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Abstract: In this paper we develop algorithms for efficiently processing bids in a single
item, N unit (N = 1) open cry auction for a large class of winner
determination rules. Existing techniques consider all previously submitted bids
along with the new arrivals to update the current set of winners. We propose
that at most N “potential winner bids” amongst the previously submitted bids
need to be used for such updates, thus significantly reducing the computation
time and memory requirements. This is crucial when a large number of
auctions are being conducted simultaneously. For a commonly used greedy
auction rule we show that the expected number of potential winner bids may
be much less than N under reasonable probabilistic assumptions.

1. INTRODUCTION

The phenomenon of a website attracting millions of users in a short duration is
becoming increasingly frequent. On July 14, 1998, the Guinness Book of World
Records recognized the 1998 Olympic Games Web Site for two world records (see
Iyenger et. al. 1998). The first was for receiving 634.7 million requests over the 16
days of the Olympic games. The second was set when 110,414 hits were received in
a single minute around the time of the Women’s Figure Skating. We have come a
long way since then. The use of Internet to facilitate commerce, and in particular
auctions, has also been growing at a rapid rate. It is not unreasonable to expect that
an auction sale of a superstar’s memorabilia in a sports event may attract thousands
of bidders. Such a large number of participants in an auction can put immense load
at a web server.

We refer the reader to McAfee and McMillan (1987) and Milgrom (1989) for a
comprehensive survey on auctions theory. Varian (1995) provides an overview of
the design of economic mechanisms for auctions. Wurman et. al. (2000) present an
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extensive breakdown of the auction space that captures the essential similarities and
differences of many auction mechanisms in a format more descriptive and useful
than simple taxonomies. Sandholm (1999) presents a scalable search algorithm for
optimal winner determination in a combinatorial auction. Internet commerce
technologies for different kinds of auctions: open-cry, sealed bid, and Dutch auction
(see Kumar and Feldman 1998a, 1998b) have been developed for Websphere
Commerce Suite (WCS 4.1), IBM's commerce server. While Kumar and Feldman
(1998a), (1998b) describe how these auctions may be conducted on the Internet,
they do not discuss issues related to improving performance and scalability of these
auctions.

In this paper our focus is on quickly determining winner bids in an open-cry
auction for N units (N > 1) of a single item. For such auctions, an obvious allocation
strategy is to assign the units to the bidders in a descending order of the price/unit
offered by them. However, this may not be feasible all the time. For example, a bid
desiring multiple units that wants “all or nothing” may be rejected if the quantity
demanded is not available. Also, the same bid may be accepted at a later time (and a
previously accepted bid rejected) if a newly arriving bid makes it attractive and
feasible to include it along with the rejected bid in the list of “current winners”. Due
to such complications, the existing packages such as WCS 4.1, at any time during an
ongoing auction, combine the newly arrived bids with all the ones that had arrived
earlier to determine the current set of winners based on the auction rules. In such
cases, if the number of bids is large, the processing delays may be large and the
server may even breakdown. Our main contribution is that we show that under a
large class of auction rules (including those that are practically implemented)
significant computational improvement over naive methods is possible in
determining current set of winners. In particular, we introduce the notion of
maintaining a small subset of well chosen “potential winner bids” amongst all the
bids that have arrived at any time during an ongoing auction. The remaining bids
may be rejected as “loser bids”, i.e., they have no chance to qualify as winner bids in
the future. We develop two such potential winner sets. The first one is simple to
identify and update and is referred to as the “Coarse Filter Structure” (CFS). We
show that the number of bids in CFS at any time is O(Nlog N y®. The second one is
more intricate and is referred to as the ‘“Refined Filter Structure” (RFS). We show
that RFS may contain at most N bids at any time. These structures considerably
reduce the response times to the bidders and the computer storage requirements
since this reduced list of potential winner bids can be maintained as a set of
persistent objects in the main memory for quick access and modification. An

45 A function f(N) is said to be O(g(N)) if there exists a constant K>0 so that f(N) <K g(N)
for all N sufficiently large. It is said to be ©(g(N)) if there exist constants 0<K, <K, so
that K, g(N) <f(N) <K, g(N) for all N sufficiently large.
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additional benefit of this is that the loser bids get an opportunity to quickly revise
their bids.

