
Control Flow driven Splitting of Loop Nests at the Source Code Level

Heiko Falk, Peter Marwedel
University of Dortmund, Computer Science 12, D - 44221 Dortmund, Germany

Heiko.Falk| Peter.Marwedel@udo.edu

Abstract
This paper presents a novel source code transformation

for control flow optimization called loop nest splitting which
minimizes the number of executed if-statements in loop
nests of embedded multimedia applications. The goal of the
optimization is to reduce runtimes and energy consumption.
The analysis techniques are based on precise mathematical
models combined with genetic algorithms. Due to the in-
herent portability of source code transformations, a very
detailed benchmarking using 10 different processors can be
performed. The application of our implemented algorithms
to three real-life multimedia benchmarks leads to average
speed-ups by 23.6% – 62.1% and energy savings by 19.6%
– 57.7%. Furthermore, our optimization also leads to ad-
vantageous pipeline and cache performance.

1. Introduction
In recent years, the power efficiency of embedded mul-

timedia applications (e. g. medical image processing, video
compression) with simultaneous consideration of timing
constraints has become a crucial issue. Many of these ap-
plications are data-dominated using large amounts of data
memory. Typically, such applications consist of deeply
nestedfor-loops. Using the loops’ index variables, ad-
dresses are calculated for data manipulation. The main al-
gorithm is usually located in the innermost loop. Often,
such an algorithm treats particular parts of its data specif-
ically, e. g. an image border requires other manipulations
than its center. This boundary checking is implemented us-
ing if-statements in the innermost loop (see e. g. figure 1, an
MPEG 4 full search motion estimation kernel [5]).

This code fragment has several properties making it sub-
optimal w. r. t. runtime and energy consumption. First, the
if-statements lead to a very irregular control flow. Any jump
instruction in a machine program causes a control hazard
for pipelined processors [11]. This means that the pipeline
needs to be stalled for some instruction cycles, so as to pre-
vent the execution of incorrectly prefetched instructions.

Second, the pipeline is also influenced by data refer-
ences, since it can also be stalled during data memory ac-
cesses. In loop nests, the index variables are accessed very
frequently resulting in pipeline stalls if they can not be kept
in processor registers. Since it has been shown that 50% –
75% of the power consumption in embedded multimedia

for (x=0; x<36; x++) { x1=4*x;
for (y=0; y<49; y++) { y1=4*y; /* y loop */

for (k=0; k<9; k++) { x2=x1+k-4;
for (l=0; l<9; l++) { y2=y1+l-4;

for (i=0; i<4; i++) { x3=x1+i; x4=x2+i;
for (j=0; j<4; j++) { y3=y1+j; y4=y2+j;

if (x3<0 || 35<x3 || y3<0 || 48<y3)
then block 1; else else block 1;

if (x4<0 || 35<x4 || y4<0 || 48<y4)
then block 2; else else block 2; }}}}}}

Figure 1. A typical Loop Nest (from MPEG 4)

systems is caused by memory accesses [12, 17], frequent
transfers of index variables across memory hierarchies con-
tribute negatively to the total energy balance.

Finally, many instructions are required to evaluate theif-
statements, also leading to higher runtimes and power con-
sumption. For the MPEG 4 code above, all shown opera-
tions are in total as complex as the computations performed
in thethen- andelse-blocks of theif-statements.

In this article, a new formalized method for the analysis
of if-statements occuring in loop nests is presented solving a
particular class of the NP-complete problem of the satisfia-
bility of integer linear constraints. Considering the example
shown in figure 1, our techniques are able to detect that
• the conditionsx3<0 andy3<0 are never true,
• bothif-statements are true forx ≥ 10 ory ≥ 14.

Information of the first type is used to detect conditions not
having any influence on the control flow of an application.
This kind of redundant code (which is not typical dead code,
since the results of these conditions are used within theif-
statement) can be removed from the code, thus reducing
code size and computational complexity of a program.

