
CHAPTER 16
DISCOVERY OF MULTI-LEVEL SECURITY
POLICIES

Christina Yip Chung, Michael Gertz, Karl Levitt
Department of Computer Science, University of California, Davis, CA 95616, U.S.A.
{chungy|gertz|levitt}@cs.ucdavis.edu

Abstract With the increasing complexity and dynamics of database systems, it
becomes more and more difficult for administrative personnel to identify,
specify and enforce security policies that govern against the misuse of
data. Often security policies are not known, too imprecise or simply
have been disabled because of changing requirements.

Recently several proposals have been made to use data mining tech-
niques to discover profiles and anomalous user behavior from audit logs.
These approaches, however, are often too fine-grained in that they com-
pute too many rules to be useful for an administrator in implementing
appropriate security enforcing mechanisms.

In this paper we present a novel approach to discover security poli-
cies from audit logs. The approach is based on using multiple concept
hierarchies that specify properties of objects and data at different levels
of abstraction and thus can embed useful domain knowledge. A profiler,
attached to the information system’s auditing component, utilizes such
concept hierarchies to compute profiles at different levels of granularity,
guided by the administrator through the specification of an interesting-
ness measure. The computed profiles can be translated into security
policies and existing policies can be verified against the profiles.

1. INTRODUCTION
A major obstacle in securing todays information systems is not the

lack of appropriate security mechanisms (see, e.g., [4] for an overview of
access control models), but the lack of methods and concepts that allow
security administrators to identify security policies. This is because in
practice often only a very few policies are known at system design-time.
Furthermore, at system run-time existing security policies typically need
to be modified or new policies need to be added. In such cases, deter-
mining appropriate policy modifications is based on the normal behavior
of users. What is needed are concepts and tools that help administra-
tors in identifying security policies of interest and in verifying existing
security policies.
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Recently several proposals have been made to discover user profiles
from audit logs (see, e.g., [2, 7, 6, 9, 12, 13, 14]). Profiles describe the
normal behavior of users (groups) regarding the usage of the system and
associated applications. Discovered profiles can be used to derive specifi-
cations of security enforcing mechanisms based on, e.g., an access control
model. The ability to incorporate application specific domain knowledge
is critical to the success and usability of these approaches. In [7, 6] we
have shown how misuse detection, based on data mining techniques, can
benefit from domain knowledge that is incorporated into applications
associated with an information system. However, even these approaches
turn out to generate too many fine-grained policies. Administrators
typically do not want to deal with hundreds of closely related access
patterns, but prefer a representation of access patterns at an abstract,
more generalized level of description.

In this paper we describe an approach that tries to alleviate this short-
coming by discovering security policies at different levels of detail. The
approach is applicable to database systems as well as Web-based infor-
mation systems. We employ concept hierarchies [3] that describe proper-
ties (values) of data at different levels of granularity. Concepts modeled
in such hierarchies build descriptive parts of user profiles and thus se-
curity policies at different levels of detail. Such hierarchies are either
provided by the administrator (thus representing some kind of domain
knowledge) or can be discovered from data using clustering techniques
(see, e.g., [8, 10]). We propose an extension of the concept hierarchy
framework in which we organize feature/value pairs (representing con-
cepts) in trees. Our framework is more general than [11] in that it does
not impose an arbitrary partial order on the attributes (concepts) in a
concept hierarchy.

Our profiler is capable of considering multiple concept hierarchies in
discovering profiles. Multiple concept hierarchies have been introduced
in the data mining domain for deriving typical patterns of data at dif-
ferent levels of abstraction [3, 10, 11]. We extend the usage of multiple
concept hierarchies by allowing different types of concepts in a single
hierarchy. Depending on the security policies to discover or verify, the
administrator can choose among (combinations of) concept hierarchies
and abstract concepts (features) embedded in these hierarchies.

Finally, we introduce the notion of interestingness measure as an im-
portant means for administrators to guide the profile and policy discov-
ery process. This measurement can be specified by the administrator
depending on the type and granularity of policy she is interested in.
Our approach provides a valuable tool for security re-engineering which
utilizes audit logs generated by a database system at run-time.
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2. CONCEPT HIERARCHIES
Concept hierarchies represent application specific domain knowledge

about features of interest for the discovery of security policies. Starting
from auditable features, a concept hierarchy can be developed bottom-up
by the administrator or data clustering techniques.

