator
will be notified of the anomaly and will be able to track the exact file that
was modified. Noting which three 2™ level signatures changed and
calculating the intersection of the subsets of the file signatures from which
each was computed, only one file, precisely Cs, can be diagnosed as the
corrupted file. Moreover, this design is flexible and scalable with the file
system size.

118 DATA AND APPLICATIONS SECURITY
3. OUR TECHNIQUE

We consider a file system S that is composed of N files: Fy, Fy, ...,Fn,
denoted by S = [Fi, Fa,....Fn]. Since each file size may be quite large, we
first compute a concise representation, called a signature or check sum, of
each file F: 81, = Ck'(F). The signature has a fixed length of b bits, for
some integer b, and is computed by some one-way hash function. It is stored
in a secure database elsewhere. Before a change to a file is saved, the
system computes and validates the signature value for the updated file. An
intruder copying an old version file, F;, in place of one current file, F;, will
also need to manually replace the signature of F';with the correct match,
since during this type of intrusion, the system would not automatically
compute values.

Generating signatures may require more computation, though little time
is necessary for this and it requires less storage than storing a copy of the
entire file. Also, two different pages may have the same signature. The
probability of this happening is proportional to 2® Moreover, it is
computationally infeasible to produce two messages having the same
message digest, or to produce any message having a given pre-specified
target signature [6].

The system responds to any file alteration by computing the 2™ level
signatures, which utilizes a non-reversible, trusted and secret hash function,
(again, the key to the function is unattainable, thus trusted) on a
combination of a selection of the file signatures, Ck’s. Thus since it is
unlikely that an intruder accesses the ability of compute the signatures,
copying valid values is the avenue of corruption. Check2 computes a
maximum of N second level signatures; each is a function of a subset of the
N file signatures: Ck? = Ck(Ck',Ck';... Ck';) where 1Si,j <N

Each checksum, CK'f, is integrated with (i — 1) other file signatures to
compute another signature. We propose two algorithms to determine the
elements of these subsets. One is a deterministic approach, using
methodology proposed by Albert and Sandler [1]. The other is a randomized
strategy that has been previously used to compare file copies in [2].

31 Deterministic Signatures

Consider the N files (objects) in our system; from the contents of each,
the system generates a set, A, containing N elements, each a file signature Ck
(F), 1SiS N. A set of subsets of A will have at most 2"elements. We shall
not be concerned with every collection of subsets of the set A, but rather with
those sets which satisfy the specific properties, defined later in this section.

Protecting File Systems Against Corruption Using Checksums 119

The elements of each subset form the combination onto which the secret and
trusted function is applied to calculate the set of 2"level signatures.

The goal is to produce subsets, S; which satisfy a pairwise non-null
intersection property: S; N S; # @, for any combination i and j where 1< i, j
€ N. The fundamental idea of such sets stems from the Sperner sets
theorem, which provides existence of sets that follow the properties stated.
This provides assurance that when a change occurs in all the elements used
in the calculation of one signature (Ck?j), it directly relates to changes every
other 2™ level signature. Each file signature appears in more than one subset
and there exists at least one common node between a pair of S; and S;. In
essence, viewing all the signatures as nodes in a hyperplane, each file
signature node will be connected to every other signature node in the system.

Following are properties that the second level subsets satisfy. They
mimic the same structure as used by Maekawa (5] to create mutual exclusion
in decentralized systems.

— Atleast one common element between a pair of subsets, S; and §;

— | 8| =Kforanyi

— Any j is contained in the D S; 'swhere 1<i,j<N. (i.e., D is the number of
subsets in which each element appears, number of duplications of each
distinct element)

Each member of | S; | can be contained in D-1 other subsets, and the
maximum number of subsets that satisfy the intersection property is (D -
1)K+1, where K is the size of the subset. It is shown in [5] that K and D are
such that K=D, and that N and K are related as follows

N=KK-1)+1 (1)

As described in [1], such a system of subsets is perceived as a projective
plane of N points with properties equating to the conditions stated above.
There exists a finite projective plane of order k if k is a power p™of a prime
p. This finite projective plane has k(k+1) +1 unique points. Hence in our
technique for creating subsets S; 's (considering K(K-1)+1 vs. k(k+1)+1) a
set of §;'s for the N files exists if (K-I) is a power of a prime. For other
values of k, the system can still create a set of S; 's by relaxing conditions
that each subset having same number of elements K, as well as relaxing the
property that each file signature must appear in K-1 subsets. As Maekawa
[5] also concludes, K = YN, with some fractional error.