Using the second information, the entire loop nest can be
rewritten so that the total number of executedif-statements
is minimized (see figure 2). In order to achieve this, a new
if-statement (thesplitting-if) is inserted in they loop testing
the conditionx≥10 || y ≥14. The else-part of this new
if-statement is an exact copy of the body of the originaly

loop shown in figure 1. Since allif-statements are fulfilled
when the splitting-if is true, thethen-part consists of the
body of they loop without anyif-statements and associated
else-blocks. To minimize executions of the splitting-if for
values ofy ≥ 14, a secondy loop is inserted in thethen-part
counting from the current value ofy to the upper bound 48.
The correctly transformed code is illustrated in figure 2.

for (x=0; x<36; x++) { x1=4*x;
for (y=0; y<49; y++)

if (x>=10 || y>=14) /* Splitting-If */
for (; y<49; y++) /* Second y loop */

for (k=0; k<9; k++)
... /* l- & i-loop omitted */

for (j=0; j<4; j++) {
then block 1; then block 2; }

else { y1=4*y;
for (k=0; k<9; k++) { x2=x1+k-4;

... /* l- & i-loop omitted */
for (j=0; j<4; j++) { y3=y1+j; y4=y2+j;

if (0 || 35<x3 || 0 || 48<y3)
then block 1; else else block 1;

if (x4<0 || 35<x4 || y4<0 || 48<y4)
then block 2; else else block 2; }}}}}}

Figure 2. Loop Nest after Splitting

As shown by this example, our technique is able to gen-
erate linear control flow in the hot-spots of an application.
Furthermore, accesses to memory are reduced significantly
since a large amount of branching, arithmetic and logical
instructions and index variable accesses is removed.

Section 2 of this paper gives a survey of related work.
Section 3 presents the analytical models and algorithms for
loop nest splitting. Section 4 describes the benchmarking
results, and section 5 summarizes and concludes this paper.

2. Related Work
Loop transformations have been described in literature

on compiler design for many years (see e. g. [2, 11]) and are
often integrated into today’s optimizing compilers. Classi-
cal loop splitting(or loop distribution/ fission) creates sev-
eral loops out of an original one and distributes the state-
ments of the original loop body among all new loops. The
main goal of this optimization is to enable the paralleliza-
tion of a loop due to fewer data dependencies [2] and to
possibly improve I-cache performance due to smaller loop
bodies. In [7] it is shown that loop splitting leads to in-
creased energy consumption of the processor and the mem-
ory system. Since the computational complexity of a loop
is not reduced, this technique does not solve the problems
that are due to the properties discussed in section 1.

Loop unswitchingis applied to loops containing loop-
invariantif-statements [11]. The loop is then replicated in-
side each branch of theif-statement, reducing the branching
overhead and decreasing code sizes of the loops [2]. The
goals of loop unswitching and the way how the optimiza-
tion is expressed are equivalent to the topics of section 1.
But the fact that theif-statements must not depend on index
variables makes loop unswitching unsuitable for applying it
to multimedia programs. It is the contribution of the tech-
niques presented in this paper that we explicitly focus on
loop-variant conditions. Since our analysis techniques go
far beyond those required for loop splitting or unswitching
and have to deal with entire loop nests and sets of index vari-
ables, we call our optimization techniqueloop nest splitting.

In [9], classical loop splitting is applied in conjunction
with function call insertion at the source code level to im-
prove the I-cache performance. After the application of
loop splitting, a large reduction of I-cache misses is reported
for one benchmark. All other parameters (instruction and
data memory accesses, D-cache misses) are worse after the
transformation. All results are generated with cache sim-
ulation software which is known to be unprecise, and the
runtimes of the benchmark are not considered at all.

Source code transformations are studied in literature for
many years. In [6], array and loop transformations for data
transfer optimization are presented by means of a medical
image processing algorithm [3]. The authors only focus on
the illustration of the optimized data flow and thus neglect
that the control flow gets very irregular since many addi-
tional if-statements are inserted. This impaired control flow
has not yet been targeted by the authors. As we will show
in section 4, loop nest splitting applied as postprocessing
stage is able to remove the control flow overhead introduced
by [6] with simultaneous further data transfer optimization.

3. Analysis and Optimization Algorithm
This section presents the techniques required for loop

nest splitting consisting of four sequential tasks. First,
conditions are checked for satisfiability (3.1). Second, an
optimized search space for each satisfiable condition is
created (3.2). Third, all local search spaces are combined to
a global search space (3.3) which has to be explored finally
(3.4). Before going into details (cf. also [4] for broader
descriptions), some preliminaries are required.

Definition 1:
1. LetΛ = {L1, . . . ,LN} be aloop nestof depthN, where

Ll denotes a single loop.

2. Let il , lbl andubl be theindex variable, lower bound
andupper boundof loopLl ∈ Λ with lbl ≤ il ≤ ubl .

The optimization goal for loop nest splitting is to determine
valueslb ′

l andub′
l for every loopLl ∈ Λ with

• lb ′
l ≥ lbl andub′

l ≤ ubl ,
• all loop-variantif-statements inΛ are satisfied for all

values of the index variablesil with lb ′
l ≤ il ≤ ub′

l ,• loop nest splitting by all valueslb ′
l andub′

l leads to the
minimization ofif-statement execution.