In Section 2.1, we describe how concept hierarchies organize fea-
ture/value pairs in form of trees. In Section 2.2, we discuss a model
to determine whether a given itemset, consisting of feature/value pairs,
is of interest. Section 2.3 outlines the usage of concept hierarchies for
generalizing itemsets.

2.1. PRELIMINARIES
Objects and data are conceptualized through feature/value pairs in

which a feature is an object property and value is the value of the prop-
erty. A feature/value pair is denoted by , meaning that the value
of feature F is f. We use trees to model concept hierarchies organiz-
ing objects and data through feature/value pairs at different levels of
abstraction. Each node in the tree corresponds to a feature/value pair.
The root of the tree is a special node including all concepts.

While such a framework for a concept hierarchy is simple and intuitive,
it captures many real world examples. It is worth mentioning that a
concept hierarchy is not limited to only one type of feature. Features
can be abstracted to other features. Figure 1 shows a concept hierarchy
for the concept time, a feature that often is of interest in profiling.

Figure 1. Concept Hierarchy on Time

Note that leaf nodes represent auditable features (“raw data” in the
audit log), whereas inner nodes represent generalizations of these fea-
tures at different levels. Formally, a concept hierarchy is a tree where
nodes are labeled with feature/value pairs. A subtree with root ,
having n subtrees rooted with is denoted by
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Let be a set of concept hierarchies. Desc(n) denotes the set of
nodes that are descendants of node n in The depth of a node n
in T, denoted by Depth(n, T), is the number of nodes on the path from
the root to n. The depth of the root node is 0. The depth of T, denoted
by Depth(T), is the maximum depth of all nodes in the tree.

We say a feature/value pair may be generalized to
with respect to a hierarchy T if is an ancestor of in
T. Since may be different from a feature may be generalized to
another feature, e.g., a different type of concept, as indicated in Figure
1, where the feature hour has been generalized to the feature time.

2.2. INTERESTINGNESS MEASURE
For computing user profiles based on concept hierarchies, it is im-

portant to determine whether a set of feature/value pairs might be of
interest, i.e., is likely to lead to useful information regarding the usage
patterns an administrator is interested in. As a novelty to using concept
hierarchies, we introduce the notion of interestingness measure to guide
the discovery of interesting patterns in an audit session Audit containing
a set of itemsets. We consider four aspects, (1) support, (2) depth, (3)
distance, and (4) size of itemsets describing sets of feature/value pairs.

(1) Support The support of an itemset gives a measure of how fre-
quent that itemset occurs in an audit session. The higher the support
of an itemset, the more regular is the pattern in the audit session. Let
Audit be an audit session and an itemset.
An itemset in Audit satisfies I, denoted by , if

The support of an itemset I in Audit, denoted by Sup(I), is the number
of itemsets in Audit that satisfy I, normalized by the size of Audit:

(2) Depth We prefer feature/value pairs of lower level of abstraction
since they are more specialized and convey more detailed information.
This is captured by the depth of an itemset and describes the depths of
its feature/value pairs in a set of concept hierarchies. Let be a set
of concept hierarchies containing the feature/value pair Then
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Intuitively, the depth of a feature/value pair is its average depth
among all concept hierarchies that contain as a node. The depth
of an itemset I is the average depths of its feature/value pairs, i.e.

(3) Distance We conjecture that usage patterns of users typically
involve feature/value pairs that are semantically related. That is, users
typically access information that is semantically related. Whether and
how information is related is some kind of domain specific knowledge
that often can be obtained from the information structures underlying
the application, in particular the information schemas.

For example, in Web-based information systems, features such as IP
address (called src), URL (rsc) of a requested page, and time of request
(time) can often be organized into one or more hierarchies. For example,
the feature/value pair can be considered as the
parent of the feature/value pair and so on.

The distance between two feature/value pairs can be defined based
on their location in a concept hierarchy. Consider, for example, the fea-
ture/value pairs

and and
are more related than and or and because and
share a longer common path. Thus, the distance measure between

two feature/value pairs in a concept hierarchy T can be defined as

where the function gives the least common
ancestor of two nodes in a concept hierarchy T. The
higher the depth of the least common ancestor of two feature/value pairs,
the smaller is the distance measure, i.e. they are more related.

A similar notion of distance measure can be devised for queries against
relations and attributes in relational databases (see [5]).