We focus on two commonly used rules for selecting winners: namely, the greedy
rule and the knapsack rule (explained in Section 2). The greedy rule is the most
popular rule due to the simplicity both in explaining it to a lay person and in its
implementation. We develop algorithms that quickly update RFS (O(logN) per bid)
when the greedy rules are used. We also show that under greedy rules and under
some reasonable assumptions on the probability distribution of the bid size, if the
average bid size is O(N%) (0 < o < 1), then the expected number of bids in RFS is
ON'®)

There exists some literature related to the online knapsack problem (see Leuker
1998, Marchetti-Spaccamela 1995). Their focus is somewhat different from ours as
they consider auctions where the final decision on whether a bid is a winner or a
loser is made as soon as an arriving bid is analyzed. This benefit of speedier
decision-making is at a cost that the solutions obtained may be sub-optimal. We, on
the other hand, decide whether a bid is a potential winner bid or a loser bid at the
time of its arrival. Our solution is always optimal.

In this paper, we theoretically demonstrate that the proposed algorithms offer
significant improvement over the current naive implementations. To keep the
exposition short, simulation experiments are not reported. The interested reader is
referred to Bassamboo et. al. (2000) to view the orders of magnitude of the
computational gains confirmed by the simulation experiments.

In Section 2 the commonly used winner determination auction rules for open cry
auctions are reviewed. In particular, we review the existing implementation of WCS
4.1. In Section 3, assumptions on the auction rules considered are stated. In
particular, CFS is identified and a theorem identifying the RFS is stated and proved.
The updating techniques for RFS under the greedy rule are discussed in Section 4.
This section also states a theorem describing the order of magnitude of the expected
number of bids in RFS for large values of N. Finally in Section 5, we briefly discuss
issues such as the bidder utility functions supported by the bid structure that we
consider and the problems related to processing order bids, (i.e., a software agent
that bids on behalf of a human bidder).

2. OPEN-CRY AUCTION: AN OVERVIEW

In an open-cry auction (also popularly known as “English” auction) of a single
item with multiple units, the seller may specify the minimum starting bid. She may
also specify a minimum bid increment that a new bid needs to have over the current
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best price (based on bids of current winners) to be eligible*® All currently eligible
bids are displayed to the users. The set of current winning bids (based on pre-
specified auction rules) is also identified. At the time of bidding, the bidder specifies
the number of units desired. A bidder may also specify whether she would accept
partial quantity or not. Once the bidding phase is over, the bidders with the high
bids get the items being auctioned, but the price they pay could be different from
what they bid. In a discriminative auction, also known as a Yankee auction, the
winners pay the amount that they bid. In a non-discriminative auction the winning
bidders pay the price paid by the winning bidder with the lowest bid. This is
currently the trend on the Internet; sites like www.ebay.com use this methodology
for auctioning off multiple items.

2.1 Greedy Rules for Winner Determination

Some notation is needed before we describe the greedy rules for winner
determination. Recall that N denotes the number of units on a single item multi-unit
open-cry auction. For any bid b let val(b) denote the price per unit offered. Let Q(b)
denote the quantity requested in the bid and let T(d) denote the time of arrival of the
bid. Note that if a bid b is willing to accept partial assignment of the quantity bid,
then from winner determination viewpoint we may treat b as comprising Q(b)
identical bids, each bidding for a single unit. This allows us to assume, without loss
of generality that all bids in the auction do not accept partial assignments, i.e., they
want all or nothing. Let R denote a set of rules of an open cry auction. For
example, we set R= "greedy”, when the greedy method of winner determination (see
Section 2.2) is used and set it to "knapsack” when the knapsack rules (see Section
2.3) are used. Let W(R, Z, N) denote the winner bids amongst bids Z in an auction
for N units of a single item, where winners are selected using rules R.

