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PROTECTING DEDUCTIVE DATABASES
FROM UNAUTHORIZED RETRIEVALS

Steve Barker

Abstract An approach is presented that addresses the problem of protecting de-
ductive databases from unauthorized disclosures of the information they
contain. Our treatment of this problem involves rewriting a database
in a form that is guaranteed to allow users to access only the subset
of the logical consequences of the database that they are authorized to
see. Security requirements can be seamlessly added to the database,
and decisions on the legitimacy of access requests can be made by using
efficient computational methods for which attractive technical results
exist. The approach enables the specification of security requirements
to be exploited to help to improve the efficiency of query evaluation, and
naturally extends to enable deductive databases to be protected against
unauthorized update and revision requests.

1. INTRODUCTION
Little attention has thus far been given to the problem of securing the

information contained in deductive databases. In part, this may have
been due to the hitherto limited use that has been made of deductive
databases in commercial environments. The practical value of deductive
databases is, however, increasingly being recognized [13], and deductive
databases are predicted to become increasingly important in the future
[11]. For deductive databases to become significant in practice, the prob-
lem of protecting the information they contain must be addressed.

In [6] and [9], modal logics are considered for specifying the confiden-
tiality of the information contained in a deductive database. However,
the suggested approaches are not especially compatible with the methods
of representation and computation that deductive databases typically
employ. In contrast, our approach uses specifications of security that
are consistent with the standard formulation of a deductive database
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as a function-free normal clause theory [10] and enables standard meth-
ods of computation to be exploited to protect deductive databases from
unauthorized access requests. Due to space limitations, in this paper we
only consider the protection of deductive databases from unauthorized
read requests. The extensions required to protect a deductive database
from unauthorized modifications are described in [4].

We use a role-based access control (RBAC) [14] policy to protect a
deductive database. More specifically, we formulate security policies that
are based on the RBAC1 model described in [14]. That is, we consider
RBAC models that permit user and permission assignments on objects to
be specified, and include role hierarchies. Amongst other attractions, we
believe that the “high-level” nature of authorizations in RBAC makes it
more suitable for protecting deductive databases than the discretionary
access control (DAC) policies that DBMSs have traditionally used to
protect other types of database.

The rest of this paper is organized thus. In Section 2, some basic
notions in deductive databases, theorem-proving and security are out-
lined. In Section 3, the representation of an RBAC model as a clause
form theory is discussed. Section 4 describes how a deductive database
may be specified as being protected from unauthorized read requests.
In Section 5, computational issues are considered. Finally, in Section 6,
some conclusions are drawn and suggestions for further work are made.

2. PRELIMINARIES
A deductive database, D, consists of a finite set of ground atomic

assertions (i.e., facts) and a finite set of deductive rules. The set of facts
is referred to as the extensional database (EDB) and the deductive rules
are referred to as the intentional database (IDB).

To protect D from unauthorized disclosures of information, our ap-
proach is to express D in a form (defined below) that ensures that re-
trievals of information are only possible if the RBAC1 security theory,
that defines authorized accesses, permits the read access on D. Hence-
forth, we will refer to the secure form of D protected from unauthorized
read requests as a read protected database and we denote an arbitrary
read protected database by To denote specific instances of D and

we use Di and respectively, where i is a natural number. We
also use to denote an arbitrary RBAC1 security theory and to
denote a specific instance of an RBAC1 theory where i is a natural
number. As we will see, theorem-proving techniques may be used on
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to determine whether or not a user’s request to perform a read
operation on is authorized by or not.

The protected databases and RBAC1 security theories that we con-
sider consist of a finite set of function-free normal clauses [10]. A normal
clause takes the form: The head of the clause, H,
is an atom and L1,L2,...,Lm is a conjunction of literals that constitutes
the body of the clause. The conjunction of literals must be true (proved)
in order for H to be true (proved). A literal is an atomic formula or
its negation; in this context negation is negation as failure [10], and the
negation of the atom A is denoted by not A. A clause with an empty
body is an assertion or a fact.

Since we consider function-free theories, the only terms that appear
in are constants and variables. Henceforth, we will denote
the constants that appear in by symbols that appear in the
lowercase in literals. The variables that appear in the literals in

will be denoted by using uppercase symbols (possibly subscripted).
Since is expressed in normal clause logic, it follows that the

well-founded semantics [16] may be used for the associated declarative
semantics, and that SLG-resolution [8] may be used for the correspond-
ing procedural semantics.