(4) Size We prefer itemsets that contain more feature/value pairs
since they reveal correlated information between different feature/value
pairs. This is reflected by the size component of the interestingness
measure, i.e., the number of feature/value pairs the itemset I contains.

In sum, for the meaningful discovery of itemsets (and thus profiles
and policies) we prefer itemsets that are more regular, more specialized,
semantically closer and contain more feature/value pairs. Thus, the
interestingness measure M(I) of an itemset I should (1) increase with
its support, depth, size and (2) decrease with its distance. A simple
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formulation of M(I) that satisfies these criteria thus is

2.3. GENERALIZATION
An important feature of using concept hierarchies in policy discovery

is the usage of the abstraction mechanism embedded in the hierarchies.
For example, using concept hierarchies, access patterns of user can be
generalized to access patterns of user groups, accessed objects can be
generalized to classes of objects, depending on their attribute values,
and so on. A feature/value pair in an itemset I can be gen-
eralized to if it is replaced by in the itemset I and

is an ancestor of in some concept hierarchy. The sup-
port and depth components of the interestingness measure consider the
effect of generalizing an itemset in all concept hierarchies. We incor-
porate multiple concept hierarchies into the discovery process by using
the change of interestingness measure as a criteria to decide whether an
itemset should be generalized.

There are two opposing forces in deciding whether should be
generalized to . On one hand, more general itemsets have higher
support and hence a higher interestingness measure. On the other hand,
it loses depth and hence drives down its interestingness measure.

Let be the generalized itemset of I after generalizing to
with respect to some concept hierarchy. The change of in-

terestingness measure is reflected by the change of its four components
support, depth, distance, and size.

The change of interestingness measure of I to , denoted by
then is defined as:

As a general guideline for the discovery of profiles, an itemset I should
be generalized to an itemset if there is a gain in its change of inter-
estingness, i.e. if

3. ALGORITHM
In this section we outline the algorithm underlying the computation of

itemsets using concept hierarchies in a profiler. In Section 3.1, we present
the basic underlying data structures for managing itemsets. In Section
3.2, we describe the algorithm for computing interesting itemsets.
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3.1. DATA STRUCTURES
The auditing component associated with a database system records

audit data in an audit log implemented as relations in a database. At-
tributes of the audit log are the features audited and their values. Hence,
a tuple in the audit log can be viewed as a set of feature/value pairs,
called itemset, and a relation as a set of itemsets. Features to be audited
by the system are determined by the administrator prior to the user-
profiling and policy discovery. The administrator groups audit records
into audit sessions based on security policy she is interested in. Each
audit session consists of audit records sharing some property. For exam-
ple, an audit session might contain all audit records that correspond to
audited actions performed by a particular user. The profiler computes
a profile for each audit session.

In the following, we assume the following relations for recording audit
and features/value data. The relation Audit (L1 ,l1,... ,Ln,ln) stores
sets of feature/value pairs (itemsets). Each itemset corresponds to an
audit record from an audit session. The relations Lk(FIID,interest,
sup, depth, dist, size, A1,a1,... ,Ak,ak) record itemsets I =
{〈A1=a1〉,..., 〈Ak =ak〉} up to sizek and their interestingness measure
(interest). Values for the attribute interest are based on the com-
ponents sup[port], depth,  dist[ance] and size (see Section 2.2).

Relation F(FIID, A, v) stores all interesting itemsets discovered from
tuples in relations L1... Ln. Finally, relation FMaster(FIID,size,
interest,sup,depth,dist) stores the interestingness measure infor-
mation about the itemsets in F. To relate itemsets in these two relations,
each itemset is given a unique identifier, named FIID.

3.2. BASIC ALGORITHM
The method to compute interesting itemsets based on multiple con-

cept hierarchies is divided into 6 steps, as described below

for k = 1 to n do (let n be the total number of features)
Step 0: check if we need to continue

if k>1 and Lk is empty then break end if
Step 1: Generate & store itemsets of size k from itemsets of size k-1

Lk <- generateltemsets(k)
Step 2: Compute interestingness measure for each tuple in relation Lk
Step 3: Generalize itemsets based on concept hierarchies

for each feature/value pair afv in a set of hierarchies do
generalizeToAFV(afv.Lk)

Step 4: Delete non-interesting itemsets from Lk
Step 5: Record interesting itemsets in relations F and FMaster

end do;
Step 6: Prune non-minimal itemsets
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Readers are referred to [7] for more details regarding steps 2, 4, 5 and
6. Here we will only briefly describe Step 3, which extends our previous
approach by generalizing itemsets in Lk for possible feature/value pairs
in concept hierarchies. The order of applying generalizeToAFV to a
feature/value pair afv is unspecified.