Given a set of bids Z, an example of greedy rules for winner determination
would typically sort all the bids so that given any two bids b; and b;, the sorting
places b, above b; iff:

—  val(b;) >val(b)) or,
- val(b;) = val(b;) and Q(b;) > Q(b;) ,0r,
= val(b;) = val(bj), Q(b;) = Q(b;) and T(b; )< T(b;) .

We use the convention b; > b; (resp., b; < bj) to mean that bid b; is placed above
(resp., below) bid b; in the sorted list. In case b; = b; one may break the tie arbitrarily
by assuming small perturbations in the time of bid arrival. We refer to this method
of sorting as gsort.

* A bid is considered eligible if at the time of submission it passes all the checks such as
check on bidder's creditworthiness, minimum bid criteria, etc.
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2.2 Winner determination algorithm

In this section we outline the algorithm, A1, that considers a set of bids Z sorted
according to gsort and determines W(greedy, Z, N). The algorithm A1 proceeds in a
straightforward recursive manner. At any step it tries to satisfy the demand of the
top-most bid in the sorted list with the available quantity (initially, this equals N). If
the demand cannot be satisfied, the corresponding bid is rejected. Otherwise the
demand is met and the available quantity is reduced by that demand, and the next
bid in the sorted list is considered. The algorithm terminates when either all the bids
have been considered or when the available quantity reduces to zero, whichever
occurs first. Some notation is needed to facilitate the listing of the pseudocode for
Al. Let (b ,b,, ..., by) denote the list of bids in Z sorted in descending order using
gsort. Let X; denote the available quantity when the bid b; is considered for
allocation. The pseudocode is as follows:

Y= X,=N, j=1,

while (Z » & and X;# 0) {
if  (Q(b) > X)) Xj-= X
else Y=Y ou{b} X.=X;-Qb), ... (1)
Z=Z-{b}.i=j+ 1L

}

The set ‘¥ returned from this algorithm denotes the set W(greedy, Z, N). Later
we shall see that the RFS under greedy rules can be obtained by a slight
modification of the above algorithm.

In practice, some variants of greedy rules may sort in a slightly different manner
from gsort (e.g., if the two bids quote the same value per unit, then one may be
selected over the other at random). To keep things simple we focus on the greedy
rule that sorts using gsort and selects winners as described by Al. As will become
apparent to the reader, the key ideas of this paper can be adjusted to suit variants of
the greedy rule through simple modifications.

2.3 Knapsack rules for Winner Determination

A seller’s revenue is maximized when winners are computed by solving an
integer knapsack problem (see, e.g., Horowitz and Sahni 1990). To see this
precisely, consider again the set Z=(b;, b, , . . ., b, ). Let (I;: i=1, .. ., n) be a solution
to the integer program:
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n
maximize _le‘.- *val(b;) *Q(b;} such that
=

n
:E‘II (TSN and(d; i =1, .., 0) equals 1 or 0. Then W(knapsack, Z, N)

consists of each bid b; for which I; =1. Since the winner bids obtained using the
greedy rule form a feasible solution to this problem, the seller's revenue under
greedy rule is less than or equal to his revenue under knapsack rule. However, it
is easily seen that if all the bids either request a single item or are partial bids,
i.e., bidders are ready to accept any quantity less than what is requested in their
bids, then the greedy solution is equivalent to the knapsack solution.

24 Implementation of Winner Determination in WCS
4.1

Assume that the auction starts at time t=0 and continues till time t=T, , 4. Foar 0 <
t <ty <Teng, let S(ty, ty) denote the set of bids that arrive after time t; and before or
at time ty. Let S(t) denote S(0,t). The winner determination algorithm in WCS 4.1
works as follows: All arriving bids are stored in a database. A process that computes
winner bids runs periodically every T seconds (currently T is kept at 90 seconds).
During run k > 1 of this process (at time kT), all the bids in the database are
considered, i.e., the set of bids S((k-1)1) that were present at the time of the last run,
as well as the set of bids S((k-1)1, k1) that arrived after the last run. The greedy rules
(i.e., algorithm A1) are used to determine the new set of winners from the resulting
set S(kt)=S((k-1) t) U S((k-1)t k7).

