CHAPTER 23

USER ROLE-BASED SECURITY MODEL
FOR A DISTRIBUTED ENVIRONMENT *

S. Demurjian, T.C. Ting, J. Balthazar, H. Ren, and C. Phillips
Computer Science & Engineering Department, The University of Connecticut
steve @engr.uconn.edu, ting@engr.uconn.edu

P. Barr

The Mitre Corporation, Eatontown, New Jersey
poobarr@mitre.org

Abstract A distributed resource environment (DRE) allows distributed compo-
nents (i.e., servers, legacy systems, databases, COTs, printers, scan-
ners, etc.) to be treated akin to OS resources, where each component
(resource) can publish services (an API), that are then available for use
by clients and resources alike. DREs have lagged in support of secu-
rity. To address this deficiency, this paper concentrates on proposing
a technique for seamlessly integrating a role-based security model, au-
thorization, authentication, and enforcement into a DRE, including our
prototyping with the JINI DRE.

Keywords: Security, roles, distributed computing, authorization, authentication.

1. INTRODUCTION AND MOTIVATION

The emergence of distributed computing technology such as DCE [10],
CORBA [7], and DCOM [5], has enabled the parallel and distributed pro-
cessing of large, computation-intensive applications. The incorporation
of security has often been dependent on programmatic effort. For ex-
ample, while CORBA has confidentiality, integrity, accountability, and
availability services, there is no cohesive CORBA service that ties to-

*This work partially supported by the Mitre Corporation and a AFOSR grant.

260 DATA AND APPLICATIONS SECURITY

gether them with authorization and authentication. However, there has
been significant progress in distributed authentication in Kerberos [6]
and Cheron [3], security metric analysis and design [9], Internet security
via firewalls [8], role-based access control on Web-based intranets [12],
and security for mobile agents [14, 15].

Our specific interest is in distributed applications that plug-and-play,
allowing us to plug in (and subtract) new ‘“components” or resources
where all of the resources (e.g., legacy, COTS, databases, servers, etc.)
have services that are published (via APIs) for use by distributed ap-
plication components. The resources, their services, and the clients,
interacting across the network, comprise a distributed resource environ-
ment (DRE). Our goal in this paper is to leverage the infrastructure of
a DRE to support and realize role-based security. In such a setting, we
propose specialized security resources that interact with non-security re-
sources and clients, to authorize, authenticate, and enforce security for
a distributed application in a dynamic fashion. To demonstrate the fea-
sibility of our approach, we exploit Sun’s DRE JINI [1]. JINI promotes
the construction and deployment of robust and scalable distributed ap-
plications. In JINI, a distributed application is conceptualized as a set
of services (of all resources) being made available for discovery and use
by clients. Resources in JINI discover and then join the Lookup Service,
registering their services for network availability. However, JINI lacks
the ability to restrict what a client can and cannot do, i.e., the services
of a resource are available to any and all clients without restriction.

Our main purpose of this paper is to examine the incorporation of
a role-based approach to security within a DRE, in general, and JINI,
in particular, which supports the selective access of clients to resources.
We propose security specific resources for authorization of clients based
on role, authentication of clients, and enforcement to insure that a client
only uses authorized services. We provide role-based access to services
based on our previous object-oriented efforts [2], without programmatic
changes to a resource, allowing the resource to dynamically discover se-
curity privileges from security resources. In the remainder of this paper,
Section 2 provides brief background on JINI, Section 3 proposes a role-
based security model for a DRE, Section 4 synopsizes our prototyping
with JINI, and Section 5 contains our conclusions.

2. JINI

JINI allows stakeholders to construct a distributed application by fed-
erating groups of users (clients) and the resources that they require [1].
In JINI, the resources register services which represent the methods (sim-

User Role-Based Security for a DRE 261

ilar to an API) that are provided for use by clients (and other resources).
A Lookup Service is provided, and operates as a clearinghouse for re-
sources to register services and clients to find services. The Lookup
Service arbitrates all interactions by resources (e.g., discovering Lookup
Services, registering services, renewing leases, etc.) and by clients (e.g.,
discovering Lookup Services, searching for services, service invocation,
etc.). After discovery has occurred, the resources register their services
on a class-by-class basis with the Lookup Service. The class is registered
as a service object which contains the public methods available to clients
coupled with a set of optional descriptive service attributes. The service
object is registered as a proxy, which contains all of the information that
is needed to invoke the service. One limitation of this process is that
once registered, a resource’s services are available to all clients. The
registration of services occurs via a leasing mechanism. With leasing,
the services of a resource can be registered with the Lookup Service for
a fixed time period or forever (no expiration). The lease must be re-
newed by the resource prior to its expiration, or the service will become
unavailable. From a security perspective, the lease that is given by a
resource to its services is not client specific. Once leased, a service is
available to all, even if the service was intended for a targeted client or
group of clients. Our work seeks to overcome this limitation.