Figure 5 illustrates an example for a file size of 13, where 82 represents
the checksums using the subset S The change of one file triggers K 2™
level signature changes and if all K files of any subset are altered
simultaneously, then all N second level signatures change.

120 DATA AND APPLICATIONS SECURITY

N=13,K=4 S, ={1,2,34} =82, S, ={1,5,6,7} =82
Ss = {1,89,10)=52, S,={1,11,12,13}}= 52,
SJ= {2,5)8,1 1 }}= S22 86 = {236’9:12} }= sz‘
S;={2,7,10,13}}= 82 S1={3,5,10,12} }= 82,
S;={3,6,8,13}}=82, S,={3,7,9,11}}=82
S13= {435,9,13}}= Szl! Sl= {4v6’10:11}}=S24
Sl? = {4s7’8’ 12}= S212

Figure 5. 2nd level signature sets using combinations offile signatures 1-13. The intersection
ofany two combinations is nonempty

When the values of N cannot be expressed as K(K -1) + 1, the subsets
are built making one of the following corrections [3]:

— Pad the file signature set with extra duplicate values, 1.e., increase the

value of the N until N can be expressed as K(K-1) + 1.

— Create degenerated (nonequivalent number of elements) sets of §;'s by

temporarily assuming enough elements exist so that N=K(K -1) + 1.

The same process is repeated to construct the elements of a 3™ level of
signatures for added protection. These third level signatures are each
calculated using the set of second level signatures, CK* . The domain for the
hash functions calculating third layer signatures are the elements of the set of
Ck*, from which the system generates the subsets, abiding by the above
stated properties, forthe 3™ level. The system stores the N, or possibly more
if N can not be expressed as N = K(K-1)+1, third level signatures. With the
inclusion of this level, one file change causes all 3 level signatures to
change. If only the contents of one file change, exactly (N + K) unique
signatures automatically change.

3.1.1 Diagnosis of deterministic signatures.

The structured design of the second and third level checksum produces a
set percentage of increase in system calculations during an authorized file
update. But, it forces an internal intruder to track and copy a precise chain of
signatures. With the predetermined subset algorithm, when one authorized
file changes, Check2 generally recomputed the K 2™ and N 3" level
signatures; this causes the system to do at most N + K calculations. If N #
K(K-1) + 1, then these quantities will be larger because of the increase in the
value of K, as displayed earlier above in (2). For the intruder to incur this
minimum copying cost, he/she must collect a stock of 1*, 2@and 3™ level
signature values, corresponding to the appropriate files. Because all file
signature nodes are interleaved in the subsets, this stock must include every
variation of any previously occurring state of file contents of the entire
system. The general (assuming N can be expressed as K(K-1) +1), the
combined cost includes collecting all the stock, making K signature copies at

Protecting File Systems Against Corruption Using Checksums 121

the 2™ level, and N signature copies at the 3" level, thus the cost of copying
becomes K+ N.

In a crude analysis, it is possible that just one state of the system is
captured by the malicious user. For that one instance, this malicious user
copies all file contents, their file signatures, 2™ level and 3™ level signatures
of that one state into his/her stock and then copy over the entire system and
signatures. But, with such drastic and noticeable changes, the security
administrator would immediately flag such modifications.

Furthermore, the system is able to determine exactly which file is
corrupted. This is achieved by calculating the intersection of the K second
level subsets. These K subsets are those used in computing the 2™ level
signatures that were affected by a particular file modification. The system
captures the file signature, Ck';, which is common in these K subsets causing
the 2™ level signature to change. The file corresponding to this file signature
is which has been modified.

