CHAPTER 14

Wrappers - A Mechanism to Support State-Based
Authorization in Web Applications

Martin S Olivier
Computer Science, Rand Afrikaans University, PO Box 524, Auckland Park, 2006, South Africa

molivier@rkw.rau.ac.za

Ehud Gudes

Mathematics and Computer Science, Ben-Gurion University, Beer-Sheva, 84105, Israel
ehud@cs.bgu.ac.il

Abstract

The first premise of this paper is that security should ultimately be associated with
an application because application semantics have a direct influence on proper
protection. The second premise is that applications are generally too complex
to be trusted to implement security as specified by the given security policy.
These problems are aggravated if the application operates over normal time and
space constraints: The best example of such applications is workflow systems
where various actors — possibly from multiple organisations — interact on long
transactions to complete a given task.

The solution presented in this paper is an approach referred to as wrappers: a
wrapper is a simple program that has enough knowledge about a specific appli-
cation’s potential states and the actions that are permissible in each state. Using
this knowledge, it is able to filter requests that should not reach an application at
a given point. It is important to note that wrappers are not intended to subsume
the security functionality of an application, but serve as an additional check.

The paper presents its concepts in a World-wide Web environment that renders
it immediately useful.

1. Introduction

Itis generally accepted that security should ideally be based on the concerned

application:

Only when the application logic is considered, is it possible to pre-

cisely determine security-related concerns such as the need-to-know or context
sensitive security requirements. Such requirements have most notably been ex-
pressed in the workflow context where, for example, someone’s authorisation to
modify a given document depends on the current state of the workflow process.

150 DATABASE AND APPLICATION SECURITY

Such context-dependent security measures are clearly not restricted to work-
flow systems. Applications in general exhibit this requirement. As a simple
example note that in almost any sensitive application it should not be possible
to do any processing before proper user authentication has been performed.
Although such a simple requirement seems obvious, it is a generally accepted
fact that many complex applications do contain backdoors that enable the de-
veloper access to the system without going through the normal authentication
procedure [9]. Many forms of attack will also deviate from normal application
flow of logic. One well-known attack is to overflow buffers on the stack and
so take control of the system. This form of attack was, amongst others, used
in the Internet worm [9] and was again recently exposed as vulnerabilities in
well-known Microsoft and Netscape products [4].

It is our contention that application-layer security should be part of the design
process of any major application and that an appropriate security model should
be implemented as part of the application development process. It is, however,
a fact that real-world applications are complex by nature and that it is very hard
to ensure their correctness in general, and the implementation of their security
features in particular. Add to this the fact that application designers are often
not security experts and that weak methods are often employed to protect the
system (in addition to the fact that the system is complex to protect), concern
is indeed warranted.

The option that interests us in the current paper is the possibility to place a
‘wrapper’ around the application such that the user interface falls outside the
wrapper and all communication between the user interface and the application
has to occur via this wrapper. In some senses this wrapper is similar to a firewall
that protects the internal network of an organisation from the untrusted external
network. The wrapper is, however, fundamentally different from a firewall
since it is intended to wrap a specific application, possibly even on a single host
without any notion of networking.

Such a wrapper is obviously a much smaller system since it does not imple-
ment the application logic, but simply forms an additional security layer. Since
the wrapper is much simpler, it is much easier to verify that it does indeed
implement the required security policies and therefore much easier to trust. In
addition, since the primary concern of the wrapper is security, it is natural that
it may be developed by security experts rather man application experts that may
mean that common pitfalls will be avoided.

Although not the only (or necessarily the best) way to separate the applica-
tion from its user interface, we shall use a Web browser as the user interface
component and HTTP as the communication protocol.

This paper is structured as follows. Section 2 contains background material
about HTTP. Section 3 gives an overview of the approach that we present. Sec-
tion 4 discusses implementation issues associated with our approach. Section

Wrappers & State-based Authorisation 151

5 compares our approach to existing approaches while section 6 concludes the
paper.

2. Background

This paper assumes knowledge of the HTTP protocol. We therefore give a
very brief introduction to this protocol. Readers interested in a more detailed
treatment are referred to RFC 2616 [8].

The HTTP protocol is used to connect a client (typically a Web browser) to
a Web server. It establishes this connection using the TCP/IP protocol suite.