3. A DRE ROLE-BASED SECURITY MODEL

In a DRE, all of the different resources are treated in a consistent
fashion, allowing all of the clients and resources to be seamlessly inte-
grated. Clients consult the Lookup Service to locate and subsequently
execute the services of the found resource that are necessary to carry out
their respective tasks. However, DREs are lacking in their support of
security. When a resource registers its services with the Lookup Service,
there is no way for the resource to dictate which service can be utilized
by which client. If the resource wants to control access to its services, it
must do so programmatically, putting in client-specific code within the
implementation of the service. We are extending the security capabili-
ties of a DRE to allow resources to selectively and dynamically control
who can access its services (and invoke their methods), based on the
role of the client. Our solution exploits the DRE, by defining dedicated
resources to authorize, authenticate, and enforce role-based security for
the distributed application. The remainder of this section is organized
to propose and discuss: a software architecture for role-based security
in a DRE (Section 3.1), the security resources and services for such an

262 DATA AND APPLICATIONS SECURITY

architecture (Section 3.2), and the usage of the solution by clients and
resources (Sections 3.3 and 3.4).

3.1. A SOFTWARE ARCHITECTURE

A software architecture for supporting role-based security in a DRE is
presented in Figure 1.1, and contains: a set of clients that seek to utilize
a set of resources, one or more Lookup Services that allow clients to
find resources (and their services), and three security-specific resources.

Clients Using Services Resources Provide Services
1
Lookup 1 Role-Based
Service I Privileges
: Security
Java Client \ 1 / Registration
Legacy Client E
Sofi T
oftware Agent ———_
W
Database Client —— | O CoTs
R
| COTS Client K
23 ~
Java Client '
Lookup | ! Authorization
Service : List

Figure 1.1. General Architecture of Clients and Resources.

The Role-Based Privileges resource tracks the services of each resource,
and for every service, the methods that are defined. Each user role
may be granted access at varying levels of granularity, allowing a role to
be assigned to a resource (able to use all services and their methods),
to a service (able to use all of its methods), or to individual methods
(restricted to specific methods of a service). The Authorization-List
resource maintains a list of all users, and for each user, tracks the roles
that they have been authorized to play. Finally, the Security Registration
resource tracks the current active users uniquely identified by a triad of
<name, [P address, user role>. The architecture supports:

1 Role-based authorization to grant and revoke resources, their ser-
vices, and their methods for use by clients. This is accomplished
using the Role-Based Privileges and Authorization-List resources.

User Role-Based Security for a DRE 263

A special security client (see Section 3.3) can be utilized by the
security officer to manage this security data.

2 Client authentication for the verification of the identity and role
of client. This is supported by the Security Registration resource,
which tracks all active clients (name, IP address, role), and is used
by resources whenever a client attempts to access a service.

3 Customized resource behavior so that the client and its role dy-
namically determines if a particular service of a resource can be
used. A resource utilizes all three security specific resources to
control access to its services by clients.

The term client is used in a general sense; resources can function as
clients to access other resources as needed to carry out their functions.

3.2. SECURITY RESOURCES/SERVICES

This section examines the Role-Based Privileges, Authorization List,
and Security Registration resources (see Figure 1.1) via a role-based
approach to discretionary access control [2, 4, 11, 13]. In a DRE, the
computational and abstraction model is to define, for each resource, a
set of one or more services, and for each of the services, to define a set
of one or more methods. However, there is no a priori way to selectively
control which client can utilize which resources (and its services and
their methods). We leverage our past work [2] on selectively allowing the
methods defined on object-oriented classes to be assigned on a role-by-
role basis as a basis to selectively control which clients can access which
services and methods of which resources. The role-based security model
presented herein will focus on the ability to grant and revoke privileges
on resources, services, and/or methods to clients playing roles.