To get an approximate idea of the computational effort involved, let m denote
the cardinality of the set S((k-1)1, kt) and 1 denote the cardinality of the set S((k-
1)1). Clearly, in the above algorithm, the computational effort for sorting the newly
arrived m bids along with the existing (already sorted) 1 bids is O(m log(m+1)) (see,
e.g., Cormen et. al. 1990). In addition, in the worst case A1 may require considering
each bid from the sorted list to determine the current set of winners (for large m, this
will happen if most bids do not get the quantity they desire). Therefore, the
additional computational effort in finding the current winners is in the worst case
O(m+1). During peak load, m may be quite large (much larger than N) and thus large
amount of computational effort may be required. In the next section we present
algorithms that drastically reduce this effort.

3. IDENTIFYING THE SET OF POTENTIAL
WINNERS

We first motivate the need to identify a set of potential winners through an
example. Denote each bid by a pair of numbers; the first denotes the price/unit and
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the second denotes the quantity required (assume that all bids ask for all or nothing).
Assume that the greedy rules are used to determine the winners. Now suppose that N
=5 and the following 6 bids have arrived in an ongoing auction: (25, 5), (23, 3), (20,
4), (18, 4), (17, 2) and (10, 1). Clearly the first bid is the only one in the current
winners set. We address the problem of determining which amongst the loser bids
may in future become a winner bid and which amongst them can never in future
become a winner bid and hence need not be considered in future winner
determination. Note that if the only bid that arrives next is (30, 4) then along with it
bid (10, 1) becomes a winner. Similarly, if (30, 3) is the only other bid to arrive, then
along with it bid (17, 2) becomes a winner. Similarly, arrival of an appropriate bid
could make (23, 3) a winner bid. It is easy to see that the bids (20, 4) and (18, 4) can
never be winners, since the bid (23, 3) always supersedes both of them. Thus, the
potential winner set includes (25, 5), (23, 3), (17,2) and (10, 1).

In this section we make a set of assumptions that impose minimal restrictions
and cover a large class of practically implemented rules for open-cry auctions. We
also identify CFS and RFS and show that under these assumptions, at any time t,
CFS (resp., RFS) retains at most O(N log N) (resp., N) bids from the set S(t) to
determine winners of the auction at any time in future. Some notation is needed for
this purpose.

Let S™(t) denote the bids S(t, Tena )- Let Sy (1) < S(t) denote the set of all bids in
S(t) asking for quantity q for ¢ < N. For notational simplicity we suppress the
reference to t and let S, S*, Sq denote S(t), S “(t), Sq(t) whenever this does not cause
confusion. It is worth keeping in mind that the results shown below involving S and
S “hold for any two disjoint sets S and S

Assumption 1 Under the set of rules R, there exists a sorting criteria C for the bids
in S;(q < N ) such that any bid in the list sorted using C belongs to the winner set
W(R, S, N) only if all the bids above it in the list belong to W(R, S, N).

Note that this assumption is satisfied by the greedy and the knapsack rules when
the sorting amongst bids asking for the same quantity is based on the bid value, e.g.,
under gsort (for example, (20, 4) is preferred over (18, 4) both under greedy as well
as knapsack rules).

For any set Z, let | Z| denote its cardinality. For any number X, let | x| denote the
greatest integer less than or equal to x. When Assumption 1 holds, and if [Sq| >
LN/qJ then let T (S,) denote the set of top LN/qJ bids of the set Sq under C.
Otherwise, if |S | <[ N/q] then let T, (S,)=Sg. Let T(S)= (S ). The
following prop0s1t10n easily follows from Assumptlon 1:

Proposition 1 Under Assumption 1, W(R, S S, N} = W(R, TSy S, N).
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This result implies that in any ongoing auction, if Assumption 1 holds, then all
potential winner bids from set S lie in the subset T(S). In particular, the bids in the
set S - T(S) clearly are the loser bids and can be rejected. We refer to T(S) as the
Coarse Filter Structure (CFS).