3.2 Randomized Subsets

The randomized technique produces the subsets of the set of file
signatures by using a pseudorandom generating algorithm. This strategy uses
a notion of creating subsets whose elements are randomly determined each
time the Check? is executed. This schema avoids malicious tampering, since
the system is programmed to randomly change the sets frequently by using a
new seed for the pseudorandom generator. Again, for each of the N files, we
compute a checksum: CKY; = CK(F).

The system's security administrators decide on the number of subsets, m
(m<N), S}, S2y.....8w , wWhere each set §; ¢ {CK'; ,CK';,....CK'y). That is,
each subset is made up of a number of first-level checksums. The
composition of these subsets is decided in a randomized way (there are
actually many strategies to achieve this, and we will illustrate one later in the
paper). Each subset m may not necessarily have the same number of first-
level checksums. The signature for the i-th subset is constructed as the hash
or Exclusive OR of the first-level checksums in ;. This combined signature
is the 2" level Signature, CK%;. 1If the original signature has b bits, the
combined signature will also have b bits. When a file, F, is altered, the
system generates the 2™ level signatures, compares them to the stored
signatures (which were computed using the same random sets) and with
authorization, automatically changes those signatures that utilize F; in its
computation.

This algorithm allows varying levels of security. The number of second
level signatures is variable, unlike in the deterministic approach, where each
2" signature is a function of K signatures. The number, m, of 2™ level

122 DATA AND APPLICATIONS SECURITY

signatures is directly proportional to the level of security the administration
wishes for the system. The more of 2™level signatures computed, and
higher the security because the larger the stock necessary to make a valid
copy. By frequently recreating new a set of randomized subsets from the set
of N file signatures, there is an extremely low probability that the intruder
has acquired an exact copy with which to corrupt.

Once m is established, at the initialization of the algorithm, using a
pseudora.ndom number generator and a strategy to decide membership, we
can assign first-level checksums into the m subsets. At any update or
alteration of a file, the 2™ level signatures are recomputed and stored and at
times. Moreover, the system may randomly redistribute the N signatures by
applying again the pseudorandom generator and the strategy to the set of
files.

There are many strategies to randomly combine first-level signatures into
the second level signatures. A few of them are described and analyzed in the
context of the file comparison problem in [2].

To 1illustrate this, we include here one of their algorithms, called
Innocents. In this strategy, each first-level checksum is included in a set Si,
with probability 1/f, where f is a parameter of the algorithm. In the original
strategy, f meant the number of pages on the file that the algorithm was
designed to diagnose as being different in the two copies; in our technique it
represents the number of corrupted files that we are set to detect. Due to the
randomness of the algorithm, there is a 2™ probability of a page being left
out of all second level signature subsets. To resolve this issue, after the
random subsets have been chosen, the system checks whether every file has
been included in a subset. If it is not the case, it adds an additional set that
includes all files that have been left out.

Recall that the stock only contains old file copies and corresponding
signatures. In this approach, two exact same file systems may have a
different set of second level signatures. For a file Fy, the attacker's copy of a
2" Jevel s1gnature in his or her stock from time t, may not be the same
signature that is generated at time t;. In the randomized approach, the
probability that the randomized distribution for the 2™ level combined
signatures corresponds to the copy in the intruder's stock is 1/(m™). This
does not reflect any modifications to system files from the time of the old
copy. Thus, it is very unlikely the intruder process the correct signatures,
which the system would validate.

3.2.1 Diagnosis of probabilistic techniques.

Figure 6 shows the algorithm that diagnoses corruption in a file system
protected by the Innocents technique. This algorithm can be run periodically

Protecting File Systems Against Corruption Using Checksums 123

in order to alert the security officer from possible corruption in one or more
of the files. The algorithm proceeds as follows. First it computes all the
subset’s signatures and creates a syndrome matrix of elements (one per
subset) whose values can be 0 or 1, according to whether the signature of the
subset matches the stored signature or not. Once this matrix is built, the
algorithm examines those subsets whose signature matched and puts the
number of the files included in the subset in a set 7. At the end, T will
contain the “innocent” files, ie., those presumably uncorrupted. The
complement of that set is the set of files that might have been corrupted.