3.2.1 Role-Based Privileges Resource. This resource is
utilized by the security officer to realize the defined security policy for
a distributed application to: define user roles; grant access of user roles
to resources, services, and/or methods; and, when appropriate, revoke
access. The Role-Based Privileges resource is utilized by the resources
(e.g., legacy, COTS, database, Java server, etc.) that comprise the dis-
tributed application to dynamically determine if a client has the required
permission to execute a particular service. To facilitate the discussion,
consider the definitions:

Definition 1: A Resource is a system (e.g., a legacy, COTS, database,
Web server, etc.) that provides functions for the distributed ap-
plication via a collection of n services, S1,52, ..., Sn.

264 DATA AND APPLICATIONS SECURITY

Definition 2: A Service, Si,i = l..n, is composed of p; methods M,
Mia, ..., M, where each method M4, j = l..p; is similar to an
object-oriented method, and each method represents a subset of
the functionality provided by the service.

Definition 3: A Method Mjj, j = 1..p; of a service Sj is defined by a
signature (method name, parameter names/type, and return type).

Definitions 4, 5, and 6: Each resource has a unique resource identifier
that allows the DRE to differentiate between replicated resources.
Each service has a unique service identifier to distinguish the ser-
vices within a particular resource. Each method has a unique
method signature that permits overloading of method names while
allowing the methods of the same service to be distinguished.

Each triple of <resource identifier, service identifier, method signature>
uniquely identifies the method across the distributed application.

Given these definitions, we can now define the concept of user role.
In our past work [2], we proposed a user-role definition hierarchy to
characterize the different kinds of individuals (and groups) who ail re-
quire different levels of access to an application. For the purposes of this
discussion, we focus on the leaf nodes of the hierarchy.

Definition 7: A user role, UR, is a uniquely named entity that repre-
sents a specific set of responsibilities against an application. Priv-
ileges are granted and revoked as follows:

m UR can be granted access to resource R, denoting that UR can
utilize all of R’s services, Sy, Sa, ..., Sn, and, for all S;,7 = 1..n,
all of the p; methods M;1, Mia, ..., Mip,.

m UR can be granted access to a subset of the services of re-
source R, denoting that UR can utilize all of the methods
defined by that subset.

m UR can be granted specific access to a method via the triple
of <resource identifier, service identifier, method signature>.

Once granted, access to resources, services, and/or methods can be se-
lectively or entirely revoked by a security officer. The granularity of
user roles may be fine or coarse at the discretion of a security officer.
Given these definitions, the Role-Based Privileges resource maintains: a
resource list, indexed by <resource identifier> and for each resource, a
list of all user roles granted access; a service list, indexed by <resource
identifier, service identifier>, and for each service, a list of all user roles
granted access; a method list, indexed by <resource identifier, service

User Role-Based Security for a DRE 265

identifier, method signature>, and for each method, a list of all user
roles granted access; and a user-role list, indexed by <role name, role
identifier>, and for each user role, a list of all resources, services, and/or
methods, to which that user roles has been granted access. The infor-
mation of the Role-Based Privileges resource can be manipulated by the
different clients that are part of the distributed application:

m Fach resource must register with the Role-Based Privileges re-
source, so that the master resource list, service list, and method
list, can be dynamically modified. Resources must be allowed to
register and un-register services/methods. The Register service in
Figure 1.2, supports these actions.

m Each resource, when consulted by a client (e.g., GUI, software
agent, another resource, etc.), asks the Security Registration re-
source if the client has registered, (see Section 3.2.3) and if so, asks
the Role-Based Privileges resource if the client has been granted
access to a service/method pair based on the role of the client.
The Query Privileges service in Figure 1.2 supports these actions.

m There is a Security Client (see Section 3.3), utilized by the security
officer to define and remove user roles and to grant and revoke priv-
ileges (resources, services, and/or methods). The Grant-Revoke-
Find service in Figure 1.2 supports these actions.

To simplify the presentation, we have omitted return types. For exam-
ple, the majority of the methods will return a success/failure flag, the
Check Privileges will return a yes/no, and the Finds will return result
sets. Note that the services in Figure 1.2 represents a general character-
ization of the services for all three security specific resources.

3.2.2 Authorization-List Resource. This resource main-
tains profiles on the clients (e.g., users, tools, software agents, etc.)
that are actively utilizing services within the distributed application.
The identification of users is more problematic in a distributed setting,
since a user may not be an actual person, but may be a legacy, COTS,
database, agent, etc. This leads to the definition:

Definition 8: A client profile, CP, characterizes all of the pertinent
information needed by a resource to dynamically verify whether a
client can access the desired triple of <resource identifier, service
identifier, method signature>.