Lemma 1 The following relation holds: | T(S)| <N(1+ log N).

o N Mown g N
Proof : Note that [T(S)| = Z_qJ I(S )]szqzlm fq_N(1+Zq=21/q). The
result follows by noting that 1/q < | I/x dx.!1

Thus, under Assumption 1, O( N log N) bids need to be kept at any time and the
rest can be discarded. We now show that the number of potential winners can be
further reduced under the following two assumptions:

Assumption 2 Under the set of rules R, for all N, if b e Zand b ¢ W(R, Z, N), then
W(R, Z, N) = W(R, Z - [b}, N).

Thus, under this assumption, the removal of any loser bid from the set of bids Z
does not alter the set of winner bids.

Assumption 3 Under the set of rules R, for all N, if b € W(R, Z, N) then: W(R, Z -
{b}, N-Q(b)) = W(R, Z, N) - {b]

Thus, if one winner bid b is assigned Q(b) units of the item, the remaining
winners (call them B) are not assigned any unit and the remaining N-Q(b) units are
re-auctioned to the Z - {b} bids, then the winners of the re-auction are the
unassigned winners of the previous auction, i.e., the set B. Many practically
conceivable rules for the open-cry auction satisfy Assumptions 2 and 3. In
particular, it is easily seen that the greedy and the knapsack rules do satisfy these
assumptions.

For notational brevity let G(R, S, N) denote the set U'::,W(R, S, q), let Z,
denote the set W(R, S U S*, N) N S and let Z, denote the set W(R, S U S", N) N S*.
Thus Z, denotes the final auction winners that have already arrived (i.e., belong to
the set S) and Z,denotes the final auction winners that are yet to arrive (i.e., belong
to the set S*). Note that if the bids in Z, require q units then the bids in Z; require N -
q units (assuming that all N units are allocated). Intuitively one then expects that Z;
=W, S, N - q), since this is the best way to allocate N - q units to bids in S. Since,
q can take any value from O to N, it is reasonable to expect that Z, ¢ G(R, S, N).
This is proved in the following theorem (its proof is given in the Appendix). We also
show that the number of bids in G(R, S, N) (and hence Z,) is upper bounded by N.

Theorem 1 If R satisfies Assumptions 2 and 3, then
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Zi S GRS, N oo )

In addition, for all j = 1,

IG(R, S, P SiGIR S, -1+ E S, 3)

Thus, the above theorem states that if Assumptions 2 and 3 hold then at any time
t, at most N bids amongst S are potential winners. In particular, the bids in S - G(R,
S, N) are the loser bids that can be rejected. We shall henceforth refer to G(R, S, N)
as the Refined Filter Structure (RFS). Note that it is easy to construct an S"so that
Z, requires any quantity from O to N. Therefore any set (W(R, S, q): 1 £q<N) can
be a subset of a winner set for an appropriate S . In particular, for any bid b € G(R,
S, N), there exists an S"so that b is a final winner bid. It follows that RFS cannot be
further trimmed. Suppose that, in an auction, we wish to compute the current set of
winners at discrete time intervals (t;, t,, ..., t). Then the above theorem suggests
that, at any time t; we retain only the bids in G(R, S(t;), N) and use them to compute
W, S(t;), N).

3.1 Updating CFS

Note that CFS is easy to update as the new bids arrive. If the newly arrived bid
requires ¢ units then it may be inserted in Tq(S,) in O(log (N)) time (using binary
sort techniques). Furthermore, if, after announcing the current set of winners, an
auction receives a large number of bids (much larger than N), then there is a
significant chance that an arrived bid will not change CFS. It may then be desirable
to first compare the newly arrived bid requiring q units with the last bid in the set
Tq(Sq), and reject the lower of the two (only if ITy (Sq)I:[N/qJ).