The primary request sentby a browser is a GET request. It may be formulated
in a number of ways but the following is typical when programs are to be
executed:

GET /cgi-bin/program.cgi?paraml=vall¶m2=val2 HTTP/1.1
HOST: server.domain

The requested program is then executed and its output is sent to the browser.
The program has a standard mechanism to access the values of parameters sent
to it (such as paraml and param2 in the example above). The output of the
program is typically encoded in HTML and rendered by the browser.

HTTP is a stateless protocol where each request sent from the browser is
replied to by the server and then ‘forgotten’ — ie it does not influence further
operation of the protocol. Two mechanisms are typically used to add state
information when required. Firstly, cookies may be used. Cookies are short
files written to the disk of the client machine; the values of these files can be
obtained during subsequent requests and used to establish the current state of a
longer interaction. The second mechanism that is commonly used is a session
identifier. When a ‘session’ is initiated, the server sends some unique identifier
along with its response such that the identifier will be sent back to it with a
subsequent request. This identifier is then passed to and fro between the client
and server and used to keep track of the session state.

3. State-based security checking

The application wrapper proposed in this paper is intended to form a layer
between the application and the user interface such that the wrapper contains
enough information to verify state-based access controls. However, to be useful,
it is essential that the wrapper (1) is simple enough that it potentially has a much
higher level of trust than the application; and (2) does not have access to any
application data, so that if the wrapper is somehow compromised, the attacker
has gained very little.

The first goal will be reached by showing that it is possible to produce a
generic wrapper that may be configured for any application. Furthermore, it

152 DATABASE AND APPLICATION SECURITY

will be shown that this can indeed be done without giving this wrapper access
to sensitive information.

To accomplish this consider the data that is required by the wrapper. We
will assume that the user interface is a thin client that contains no application
specific logic. Requests are passed from this client, through the wrapper to the
application, which is implemented as a server. Responses are returned along
the same route in the opposite direction.

31. Wrappers and Firewalls

Note that wrappers are similar in many ways to application gateway firewalls.
Wrappers are, however, (1) intended for a more general class of applications than
the services to which application gateways have traditionally been applied, and
(2) wrappers are not intended as a defence between an organisation’s network
and the outside world, but all accesses to a wrapped application are forced to
go via its wrapper — even from the most trusted machines on a local network.

3.2. Basic access control

In order to keep the wrapper as simple as possible, we will assume that it is not
concerned with authentication: The user is expected to obtain a ‘ticket’ from an
authentication server and present it with every request relayed by the wrapper.
For simplicity we will assume that roles are used. Therefore, it is assumed that
every request will consist of a (certified) role r and the action g to be performed.
How the role will be ‘certified’ is not important for the discussion of the concept
and an explanation of such certification will be delayed until section 4. For the
current discussion it is only necessary to assume that an unauthorised user (ie
someone who is not authorised to operate in role r) will not be able to obtain
such a certification.

If the wrapper has access to a table that contains all valid (role, action) pairs,
it is simple for the wrapper to enforce the required checking.

3.3. The single-session case

More challenging than simple access control (and more relevant to the current
paper) is enforcement of state-based access control. State-based access controls
are useful whenever a partial ordering of actions exist in which they have to be
performed. (Consider the example where a customer is expected to supply credit
card details before being allowed to download software purchased online.)

The set of requests may be purely sequential or may represent a complex
partial order set of requests such as is customary in workflow applications (see
for example [1]).

The essential question that the wrapper needs to be able to answer is, is some
request ¢ valid if it follows a series of requests ¢4, 3, t3, . . . , £, ? This is, amongst

Wrappers & State-based Authorisation 153

others, a well-known problem addressed by formal languages: given two sen-
tential forms T3 and T2 1s it possible to derive T3 from Ty,ie Ty = T2? Using
a grammar for state-based authorisation has been dicussed in detail by Biskup
and Eckert [2]. That paper also describes the translation of such specifications
to finite automata, that are used by monitors to enforce the specifications.

It is obvious that most existing online applications have a very simple state-
based security requirement, such as login must precede any further interaction
with the application and payment must precede download of purchased items
(assuming an online shop that sells ‘soft” goods). The grammar based approach
has the potential to specify policies such as allow no further interaction from a
customer during the current session who has three times specified credit card
details that were not accepted by the bank; this may, for example be specified
using a grammar such as

(listheloginrequest

X is any pre-payment request

Y is the downloading of purchased item
P is the payment request
cis an accepted credit card specification

¢'is a denied credit card specification, and

F is any request that is still allowed after failing
credit card verification, such as logoff

Exactly how a wrapper knows that credlt card verification has failed will be dis-
cussed below. It is clear from the specification above that ‘payment’ only
succeeds if credit card verification occurs within three attempts.