Procedure generalizeToAFV(afv, Lk) generalizes itemsets inLk to
feature/value pair afv (which stands for AncestorFeatureValue pair) if
there is a gain in interestingness measure. First, all itemsets in Lk that
consist of descendants of afv are copied to a temporary table Lgen.
These feature/value pairs are replaced by their ancestor afv with the
change in interestingness measure computed. Second, itemsets with a
gain in interestingness measure are generalized in Lk by updating them
according to Lgen. Since two or more feature/value pairs in an itemset
may be generalized to afv, care is taken to remove redundant pairs from
the generalized itemset. If afv is the root of the tree, the feature/value
pair is dropped. Third, after Lk is generalized, there may be redundant
itemsets which should be pruned. Redundant itemsets in Lk with FIID
in FIIDpair are deleted except one itemset. If the feature/value pairs
of an itemset are generalized to the root node, the itemset is empty
and deleted. In our prototype profiler, all the above computations are
performed on tables using SQL statements and stored procedures.

4. APPLICATION TO SECURITY
In this section, we describe a feasibility study on extending the profiler

by concept hierarchies and compare its effectiveness with a profiler not
employing concept hierarchies. We then give some guidelines on how to
convert profiles to policies and their usage in detecting misuse. More
details can be found in [5].

4.1. FEASIBILITY STUDY SETUP
We show the usefulness of our profiler, called Profiler CH (CH stands

for Concept Hierarchy), by running it over a web audit log gathered at an
institution offering online courses. Further, we illustrate the difference
of the profiles generated by using another profiler, called ProfilerNoCH,
which is based on the same technique, but does not consider concept
hierarchies. The web audit log records the access patterns of users over
four consecutive days. We consider three features in the audit log, src
(IP address of host requesting a web page), rsc (URL of requested page)
and hour (time page has been requested, see also Fig. 1).

There are two audit sessions. The session AuditSG contains audit
records whose feature src corresponds to the domain(s) *.sg and rsc to
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pages under/course/*. Another session AuditUIUC consists of records
whose feature values for src satisfy *.uiuc.edu and values for rsc corre-
spond to /spep-95/*. Due to space limitation, we only show the profile
discovered by ProfilerCH for audit session AuditSG:

4.2. DISCUSSION
We evaluate and compare the profilers based on the following criteria:

(1) Coverage: Can the profiler discover criteria to group audit records
into audit sessions? (2) Simplicity: How many itemsets are generated?
(3) Novelty: Can the profiler discover new patterns which are not spec-
ified by the criteria that groups audit records into audit sessions?

Coverage ProfilerNoCH discovers that requests often come from
src=ce.singnet.com.sg  andsrc=po.pacific.net.sg. The other se-
lection criteria (values for rsc are under /course/*) are also covered
by those itemsets involving rsc=/course/*. However, the correlation
that rsc-/course/* is accessed from src=*. sg is not discovered. This
is because the data is sparse. Itemsets involving both rsc and src do
not have high enough support and are pruned. This is, however, dis-
covered by ProfilerCH as reflected in itemset 2-10. ProfilerCH discovers
the selection criteria because data are aggregated into a higher level of
abstraction based on the concept hierarchies. This makes the pattern
more prominent and hence is discovered. In sum, both profilers can dis-
cover the patterns used to select the data, whereas ProfilerCH does a
better job.

Simplicity There is a total of 74 itemsets discovered by Profiler-
NoCH. Those patterns are represented by only 11 itemsets discovered
by ProfilerCH, which is a significant reduction. The concise profile dis-
covered by ProfilerCH helps the administrator in better understanding
usage patterns of the user group *.sg (singapore).

Novelty ProfilerNoCH discovers patterns that were not expected,
namely users from user group singapore often access pages at specific
hours. Similarly, ProfilerCH discovers patterns that were unknown be-
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fore. For example, the hours of access are often TIME=noon, morning
(covered by TIME=day) and TIME=midnight. Hence, the administra-
tor can add a new security policy stating that users from the group
singapore are allowed to access the web pages during the aforemen-
tioned times. Alternatively, if someone from group singapore suddenly
accesses the web pages at hour=evening, this may be not normal.