4. UPDATING RFS UNDER GREEDY RULES

It is noteworthy that when knapsack winner determination rules are used,
updating RFS may be computationally expensive and hence CFS may be preferred
over RFS. We refer the reader to Bassamboo et. al. (2000) for a discussion on how
RFS may be updated using standard dynamic programming techniques under
knapsack rules. Fortunately, greedy rules have a nice recursive structure that may be
exploited to efficiently compute RFS. Lemma 2 states the key recursive relationship
that proves useful in efficiently determining RFS under greedy rules. To aid in its
statement let r(x, y) denote max(x - y, y - 1), let n denote the cardinality of the set of
bids Z and let (by, b,, ..., bn) denote the list of these bids sorted in descending order
using gsort.
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Lemma 2 Forj> Q(b;),

Gfgreedy, Z. j} = {b)} w Glgreedy, Z- {b)}, r(f, Qb)) ... (4)
Forj < Q(b;),
Ggreedy, Z, j) = Gegreedy, Z- [} j). ... . ... . ... (®)]

Proof of Lemma 2 is given in the appendix. In view of this lemma, the algorithm
for determining G(greedy, Z, N) is a simple modification of Al. This algorithm, call
it A2, is identical to A1 except that in (1), the step X;,; = X;- Q(b;) is replaced by
Xjp1 = 1(Xj, Q(b))).

Note that the output W is the set G(greedy, Z, N) and that the elements in ¥ may
easily be maintained as a sorted list (based on gsort). Also, analogous to Al, for all j,
after bids {b] by, b j_1} have been examiqed, A2 proceeds recursively to solve the
smaller problem of determining G(greedy, Z! X;), where 7' = {bj, ..., by}. The
computational effort required in the above algorithm is O(n log n) for sorting Z, and
O(n) for finding G(greedy, Z, N). For large set Z the effort required in sorting it can
be high. We refer the reader to Bassamboo et. al. (2000) for updating procedures that
do not require the sorted Z. In particular, it discusses RFS updating techniques that
require O(log N) updating computational effort per bid.

4.1 Expected number of potential winner bids

Although, we have an upper bound of N on G(greedy, Z, N) and it is easy to
create cases where this bound is achieved (e.g., when all the top bids request a single
item), simulation experiments show that number of bids in G(greedy, Z, N) is
typically much smaller (see Bassamboo et. al. 2000). We now conduct an order of
magnitude analysis of the expected number of bids in G(greedy, Z, N) under some
reasonable assumptions on the probability distribution of bid sizes. Our conclusion
is that for large N, this expectation typically is much smaller than N. Let T denote the
number of bids in the set G(greedy, Z, N).

Assumption 4 explains the class of probability distributions on the sizes of bids
that we consider. This assumption is somewhat restrictive to avoid undue
mathematical technicalities. It however covers many cases of practical relevance (as
discussed later) and provides insight explaining the order of magnitude of the
expected number of bids in G(greedy, Z, N).

Assumption 4 There exist positive numbers 6,&,7 and 0 < o £ 1 such that 6 =
O(N%), and BN < P(Q(h} = q) < ¥N® for q<Q . for all i < nand P(Q(b;) = q)=0
otherwise for all i < n.
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For example, the case where each Q_(bi) takes values from 1 to N with equal
probability is modeled by taking o =1, 6 =Nand f=vy=1. To capture the setting
where the bids are predominantly small in size, we may consider a smaller 6 , for
example, 6 = (YN} or (Q =®(1}. We now state the main theorem of this section.
Its proof involves lengthy technicalities and is given in Bassamboo et. al. (2000).

Theorem 2 Under Assumption 4, E(7 = &N"%} + Oflog N).

S. DISCUSSION OF SOME PRACTICAL ISSUES

5.1 Bidders with Decreasing Marginal Utility Functions”

Economic theory postulates that most bidders have decreasing marginal utility
functions. It is noteworthy that the bids permitted in our discussion can support such
bidders. Thus, suppose that the bidder is willing to bid v, for the first unit, v, for the
second unit, . . . ,v, for k-th unit, where vi > v, >...> vy > 0. Then she may
maximize her utility function by sending k bids each of size 1 and price v, v,, .. .,
vy, respectively. Clearly, a bid with price vi wins only if bids with price v;jwin for all
j < i (both under greedy and knapsack rules). However, when vj's are not
monotonically non-increasing (e.g., first unit is worth $0, second is worth $5 and the
third is worth $4), further research is needed to determine efficient computation
techniques.