The example above illustrates a crucial requirement of wrappers: it is essen-
tial to keep the wrapper synchronised with the application. Since the wrapper
is explicitly barred from accessing application data, a wrapper may allow an
operation that is denied by the application. Therefore the wrapper needs to be
able to monitor responses from the application to the client. The wrapper now
proceeds as depicted in figure 1.

r - IXPY

where
P o cdcdcclddcF ﬁ

34. The multi-session case

Thus far we have only considered ‘transactions’ that occur within a single
session. The ultimate challenge is to handle ‘long transactions’ that span mul-
tiple sessions (and that are potentially executed by more than one user). This
scenario is typical of workflow applications where one user submits a claim
during one session. During a subsequent session an approver works sequen-
tially through submitted claims and either approves or denies them. Finally,
during a third session, the cashier looks at approved claims and issues cheques.

In order to handle long transactions it becomes necessary to associate a
transaction identifier + with each long transaction. It is obviously necessary
to set and modify ¢ when required: consider the approver who looks at one
transaction after the other — each time a different transaction is involved, and

154 DATABASE AND APPLICATION SECURITY

while (true)

acceptrequest(p:) with p; = (ri,q:)

if gi is not acceptable In current state or r; is not allowed to request ¢; then
| send ‘reject’ to client

alse
send p; to application
receive response a from application

if a.success then
append q; to log // state successfully exited

Llanter new state based on g;
else
append g; to log // alternative state used

if ¢; I8 not acceptable in current state then

| send ‘reject’ to client; send ‘abort’ to application
else

| enter new state based on g}

L L+

Figure 1. Pseudocode for wrapper

whether the transaction is a candidate for approval depends on the state of the
particular transaction. Obtaining t may be accomplished by identifying all
requests (to the wrapper) which may lead to an updated value of #; may be
extracted from a parameter that accompanies a request and/or determined from
the response a. transaction that the algorithm above is now expected to return.

An interesting point to note is that a user’s behaviour may now be governed
by two distinct state-oriented policies. To illustrate, consider the familiar claim
example. When the client logs onto the claim system, the system may assign a
transaction identifier to this specific claim. From this point on the actions of the
client are governed by the rules for claim submission. Suppose that the client
completes submission of the claim, is the client now permitted to look at the
status of another claim during the same session? This is clearly a session-state
issue rather than a transaction-state issue.

We propose the following solution. Firstly, rules for transactions are spec-
ified. For the claim example this may involve specifying the sequence for
submitting and subsequently approving the claim, until it is eventually settled.
Different ‘sessions’ may then be identified. For this example a ‘client session’
may, for example, be specified as a session initiated by a client login request,
which may then be followed by a request to initiate submission or a status
request. The submission or status request is governed by the rules for the trans-

action, rather than the session. Consider
m, is a client menu request
T. is a client transaction
where ¢ ¢ s the first step of a claim submission
s is the first step of a status query; and
€D is discussed below
@ 1s used in the specification above to indicate that the preceding request (c or

Y - mlT.
T. - ¢® 13®

Wrappers & State-based Authorisation 155

s) 1s the start of a sequence that will be governed by a transaction specification.
This implies that a transaction has to be identified by ¢ and s.

Note that it is simple to modify the session specification to ¥ — m.T} or
even & — (m.T¢)* to express different policies.

At this point it becomes necessary to consider ordinary transactions. Con-
sider an on-line banking application where a client selects an account from
which money is to be transferred with one request and an account to which the
money should be transferred with a subsequent request. If the session fails at
this point, it is unlikely that the application will allow the client to continue
from this point at a (significantly) later stage: The basic actions are likely to
be grouped into a transaction that are to be executed as a unit. The question is
whether the wrapper needs to be aware of such transactions. We argue that it
is not the case, as long as the wrapper knows where a new session is allowed
to start: In the case of the banking example, a session is allowed to start at the
first account selection and nowhere else. We foresee that session specifications
will often be used merely to indicate such possible starting points.