In diagnosing corrupted files by probabilistic means, one has to take into
account the possibility of false diagnosis. There are two ways in which a
false diagnose can happen: an uncorrupted file may be diagnosed as
corrupted (false positive), or a corrupted file may fail to be diagnosed as
corrupted (false negative). Fortunately, the probability for both of these
events can be made arbitrarily low by setting the algorithm parameters

(mb,f) properly.

Create syndrome matrix with elements
0,=0 ifthe second-level signature of subset i matches the one stored.
1 otherwise.
T=92
Fori=1tom
If =0
/ Then
Forj=1ton if CK'j is in Si then
T=Tv§}
T=S - {T}

Figure 6. Probablistic diagnosing algorithms for Innocents

In [2], the analysis of the probabilities for the false positive and false
negative diagnoses is presented. We only repeat the results here. The
probability of a false positive event can be made less than & (which can be
fixed by the security officer) by insuring that the inequality in Equation 3 is
true.

b 2 log(m)+ log(f) + log(2/ 8) 3

Equation 3 establishes a lower bound for the number of bits in the
signature in order to guarantee that the probability of false positive diagnosis
is less that &.

On the other hand, the probability of a false negative will be bounded by
& if the number of subsets m is such that the inequality in Equation 4 is true.

m 2 4f (In(n-f) + In(2/ §)) “)

124 DATA AND APPLICATIONS SECURITY

For instance, selecting m = 500, f = 10, b > 7, and for a system with 100
files, we would achieve an upper bound for the false diagnosis of 27'° (or
0.00097).

4. CONCLUSIONS AND FUTURE DIRECTIONS

The file corruption addressed by our analysis involves copying of files by
intruders who gain write access to a file system protected by signatures. We
have presented Check2, a technique to protect a set of files against
corruption by insider intruders (or individuals who impersonate authorized
users). The system has two very desirable properties. First, it forces a
potential intruder to track and perform a string of precise changes, if he or
she wants to remain undetected. Secondly, if the attack is not performed
properly, Check?2 is able to pinpoint the corrupted pages to the security
officer.

The foundation of Check2 is based on computing checksums for each
file, as other techniques such as Tripwire currently use. However, our
technique contributes the usage of two or more levels of signatures,
combining file signatures with a deterministic or probabilistic schema, in
order to increase the work of intruder. This includes calculating the exact
lengthy chain of alterations and successfully implementing the changes in a
dynamic real-time situation. In either strategy, an additional cost of copying
the actual contents of extra files, other than the corrupted file can be
integrated into each technique.

REFERENCES

[1] Albert, A.A and Sandler, R. An Introduction to Finite Projective Planes. Holt, Rinehart, and Winston, New York, 1968.

[2] Barbara, Daniel and Lipton, Richard, J. A class on randomized strategies for low-cost comparison of file copies. IEEE
Trans. Parallel and Distributed System, Vol. 2, No. 2, April 1991, pages 160-170.

[3] Kim, Gene. H., Spafford, Eugene, H., The design and implementation of Tripwire: A file system integrity checker. Proc. 2nd
ACM Conference on Computer and Communications Security, 1994.

[4] Kim, Gene. H.,, Spafford, Eugene, H., Experiences with Tripwire: Using integrity checkers for intrusion detection. Systems
Administration, Networking and Security Conference III. Usenix 19%4.

[5] Mackawa, Mamoru. A ¥N algorithm for mutual exclusion in decentralized systems. ACM Transaction on Computer
Systems, Vol. 3,No. 2, May 1985, Pages 145-159.

[6] MDS5 Message - Digest Algorithm, MIT Laboratory for Computer Science and RSA Data Security, April 1992.

[7] Merkle, R. C., A Fast Software One-way Hash Function. Journal of Cryptology,3(1):43-58,1990.

[8] Website: www.tripwiresecurity.com/vs.html as seen in January 2000.