5.2 Order Bids

At most of the Internet sites conducting open-cry auctions, the bidders are given
the option of placing a regular bid (i.e., bid where a unique bid value is specified) or
placing an order bid (also called proxy bid), i.e., a software agent that bids on behalf
of a human bidder. An order bid differs from the regular bid in the sense that it
specifies the bidder's maximum bidding limit instead of a unique bid value. The
following simple assumption (satisfied by both greedy and knapsack rules) on the
auction rules makes winner determination straightforward, even when order bids are
involved:

Assumption 5 Under auction rules R, if b € W(R, S, N) for a given val(b), then,
keeping all else fixed, b € W(R, S, N) even if val(b) is increased.

7 We thank Terence Kelly (Univ. of Michigan) for pointing this out and for related
discussions.
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Thus, to determine the winners in an auction that allows regular bids and order
bids, each order bid may be treated as a regular bid with the maximum bidding limit
treated as its bid value. Thus an order bid may only send a single bid. The issue of
the amount the order bid needs to pay is a complex one, that will be addressed by the
authors elsewhere.

6. CONCLUSION AND FURTHER RESEARCH
AREAS

In this paper we introduced the concept that for a large class of winner
determination rules, at any time in an ongoing auction, amongst all the arrived bids,
it is possible to identify a small subset that contains all potential winner bids. We
focussed on multiple N unit single item auction. For this auction we identified the
minimal subset of potential winner bids and showed that it contains at most N bids.
We further showed that on an average this number may be much less than N if the
bids arriving require large quantities. We demonstrated that this approach may
provide computational benefits as well as improved response times to customers.

The following are some issues arising from this work that need further attention:
In our analysis we assumed that the bidder may not retract or modify her bid. Theory
needs to be developed to address this. Research is also needed to see how these ideas
extend to combinatorial auctions where more than one item is auctioned. In this
paper we focussed on bids that demanded all or nothing. We discussed that if a
bidder has a marginally decreasing utility function then her bids can be easily
incorporated in our framework. Further research is needed to efficiently identify
winner bids and potential winner bids when the bidder utility function is more
general.

7. APPENDIX

PROOF of Theorem 1: Assumption 2 implies that Z, U Z,= W(R, SU Z,, N).
Assumption 3 further implies that Z; = W(R, S, N - X5 7, Q(b)) from which (2)
follows. We prove (3) using induction on the number of identical items on auction.
Note that IG(R, S, 1)l equals O or 1, depending on whether W(R, S, 1) is empty or
not. Assume that (3) holds for all j < m. We now show that it holds for m+1 by
assuming the contrary and showing a contradiction. Thus, suppose that there exist
bids by, b> € G(R, S, m+1) and by, b, ¢ G(R, S, m). This implies that by, by € W(R,
S, m+1). From Assumption 3, we have that W(R, S - {b;}, m+1 - Q(by)) = W(R, S,
m+1) - {b1}. Since W(R, S - {b;}, m+1 - Q(b1)) = G(R, S, m), it follows that b; €
G(R, S, m) giving us the desired contradiction. I'
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PROOF of Lemma 2: Note that (5) straightforward since bi is too big to belong
to any W(R, S, 1) for (i £j). Now we prove (4). Again for i < Q(b1), it is obvious
that:

Wi(greedy, Z, 1) = W(greedy, Z - {b1},1). . ........ ... .. ... (6)

From greedy rules it is clear that for (i= Q(by), . . ., j), b1 will belong to the set W(R S, i)
and the remaining quantity i - Q(b;)will be satisfied from amongst the bids Z - {b1}, i.e.,

W(greedy, Z, i) =bju W(greedy, Z - {b1},i-Q(b1)).......... @)

Hence, from (6) and (7), taking the union of W(greedy, Z, i) for i <j, it follows that

Qb _ by}
Ggreedy, Z, j)={U_ Wigreedy, Z - {by 1 inU{b YUy ; * Wigreedy, z - {b}, k))
and (4) follows.
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