Note that the rules for transaction state access control will typically not be
provided as a grammar by the security officer, but may be automatically derived
from the workflow specification.

4. Implementation

The use of the Web as a means to implement various applications has in-
creased tremendously over the last number of years. In addition, the separation
between user interface (in a browser) and an application server (as required by
our approach) is indeed present in the Web environment.

4.1. Filtering messages

It is relatively simple to write a wrapper that relays (filters) requests between
the client and application as required for wrappers.

To illustrate the operation of a wrapper in the Web environment, consider
the claim example again. The specification in figure 2 is not intended as an
illustration of a specification language, but rather to make some of the issues
previously discussed more concrete.

Lines beginning with a hash (#) are intended as comments. The initial sec-
tion of the configuration specifies all messages (or requests), along with the
parameters that are employed. The role parameter is implicit in all messages
and not shown. It will be discussed below.

When a parameter is marked with an asterisk (such as transaction* with
view-a-claim), it means that this value is not directly provided by the user, but
is typically retrieved from a response to a previous message. In the example case
view-a-claimis preceded by a view-claims message. The intention is that

156 DATABASE AND APPLICATION SECURITY

MESSAGES
Messages for claiming
client-welcome O
view-form (session, transactionx)
submit-claim (session, transaction, incident, amount)
Messages for approval
admin-welcome O
view-claims (session)
view-a-claim (session, transactionx)
approve-claim (session, transaction)
deny-claim (session, transaction)

Messages for payment
view-approved-claims (session)
view-an-approved-claim (session, transactionx)
issue-cheque (session, transaction)

TRANSACTIONS
-> Submission Approval Payment
Submission -> view-form submit-claim

Approval -> view-a-claim { approve-claim | deny-claim end }
Payment -> view-an-approved-claim issue cheque end
SESSIONS

Claim session
-> client-welcome view-form...
Approval session

-> admin-welcome { view-claims view-a-claim... }=
Payment session
-> admin-welcome { view-approved-claims view-an-approved-claim... }*

Figure 2. Tllustrative wrapper specification

the response to the view-claims message 1s a list of claims ready for approval,
together with their associated (long) transaction identifiers. Therefore, when
the user clicks on a particular claim, the form is composed so that the ‘selected’
transaction identifier is sent as a parameter with the view-a-claim message.

We assume that the selected names of messages are clear enough for the
reader to interpret. However, keep in mind that the names refer to messages,
not screens. Therefore an approver may look at a screen of claims ready for
approval; when the approver clicks on one such claim, the view-a-claim
request is sent and this is followed by a screen with claim details. On this
screen the approver may click on approve or deny

The transaction rules should also be self-explanatory for this simple example.
Note that this specification is rather inflexible and that more flexibility will be
required for real-world applications. We contend that our approach is capable

Wrappers & State-based Authorisation 157

of handling more flexible requirements but do not illustrate it in the current
paper for lack of space.

In the case of specific sessions, ellipses have been used to indicate that a
portion of a session will be controlled according to a transaction specification
rather than a session specification. (In the previous section we used @ for this,
but this symbol is not available on keyboards for typical configuration files.)

It is now clearly simple for the wrapper to apply the algorithm given in
the previous section. When a message arrives (1) ensure that the message
may indeed be sent by a user as stated in the role parameter (see below for a
discussion of this parameter); (2) ensure that the message is valid in the current
session state, if the message forms part of a session state specification; and (3)
ensure that the message is valid in the current transaction state, if the message
forms part of a transaction state specification.

Transactions state needs additional consideration. In the single session/single
transaction case this is not a problem: the wrapper can maintain the state in
memory, and this way can easily check whether the next (role, action) pair is
valid or not.

In the multi session/multi-transaction case this is more complicated. one
option is for the wrapper to maintain in alocal database all these states. This is
however too complex since it defeats the wrapper simplicity principle, and also
takes upon itself much application functionality. This is even more complex
when the multiple sessions are initiated in different sites and involving different
wrappers. The solution we advocate is the following. Using a specification
similar to the one discussed in section 3.4, the wrapper can know exactly which
(role, action) pairs are valid at the beginning of a session. The suitability of
such a pair to the specific transaction state will be tested by the application
itself. If the answer will be positive the wrapper can start to maintain the state
in memory so long as this transaction is active. Thus no local database and no
application database is required by the wrapper.