When SLG-resolution is used with the normal clause theory
a search forest is constructed starting from the SLG-tree with its root
node labeled by the goal clause [8]. From the soundness and
(search space) completeness of SLG-resolution (for flounder-free compu-
tations), Q is true in (where  is the
well-founded model of iff there is an SLG-derivation for
Q on that terminates with the answer clause That is,

iff the body of is reduced to an empty
set of literals. In contrast, Q is false in iff all possible
derivations of either finitely fail or fail infinitely due to positive
recursion; Q has an undefined truth value in all other cases. In the case
where Q has an undefined truth value, SLG-resolution produces condi-
tional answers of the form viz. Q is true if is true where is a
nonempty set of delayed negative literals [8].

The soundness of SLG-resolution is important from a security per-
spective since it ensures that no unauthorized access request is permitted
from an SLG-derivation on completeness is important since
it implies that non-floundering SLG-resolution is sufficiently strong to
ensure that no authorized access request is ever denied.

Given that the only terms that are included in are constants
and variables, it follows that satisfies the bounded-term-size
property [17]; SLG-resolution is guaranteed to terminate for theories
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that satisfy this property [8]. Moreover, SLG-resolution has polynomial
time data complexity [17] for function-free normal theories [15].

We assume that a security administrator (SA) is responsible for spec-
ifying We also assume that a closed policy [7] is to be used for
protecting a deductive database. It is, however, entirely straightforward
to modify our approach to implement an open policy [7] or any number
of hybrid (i.e., open/closed) policies for protected databases.

Whilst we recognize that the session concept [14] is an important as-
pect of RBAC, we will not consider role activation/deactivation in the
discussion below. In the examples of the evaluation of access requests
that we consider later, we simply assume that a user has active the set
of roles that is necessary to read from a protected database. However,
it should be noted that role activation/deactivation can be naturally ac-
commodated in the approach we describe (see [5]).

3. RBAC1 AS A LOGICAL THEORY
The minimum requirements of any RBAC model are that it provides

means for specifying that users are assigned to roles and permissions
to perform operations on database objects are associated with a role.
The database objects to be protected in a deductive database are n-ary
predicates.

The assignment of users and permissions to roles is represented in our
approach by an SA including definitions of ura(U,R) and rpa(R,P,O)
predicates in a clause form theory that represents an application-specific
RBAC1 security policy, an RBAC1 theory.

In the ura(U,R) relation, the predicate name ura is shorthand for
user-role assignment; instances of ura are used in an RBAC1 theory
to represent that user U is assigned to a role R. Similarly, rpa(R,P,O)
stands for role-permission assignment; instances of rpa in an RBAC1

theory are used to specify that the role R is assigned the permission to
perform a P operation on a database object O. Since we only consider
protection against unauthorized retrieval requests, P=read in this paper.

The ura(U,R) and rpa(R,P,O) relations are defined by a SA using
normal clauses. For example, specifies that the user Bob
is assigned to the role r1; specifies that
role r1 is assigned read permission on any instance of q(V,Y,Z) such
that V is not equal to a; specifies that all roles
are permitted to read all instances of r (i.e., read access on r is publicly
accessible); and specifies that the role
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r1 has the read permission on instances of s such that the first argument
of s(V,Y,Z) is constrained to be a and Z values are less than 20.

Additional authorization rules can be straightforwardly specified by
formulating ura or rpa definitions in terms of ura, rpa, not ura or not rpa
conditions. Since constants and variables are used in their specification,
ura and rpa definitions can be as specific or as general as is required.

In addition to user-role and permission-role assignments, role hier-
archies are the other key component of RBAC1. Role hierarchies are
used to represent the idea that, unless constraints are imposed, “senior
roles” (more powerful roles) inherit the (positive) permissions assigned
to roles that are “junior” (less powerful) to them in a hierarchy (but not
conversely). In cases where the unconstrained upward inheritance of
positive permissions is not appropriate, only minor modifications of our
representation of RBAC1 are required to enforce alternative policies.

To represent an RBAC1 role hierarchy, a SA uses ground instances
of a binary relation to describe the pairs of roles that are involved in a
“seniority” relationship in the partial order (R,>) that represents a role
hierarchy; R is a set of roles; and > is a “senior to” relation.

In more formal terms, a role R1 is senior to role R2 in a role hierar-
chy, RH, iff there is a path from R1 to R2 in RH such that R1 > R2
holds in the partial order describing RH. The reflexive, antisymmetric
and transitive senior to relation (i.e. >) may be defined in terms of an
irreflexive and intransitive relation, “directly senior to”. The directly
senior to relation, denoted by may be defined (since > is not dense)
in the following way (where is logical ‘and’, is classical negation,
and is an arbitrary role):

A SA uses ground instances of a binary d-s predicate in an RBAC1

theory to record the pairs of roles that are involved in a “directly senior
to” relationship. That is, the assertion d-s(ri,rj) is used to record that
role ri is directly senior to the role rj in an RBAC1 role hierarchy.