The Authorization-List resource maintains the client profiles using two
services (see Figure 1.2). The Client Profile service is utilized by the

266 DATA AND APPLICATIONS SECURITY

Role-Based Privileges Services Authorization-List Services

Register Service
Register_Resource (R_Id);
Register_Service (R_Id.S_Id);
Regisier_Method (R_Id, 5_1d, M_Id);
UnRegisier_Resource (R_Id);

Client Profile Service
Create_New_Client (C_Id);
Delete_Chiem (C_Id);
Find_Cliem (C_Id):
Find_All_Clients ();

UnRegister_Service (R_Id, S_ld);
Unregister_Method (R_1d, 5_1d, M_Id)

Authorize Role Service
Query Privileges Service
Check_Privileges (UR_Id, R_14, 5_1d, M_Id)

Gramt_UR_Client (UR_Id, C_ld);
Revoke_UR_Client (UR, C_Id);
Find_AIIUR _Cliem (C_Id};

: Find_All_Clients_UR (UR});
Grant-Revoke Service Verify_UR_Client (UR, C_ld);
Grami_Resource (UR_Id, R_Id);
Grani_Service (UR_Id, R_Id, 5_Id);
Grani_Method (UR_Id, R_Id, 5_1d, M_Id);
Revoke_Resource (UR, R_Id);
Revoke_Service (UR, R_Id, 5_d);
Revoke_Method (UR, R_Id, 5_1d, M_Id);
Find_AIIUR_Resource (UR, R_Id);
Find_AIIUR _Service (UR, R_Id, 5_Id);
Find_AIUR_Method (UR, R_1d, 5_1d, M_1d);
Find_UR_Privileges (UR) Regisier_Cliem (C_Id, IP_Addr, UR);
UnRegister_Client (C_Id, IP_Addr, UR);
IsClient_Regisiered (C_Id);

Find_Client (C_Id, IP_Addr);
Find_All_Active_Clients ();

Security Registration Services
Register Client Service

User Role Service

Creme_New_Role (UR_Name, UR_Disc, UR_Id);
Delete_Role (UR_Id),

Find_UR_Name (UR_Name);

Find_UR_Id (UR_Id);

Figure 1.2. The Services and Methods for Security Resources.

security officer, via a Security Client (see Section 3.3), to create and
manage the profiles for clients. The Authorize Role service is also utilized
to verify whether a client has registered with a role (see Section 3.4).

3.23 Security Registration Resource. This resource is uti-
lized by clients for identity registration (client id, IP address, and user
role) and by the Security Client (see Section 3.3). The Register Client
service (see Figure 1.2), allows a client to have access to resources and
their services. Every non-security resource utilizes the Security Registra-
tion resource to dynamically determine if the client trying to invoke the
service has registered via the IsClient_Registered method. If the client
has not registered, the resource will deny service.

3.3. SECURITY CLIENT PROCESSING

To further explain the security processing in the DRE, Figure 1.3
contains a depiction of a Security Client and a General Resource (e.g.,
legacy, COTS, database, etc.). For the Security Client, Figure 1.3 con-
tains the services from the three security resources that can be used
to establish the security policy by creating/finding clients, authorizing
roles to clients, and granting, revoking, and finding the privileges that a
role has against a resource, service, and/or method. For the General Re-
source, there is the requirement to register itself, its services, and their

User Role-Based Security for a DRE 267

methods with the Role-Based Privileges resource (see Figure 1.3). Regis-
tration allows entries to be created on the resource, service, and method
lists that can then be accessed via the Security Client. Note that the
Security Client and General Resource must discover the services in Fig-
ure 1.3, prior to their invocation, as represented by the dashed arrows.