4.2. Role identifiers

The role parameter is different from other parameters since authorisation is
based on it. The following approach solves the major problems: Firstly, the user
requests a role identifier from an authentication server. Note that the authenti-
cation server is independent of wrappers. When requesting the identifier, the
user states the requested role and provides the required credentials, such as a
user name and password. The authentication server then compiles a certificate
containing role information such as the name of the role and its period of validity
and then signs this information with its (the authentication server’s) private key.
If we assume that an encrypted channel (such as SSL) is used between the user
and the authentication server, this certificate cannot be misappropriated by an

158 DATABASE AND APPLICATION SECURITY

eavesdropper. A similar argument shows that it cannot be misappropriated be-
tween the user and the wrapper or the wrapper and the application if encryption
is used. It is obviously simple for the wrapper (and the application) to verify
the authenticity of the role identifier by using the authentication server’s public
key. Note that this approach presents a simplified version of secure cookies as
presented by Park er al [13], but avoids the use of cookies.

43. Wrapper and Application Relationship

A major issue in the proposed scheme is the extraction of the state based
behaviour from the application in order to specify it precisely for the wrapper.
If one uses an external tool for such specification one runs the danger of creating
inconsistencies between the application and the wrapper, and maintaining the
wrapper specifications in case the application changes. An automatic or semi-
automatic tool is much more desirable.

Let us assume that the application consists of a set of CGI scripts. There
are several alternatives to generate the state-role/action sequences. Usually,
such CGI scripts are very simple and as was explained above retrieve com-
mands sent to them using GET or POST using some explicit mechanism. The
semi-automatic scheme we propose involves the insertion, by the application
developer statements which specify the desired role for each such GET/POST.
In addition the application developer can insert statements that assert that some
condition has been met (eg assert user logged on) in some scripts where
this condition has indeed been met and state that the condition is required to
execute other scripts (eg require user logged on). (Such statements may
be handled by a pre-processor.) Then a simple program-flow analyzer can gen-
erate all the possible sequences of action/role pairs. Later on the application
developer will need to maintain only such CGI scripts.

Another possibility is to write a simple parser which will scan the CGI scripts
and for each GET/POST it finds will inquire the application developer for the
relevant role/action pair. Then the generation of possible sequences will be
done as mentioned before. Yet, another possibility is to develop a high-level
tool for specifying states and actions (similar to State-charts [10] or Petri-nets
[1]) and from that tool to automatically generate both the state-based sequences
and skeletons for the CGI scripts required by the application.

5. Comparison with other work

The Wrappers idea is related to several other works which appeared in recent
years. The idea of extracting security policies from an application and enforce
and maintain them separately has appeared before. In [11] it is argued that in
a distributed object environment, one cannot leave the security enforcement to
monolithic components such as DBMSs. Since usually in such systems requests

Wrappers & State-based Authorisation 159

go through mediators or brokers like CORBA or DCOM we should associate
security enforcement with these mediators. [11] is very general and does not go
into the details of what kind of authorization should be handled by the brokers
and what should remain with the application or DBMS.

Our work differs from that of Biskup and Eckert cited earlier [2] since (1) a
greater emphasis is placed on isolation of the wrapper; (2) transactions where
multiple subjects cooperate are considered; and (3) it is set in the Web context.

The DOK system for federated databases proposed by Tari [15] has acomplex
structure of agents enforcing security on behalf of the individual application or
local DBMS (he even uses the term “Wrapper” but for translating global to local
requests only). Our wrapper on the other hand is quite simple but has a focused
goal — providing state-based security for Web-based applications. Therefore,
issues such as translating queries are not handled by it.

The TIHI project by Wiederhold et al [16] is quite close to our ideas. It uses
an object called “Security Mediator” for enforcing the security policies of a
Web-based medical application. It is also implemented using CGI scripts. It is
however, application specific, and not generic like our wrapper. It also handles
all authorization and not only the state-based.

Another paper on Role-based security by Demurjian et al [6] is also related
to our work. They suggest the concept of an OSA (Object Security Officer)
which separates an object from the outside world like a firewall. However their
OSA is linked to the application object much tighter than our wrapper, since it
invokes the object methods directly.