The following set of clauses define the senior to relation (where ‘_’ is
an anonymous variable):
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The senior-to predicate is used in the definition of the permitted clause
that follows:

The permitted clause expresses that a user U is authorized to perform
the read operation on an object O if U is assigned to a role R1 that is
senior to the role R2 in an RBAC1 role hierarchy associated with the
RBAC1 theory, and R2 has been assigned the read permission on O.

In implementations of our approach, senior-to should be stored as a
persistent relation [1] that is recomputed only when changes are made
to the set of d-s assertions in an RBAC1 theory; it is not computed each
time permitted(U,read,O) is evaluated.

The clauses defining senior-to are included in every instance of an
RBAC1 theory; the application-specific d-s, ura and rpa clauses define a
particular instance of an RBAC1 theory. For all “meaningful” RBAC1

theories, the application-specific d-s, ura, and rpa clauses will be acyclic
[2]. Although senior-to violates the acyclicity property, it is neverthe-
less negation-free. It follows therefore that any instance of an RBAC1

theory is locally stratified and has a unique 2-valued perfect model [12]
that coincides with the total well-founded model of the theory [8]. An
important corollary of RBAC1 theories being categorical and having a
2-valued model is that RBAC1 theories define a consistent and unam-
biguous set of authorizations.

4. READ PROTECTED DATABASES
To see what is involved in protecting a deductive database D from

unauthorized read requests, consider an IDB clause in D having the fol-
lowing general form:

This type of clause is interpreted declaratively as stating that: H is
true (or provable) in D iff Ai is true (or provable) in
D and Bj is false (or not provable) in D.

When a clause defining H is to be included in the protected form, D*,
of D, the required reading of the protected form of H is that: H is true
(or provable) in as far as a user U of is concerned if

Ai is true in D* and U is authorized (from ) to know that Ai
is true in D* and either Bj is not true (not provable)
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in or U is not authorized (from ) to know that Bj is true in
If U is not authorized to know that a literal C is true in then we
regard C as being false in as far as U is concerned.

To define the read protection on H we use the following form of the
holds predicate:

The holds(U,read,H, ) definition expresses that U can read H
(i.e., can know that H is true) from a protected database iff U has
the read permission on H from and H is true in

From the definition of holds we also have:

This equivalence is consistent with our declarative reading of a read
protected clause. That is, U cannot read H from if U is not authorized
to read H in by or if H is not true (provable) in

Assuming that the 5-ary holds predicate is used with respect to a
given instance of the read protected form of the IDB predicate
H may be expressed in clausal form thus:

That is, U reads H from (i.e., U knows that H is true in ) iff U is
permitted to read H and for all Ai literals U is authorized
to know that Ai is true in and Ai is true in U’s view of and for
all Bj is either not in U’s authorized view of or Bj
is false in

The read protection for each of the predicates A1,...,Am,B1,...,Bn
that appears in the body of holds(U,read,H) is defined in essentially the
same way as that for H.

In the case of an n-ary IDB predicate I appearing in the body of
holds(U,read,H), the head of the read protected form of I in will be
holds(U,read,I(t1,t2,...,tn)) (where tj (j=(1,..,n)) is a term) and the body
of the protected form of I will include a permitted(U,read,I(t1,t2,...,tn))
condition. The rest of the body of I in will be a conjunction of
holds(U,read,Ak) or not holds(U,read,Bl) conditions where Ak (Bl) is a
positive (negative) literal appearing in the body of I in D.
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In the case where the predicate to be protected in the body of holds(U,
read,H) is an n-ary EDB relation, E, the head of the protected clause
for E is holds(U,read,E(X1,..,Xn)) and the body of this clause includes
a permitted(U,read,E(X1,...,Xn)) condition together with E(X1,...,Xn)
itself. That is, for every n-ary EDB relation E the read protected form
of E is:

The set of assertions that appear in the EDB of D do not change when
D is rewritten in its protected form, As such, to simplify the ex-
amples of protected databases that follow, we will omit assertions in

Example 1 (The representation of a read protected databases)
Consider the database,

where s and t are EDB
relations and ‘;’ separates clauses. The protected form of is:

An example of an RBAC1 security theory applicable to is:

5. COMPUTATIONAL ISSUES
Since is a function-free normal clause theory it follows

that SLG-resolution may be used with to decide whether a
user U has the read permission on an instance of an n-ary predicate
p(t1,t2,...,tn) in D (where tj (j=(1..n)) is a term). To simplify the ensu-
ing discussion we will assume that D* is locally stratified. In this case,
answer clauses generated by SLG-resolution will have an empty set of
delayed literals. Our approach naturally extends to the case where
is not locally stratified and where answer clauses may not have a non-
empty set of delayed literals.
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In our approach, a query Q that includes holds(U,read,p(t1,t2,...,tn))
(not holds(U,read,p(t1,t2,...,tn)) literals may be directly posed by U and
will be evaluated on iff U is authenticated to be the specifier of
the holds (not holds) subgoals in Q. It follows from the discussion above
that holds(U,read,p(t1,t2,...,tn)) will be true in iff p(t1,t2,...,tn)
is true in D and U is authorized to know that p(t1,t2,...,tn) is true
in D. If an SLG-tree with the root where Q is holds(U,read,
p(t1,t2,...,tn)) terminates with as an answer clause and is an
answer substitution then is true in D and U is autho-
rized to know that is true in D by If Q is not
holds(U,read,p(c1,c2,...,cn)) (where ci (i=(1..n)) is a constant to en-
sure safe evaluation [10]) and  is an an-
swer clause by SLG-resolution on then U is authorized to
know that p(c1,c2,..,cn) is true (provable) from
is true (provable) in D and not is failed
by SLG-resolution. That is, is false in U’s view of
D since p(c1,c2,...,cn) is true in U’s authorized view of Con-
versely, if Q is holds(U,read,p(t1, t2,...,tn)) and is failed by SLG-
resolution on then either p(t1,t2,...,tn) is false in D or U
is not permitted to know that p(t1,t2,...,tn) is true in D; either way,
p(t1,t2,...,tn) is false in D from U’s perspective. If the evaluation of
not holds(U,read,p(c1,c2,...,cn)) succeeds by SLG-resolution then U is
either not authorized to know that p(c1,c2,...,cn) is true in D from
U S* or p(c1,c2,...,cn) is false in D. In either case, is
true in U’s view of D.

Example 2 (Read Protection)
Suppose that Bob poses the query to retrieve all instances of p from D1

in Example 1 and that (also from Example 1) is the RBAC1 the-
ory for In this case, SLG-resolution produces the following set of
answers: {X=a, Y=b, Z=10}. That is, only p(a,b,10) may be disclosed
to Bob. Though is
not an answer clause by SLG-resolution since Bob is not authorized to
know that p(b,b,10) is true in D1.

Query evaluation on may appear to be more expensive than
on D since the clauses in include additional permitted conditions.
Moreover, is part of the theory on which query evaluation is per-
formed. However, the security information in has the effect of
partitioning D into a number of subsets. An individual user can retrieve
information from the one subset of that authorizes them to re-
trieve from. Hence, a user’s queries are evaluated with respect to “their”



194 DATA AND APPLICATIONS SECURITY

subset of D, and since this subset is typically a smaller theory than D,
a user’s queries may be more efficiently performed on than D. From
a computational perspective, constants or restricting conditions (i.e.,
those involving comparison operators) from may be introduced at an
early stage in the evaluation of a user’s query to constrain the search
space of authorized solutions. Moreover, may cause computations to
fail early if a user has insufficient read permission to evaluate a query.

In all cases of failure of a goal clause, G, the user, U, receives a “no”
response. From this, U cannot infer that is true in the database D;
G may have failed because U is not permitted to know that G is true in
D.

Example 3 (Queries involving negation)
Consider the database, where q is an
EBD relation, protected by the security theory, where:

For we have:

Now, suppose that Sue wishes to know whether p(a) is true in D2.
Since may be generated from by SLG-
resolution, Sue is permitted to know that p(a) is true in D2.

The next example shows that recursive databases require no special
treatment to protect them from unauthorized disclosures of information.

Example 4 (Recursive query evaluation)
Consider the database,

where r is an EDB relation, and suppose that the
security theory, applies to D3 where:

For we have:
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Now, suppose that Jim poses the query to list all instances of q(X, Y)
such that X=a. By SLG-resolution, with respect to the an-
swer Y=b is generated. It follows that only the answer Y=b is revealed
to Jim. Although and Jim is permitted to see any
instance of q(X,Y) if X=a, for q(a,c) to be disclosed to Jim, Jim must
be permitted to know that both and

However, since Jim does not have read access on q(X, Y) where
X=b the fact that cannot be divulged to him.

6. CONCLUSIONS AND FURTHER WORK
By adopting the approach that we have described, it is possible to

protect any normal deductive database from unauthorized reads of its
data by specifying a user’s access permissions in the same language that
is ordinarily used to describe deductive databases. Moreover, no spe-
cial methods of computation are required for query evaluation on read
protected databases.

Our approach may be used to protect the information in databases
defined in subsets of normal clause logic (e.g., relational databases),
and may be used to protect the information contained in other types
of “logic-based” databases (e.g., abductive databases). What is more,
the approach enables RBAC to be directly represented in candidate de-
ductive DBMSs (e.g., XSB [15]) without requiring any security-specific
features.

In future work, we intend to investigate how our recent work on tem-
poral RBAC [3] may be combined with the ideas presented here.
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