Find_Clien (C_14, IP_Addr); Security
Fird_All_Active_Clients () Registration

Creaie_New_Client (C_Id);

Delete_Cliers (C_d);
/ Find_Cliems (C_id)

Find_All_Clients [);

Security Grasd_UR_Cliess (LIR_1d, C_1d);

. Revoke UR_Clien (UR, C_Id);
Client Find_AIIUR_Cliest {C_1d);
\ Find_All_Cliests_UR (UR)
\ ok
: Authorization
v
v

1 List
\
h |
Create_New_Role (UR_MName, UR_Dise, UR_Id);
Lookup Delese_Role (UR_Id)
- Find_UR_Mame (LUR_MName);
Service Find_UR_1d (UR_ld),
Cirant. owrce (UR_Id, R_Id);
‘ Grant iee (UR_Id, R_1d, §_I);
A Grant_Method (UR_I, R_1d, 5_Id, M_1d);
Fy Revake_Resource (UR, R_1d);
Discaver Service ! Retum Prony Revok (UR. R_M, §_1d);
Revoke_Methad (UR. R_Id, §_1d, M_1d).
,r . Find_ANUR_Resource (UR, R | [
§ Regivier_Resource (R_1d); Find_AINUR _Service (UR, R_1d, 5_1d);
’ Regisier_Service (R_14.5_Id); Find_AIUR_Method (LR, R_14, 5_1d4, M_ld);
Register_ Method (R_Id, S_Id, M_14) Find_UR_Privileges (UR)
Uniteginer_ Resource (R_Id);
General UnReginer_Service (R_I4, _ld); Role-based
Unregister_Method (R_Id, 5_1d, M_Id)
Resource - Privileges

Figure 1.3. Security Client and Database Resource Interactions.

34. CLIENT PROCESSING

Finally, to fully illustrate the process, we present an example in Fig-
ure 14, with flow via the numbered service invocations and returned
results. To reduce the confusion in the figure, we have omitted all of the
discoveries and proxy returns that would be required for the actions la-
beled 1, 2, 5, 6, and 8. The actions that occur can be illustrated with the
method call represented by the arrow labeled 1. Register_Client. Prior
to this method call, the GUI Client would ask the Lookup Service for
a resource that provides the Register Client Service (part of the Secu-
rity Registration resource as shown in Figure 1.2). The Lookup Service
would return a proxy to the Register Client Service, and the GUI would
use this proxy to execute the Register_Client method.

With the discovery/proxy process described, the example begins by
the client making itself known by registering with the Security Reg-
istration resource. The arrows labeled 1, 2, 3, and 4 facilitate the
registration process, by requiring the client to register itself with the

268 DATA AND APPLICATIONS SECURITY

Security
Registration

1. Register_Client (C_Id, IP_Addr, U

2. Verify_UR_Client (UR, C_Id)

4, Registration OK?
3, Client OK?

GUI
Client

A

6. lsCIicnl_ElEII'S\lﬂtd (C_1d) Authorization

o List

10. Modification OK?

I
Y

N rd
Lookup
Service
ed .

7. Registfation OK?

5. Modifylur (C_Id, UR, Value)

.
-
~
Discover Service™ ~ Return Proxy
.
- = hl ™
* ~

Database [" | Role-based
Resource = Frivlicaer OB Privileges

2
2 .
4 8, Check_Privileges (UR, R_Id, 5_Id, M_ld) b

Figure 1.4. Client Interactions and Service Invocations.

Security Registration resource (arrow 1), which in turn interacts with
the Authorization-List resource to determine if the client has been au-
thorized to play the desired role (arrow 2). Arrows 3 and 4 complete
the process and will return either success or failure. For this discus-
sion, we assume that success is returned. Note that clients that have
not registered will still be able to discover resources and services via
the Lookup Service. But, they will be prohibited from executing those
services if they have not registered. After the Client has successfully
registered, it can then discover services via the Lookup Service. Sup-
pose that the Client has discovered the ModifyAttr method that is part
of the Update Database Service for the Database Resource (arrow 5 in
Figure 1.4). When the Database Resource receives the Modify Attr invo-
cation request, the first step in its processing is to verify if the client has
registered by interacting with the Security Registration resource (arrows
6 and 7). If so, then the Database Resource must then check to see if
the client playing the particular role has the required privileges to access
the ModifyAttr method, which is accomplished via arrows 8 and 9 by
consulting the Role-Based Privileges resource. If the Database Resource
receives a response to indicate that the GUI Client has the privileges
to access the method, it will then execute the Modify Attr method and
return a status to the Client (arrow 10).