Further, ProfilerCH discovers that the resources that are most often
accessed are actually /course/plb1/[rice/tomato] and /course/cant/
current/. This can aid the administrator in refining the security pol-
icy that users from group singapore can access resources /course/ to
a finer detail. Other novel patterns discovered include that users from
group singapore often access the web pages during day time (TIME=day)
and that pages accessed are likely to be /course/plb1/*.

Inter-User Group Behavior The conjecture that users from dif-
ferent user groups exhibit different usage behavior is confirmed by com-
paring the profiles discovered by ProfilerCH on AuditSG and AuditUIUC.
A comparison of the two profiles shows that users from group uiuc of-
ten access web pages during night (including midnight and late-night),
afternoon and late-evening as opposed to day time by users from group
singapore.This can be explained by the time zone difference between
the US and Singapore.

4.3. MAPPING PROFILES TO POLICIES
We consider a policy to be an if-then statement describing a charac-

teristic of a session, i.e., an interesting itemset in the profile. Here we
describe how to map an interesting itemset to a policy.

The criteria that aggregates audit records into an audit session gives
the precondition of the policy. Feature/value pairs in the interesting
itemset are literals in the consequent combined by ’and’s. A policy is
refined in the following ways: (1) Care is taken to remove literals in
the consequent that are logically implied by the precondition to avoid
trivial true policies. (2) A policy is simplified by removing literals in
the consequent that are descendants of some other literals in concept
hierarchies. (3) A refined policy can be obtained by replacing literals in
the precondition by those in the consequent that logically imply them.
(4) Policies with the same precondition can be aggregated into a single
policy by combining their consequents by ’or’s. Based on these guide-
lines, we can derive the following policies for session AuditSG:
if src=*.sg and rsc=/course/* then rsc=/course/plb1/rice/*

or rsc=/course/plb1/tomato/* or rsc=/course/cant/current/*
if src=*.sg and rsc=/course/* then TIME=day or TIME=midnight
if src=*.sg and rsc=/course/plb1/* then TIME=day



Discovery of Multi-Level Security Policies      183

Anomalies can be detected by comparing the policies derived from a
new session with the policies of the corresponding profile(s). A policy
from a new session whose precondition matches some policies, but its
consequent matches none of these policies is a violating policy. Violating
policies represent behavior deviating from normal. A policy from a new
session whose precondition matches none of the profile policies is a new
policy. New policies signal new usage and a high ratio of violating and
new policies in a new session indicates possible misuse of the system.

5. CONCLUSIONS AND FUTURE WORK
In this paper we presented an important practical extension to exist-

ing approaches for discovering user access patterns and security policies
from audit logs associated with diverse types of information systems.
We strongly believe that for todays complex databases and information
systems, it is vital to employ sophisticated concepts and tools that help
administrators in discovering and verifying security policies. Such tools
and concepts will play a major role in security (re-)engineering as part
of the administration of such complex systems.

We extended existing approaches to user profiling and policy discovery
in several ways. We use concept hierarchies that allow administrators
to embed domain specific knowledge at different levels of abstraction.
The discovery of access patterns and security policies, based on data
mining techniques, takes multiple such hierarchies into account, allow-
ing to relate different concepts of interest in the search for interesting
patterns. In particular, by introducing the notion of interestingness mea-
sure, which considers data semantics, the presented profiler is capable of
discovering interesting data access patterns at the right level of abstrac-
tion. By considering multiple concept hierarchies describing different
features at a time, more complex and non-trivial profiles and policies
can be discovered.

We have presented a simple formulation of interestingness measure
that satisfy certain criteria based on our experience with different types
of audit logs and applications. One direction of future research is to
explore other formulations of the interestingness measure, and also to
incorporate other aspects of domain knowledge available from applica-
tions. Currently, the administrator is responsible for choosing relative
weights of the components of the interestingness measure. It would be
useful if the system can automatically adjust and fine tune the parame-
ters. We demonstrated the effectiveness of our profiler by running it over
a web server access log. We also outlined guidelines on how discovered
profiles can be translated into policies.
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We also plan to automate the translation of profiles to policies and
enforcing mechanisms. For example, in case of relational database sys-
tems, profiles can be converted into either appropriate user roles (with
associated profiles) or user/application-specific views on data.
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