Finally, in our own work on workflow security [7, 12] we showed how we
can specify and enforce history and dynamic authorization rules. All the au-
thorization is done by the workflow security administrator object. Thus it is
tightly coupled with the workflow specification. Again, the Wrapper idea here
is not as tightly coupled with the application. It must be synchronized with it
with respect to the major states and roles but it still leaves data dependent and
dynamic authorization checks to the application.

6. Conclusion

This paper has presented an approach to reinforce application security in an
environment such as the Web by introducing another layer of defence between
the firewall and the application itself. It is important to remember that this
layer is not intended to remove any responsibility from either the firewall or the
application, but rather provide additional security.

It has been demonstrated that the concept is indeed simple — a requirement
for trust — and can be based on a simple configuration approach. The paper
has not investigated suitable specification approaches in any detail but merely
posited that it should be possible to either specify the wrapper’s behaviour

160 DATABASE AND APPLICATION SECURITY

manually for a simple application (such as many current online stores) or to
create a tool that will automatically derive a specification from others such as
those used for workflow systems in general. This remains to be verified.
Further, exactly how the specification is converted to a wrapper has not been
considered in detail in this paper. Much work has been done over many years
to generate parsers for arbitrary grammars and this should therefore be simple.

References

[1] V Atluri and WK Huang, “An extended petri net model for supporting workflow in a
multilevel secure environment,” in P Samarati and RS Sandhu, Database Security X:
Status and Prospects, Chapman & Hall, 1997, pp. 240-258.

[2] J Biskup and C Eckert, “About the Enforcement of State Dependent Security Specifi-
cations,” in TF Keefe and CE Landwehr (eds), Database Security VII, Elsevier, 1994,
317

[3] FCasati, S Ceri, B Pernici, G Pozz, “Conceptual Modelling of Workflows” Proc. of the
Object-oriented and Entity-Relationship Conf., Australia, 1995.

[4] CERT, Buffer Overflow in MIME-aware Mail and News Clients, CERT Advisory CA-
98.10, 1998

[5] W Ford and MS Baum, Secure Electronic Commerce: Building the Infrastructure for
Digital Signatures and Encryption, Prentice Hall, 1997

[6] SA Demurjian, TC Ting and M Saba, “Agent approaches to enforce Role-based security in
distributed and web-based computing,” Proceedings IFIP WG 11.3 Workshop on Database
Security, Seattle, Washington, 1999, pp. 65-77.

[71 E Gudes, MS Olivier and RP van de Riet, “Modelling, Specifying and implementing
workflow security in Cyberspace”, Journal of Computer Security, Journal of Computer
Security, 7,4, 287-315, 199

[8] R Fielding, J Gettys, J Mogul, H Frystyk, L Masinter, P Leach, T Berners-Lee, Hypertext
Transfer Protocol - HTTP/I.1. REC 2616, Internet Society

[9] S Garfinkel and G Spafford, Practical Unix & Internet Security, 2nd ed, O'Reilly, 1996

[10] D Harel and M Politi, Modeling Reactive Systems with Statecharts: the STATEMATE
Approach, McGraw-Hill, 1998

[11] CD McCollum, DB Faatz, WR Herndon, EJ Sebes, RK Thomas, “Distributed object
technologies databases and security”, proceedings IFIP WG 11.3 Workshop on Database
Security, Lake Tahoe, Ca. 1997, pp. 17-33.

[12] MS Olivier, RP van de Riet and E Gudes “Specifying Application-level Security in Work-
flow Systems,” in R Wagner (ed), Proceedings of the Ninth International Workshop on
Security of Data Intensive Applications (DEXA 98), 346-351, IEEE, 1998

[13] J Park, R Sandhu and S Ghanta, “RBAC on the Web by secure cookies,” Proceedings IFIP
WG 11.3 Workshop on Database Security, Seattle, Washington, 1999, pp. 41-54.

[14] LD Stein, Web Security: A Step-by-Step Reference Guide, Addison-Wesley, 1998

[15] Z Tari, “Designing security agents for the DOK federated system,” Proceedings IFIP WG
11.3 Workshop on Database Security, Lake Tahoe, Ca. 1997, pp. 35-59

[16] G Wiederhold, M Billelo and C Donahue,, “Web implementation of a security mediator
for medical databases,” Proceedings IFIP WG 11.3 Workshop on Database Security, Lake
Tahoe, Ca. 1997, pp. 60-72.