User Role-Based Security for a DRE 269

4. PROTOTYPING WITH JINI

This section reviews our prototyping efforts with JINI to support our
security model as presented in Section 3. We have implemented the pro-
totype on Windows NT 4.0, LINUX, and UNIX computing platforms,
using Java 1.3, MS Access and ORACLE for database management,
and JINI 1.3. To support the prototyping effort, we employ a university
application where students can query course information and enroll in
classes, and faculty can query and modify the class schedule. Our proto-
type has fully designed and implemented the security resources: Security
Registration, Role-Based Privileges, and Authorization-List. These re-
sources, along with two Security Client GUIs, one for policy making and
one for policy enforcement (authorizations), make up a reusable Secu-
rity Client (see Section 3.3) and its security services (Figure 1.2). A
security officer can now define, manage, and modify the security priv-
ileges dynamically in support of university security policy. Note that
additional details on our prototyping can be found at our web site for
this project [16].

S. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed and explained an approach that can au-
thorize, authenticate, and enforce a role-based security solution that
operates within a DRE. As presented in Section 3, our architecture
(see Section 3.1) defined the basis of a role-based security model for
a DRE, specified Security Registration, Authorization-List, and Role-
Based Privileges resources and their services (see Section 3.2), and de-
tailed the processing of both clients and resources (see Sections 3.3 and
3.4). We prototyped our model from Section 3 using JINI as described
in Section 4, and including the clients, resources, security resources, and
a Security Client on heterogeneous hardware/OS platforms. The work
presented herein represents the first step in an ongoing effort with one
doctoral and two masters students. There are a number of issues under
investigation: negative privileges to specifically define which resources,
services, and/or methods are not available to a client based on role; in-
corporation of timing and timestamp to allow privileges to expire for
a client based on role, which is related to the JINI leasing mechanism;
definition and utilization of predicates to allow methods to be invoked
by clients only if parameter values are within authorized ranges; and,
investigation of the incorporation of our role-based security model and
concepts for a DRE into an agent-based environment. Overall, we are
concentrating our efforts to define security solutions for distributed ap-
plications operating within a DRE.

270 DATA AND APPLICATIONS SECURITY

References

[1] K. Armold, et al., The JINI Specification, Addison-Wesley, 1999.

[2] S. Demurjian and T.C. Ting, “Towards a Definitive Paradigm for
Security in Object- Oriented Systems and Applications”, Journal
of Computer Security, Vol. 5, No. 4, 1997.

[3] A. Fox and S. Gribble, “Security on the Move: Indirect Authenti-
cation Using Kerberos”, ACM MOBICON 96, Rye, NY, 199.

[4] F. H. Lochovsky and C. C. Woo, “Role-Based Security in Data Base
Management Systems”, in Database Security: Status and Prospects,
C. Landwehr (ed.), North-Holland, 1988.

[5] Microsoft Corporation, The Component Object Model (Technical
Overview), Microsoft Press, Redmond, WA, 1995.

[6] C. Nueman and T. Ts’o, ““An Authorization Service for Computer
Networks”, Comm. of the ACM, Vol. 32, No. 9, Sept. 94.

[7]1 Object Management Group, The Common Object Request Broker:
Architecture and Specification, Rev. 2.0, MA, July 1995.

[8] Oppliger, R. “Internet Security: Firewalls and Beyond”, Comm. of
the ACM, Vol. 40, No. 5, May 1997.

[9] M. Reiter and S. Stubblebine, “Authentication Metric Analysis and
Design”, ACM Trans. On Information and System Security, Vol. 2,
No. 2, May 1999.

[10] W. Rosenberry, D. Kenney, and G. Fischer, Understanding DCE,
O’Reilly & Associates, 1992.

[11] R. Sandhu, et al., “Role-Based Access Control Models”, IEEE Com-
puter, Vol. 29, No. 2, Feb. 1996.

[12] R. Sandhu and J. Park, “Decentralized User-Role Assignment for
Web-based Intranets”, Proc. of the 3rd ACM Wksp. on Role-Based
Access Control, Fairfax, VA, Oct. 1998.

[13] D. Spooner, “The Impact of Inheritance on Security in Object-
Oriented Database Systems”, in Database Security, II: Status and
Prospects, C. Landwehr (ed.), North-Holland, 1989.

[14] V. Swarup, “Trust Appraisal and Secure Routing of Mobile Agents”,
Proc. of 1997 Workshop on Foundations for Secure Mobile Code
(DARPA), March 1997.

[15] Walsh, T., Paciorek, N., and Wong, D. “Security and Reliability in
Concordia”, Proc. of the 31st Hawaii Intl. Conf. on System Sciences
(HICSS98), 1998.

[16] http://www.engr.uconn.edu/ steve/urbsdreproj.html