The valueslb ′
l andub′

l are used for the construction of the
splitting if-statement. The techniques described in the fol-
lowing require that some preconditions are met:

1. All loop boundslbl andubl are constants.
2. If-statements have the formatif (C1⊕C2⊕ . . .) where

Cx are loop-variant conditions that are combined with
logical operators⊕ ∈ {&&, || }.

3. Loop-variant conditionsCx are affine expressions
of il and can thus be translated to the format

Cx =
N
∑

l=1
(cl ∗ il)+c≥ 0 for constantscl ,c∈ Z.

Precondition 2 is only due to the current state of implemen-
tation of our tools. By application ofde Morgan’srule on
an expression!(C1⊕C2) and inversion of the comparators
in C1 andC2, the logicalNOT can also be modeled inif-
statements. Since all boolean functions can be expressed
with &&, || and! , precondition 2 is not a limitation. With-
out loss of generality, a conditiona==b can be rewritten as
a≥b && b≥a (a!=b analogous) so that the required opera-
tor ≥ of precondition 3 is not a restriction, either.

3.1. Condition Satisfiability

In the first phases of the optimization algorithm, all
affine conditionsCx are analyzed separately. Every condi-
tion defines a subset of the total iteration space of a loop
nestΛ. This total iteration space is anN-dimensional space
limited by all loop boundslbl andubl . An affine condition
Cx can thus be modeled as follows by a polytope:

Definition 2:
1. P = {x∈ Z

N | Ax= a, Bx≥ b} is called apolyhedron
for A,B∈ Z

m×N anda,b∈ Z
m andm∈ N.

2. A polyhedronP is called apolytope, if |P| < ∞.

Every conditionCx can be represented by a polytopePx by
generating inequalities for the affine conditionCx itself and
for all loop bounds. For this purpose, an improved variant
of the Motzkin algorithm [10] is used and combined with
some simplifications removing redundant constraints [15].

After that, we can determine in constant time if the num-
ber of equalitiesAx= a of Px is equal to the dimension of
Px plus 1. If this is true,Px is overconstrained and defines
the empty set as proven by Wilde [15]. If insteadPx only
contains the constraints for the loop bounds,Cx is satisfied
for all values of the index variablesil . Such conditions that
are always satisfied or unsatisfied are replaced by their re-
spective truth value in theif-statement and are no longer
considered during further analysis.

3.2. Condition Optimization

For conditionsC =
N
∑

l=1
(cl ∗ il)+c≥ 0 that are not elim-

inated by the previous method, a polytopePC is created out
of valueslb ′

C,l andub′
C,l for all loopsLl ∈ Λ such thatC

is satisfied for all index variablesil with lb ′
C,l ≤ il ≤ ub′

C,l .
These values are chosen so that a loop nest splitting using
lb ′

C,l andub′
C,l minimizes the execution ofif-statements.

Since affine expressions (see precondition 3) are linear
monotone functions, it is unnecessary to deal with two val-
ueslb ′

C,l andub′
C,l . If C is true for a valuev∈ [lb ′

C,l ,ub′
C,l]

andcl > 0, C must also be true forv+ 1,v+ 2, . . . (cl < 0
analogous). This implies that eitherlb ′

C,l = lbl or ub′
C,l =

ubl . Thus, our optimization algorithm only computes val-
uesv′

C,l for C and all loopsLl ∈ Λ with v′
C,l ∈ [lbl ,ubl]. v′

C,l
designates one of the former valueslb ′

C,l or ub′
C,l , the other

one is set to the correct upper or lower loop bound.

The optimization of the valuesv′
C,l is done by a genetic

algorithm (GA) [1]. The chromosome length is set to the
number of index variablesil C depends on:|{cl |cl 6= 0}|. For
every such variableil , a gene on the chromosome represents
v′

C,l . Using thev′
C,l values of the fittest individual, the opti-

mized polytopePC is generated as the result of this phase:
PC = {(x1, . . . ,xN) ∈ Z

N | lbl ≤ xl ≤ ubl , Ll ∈ Λ,
xl ≥ v′

C,l if cl > 0,

xl ≤ v′
C,l if cl < 0}

The fitness of an individualI is the higher, the fewer
if-statements are executed when splittingΛ using the values
v′

C,l encoded inI . Since only the fittest individuals are
selected, the GA minimizes the execution ofif-statements.
Consequently, an individual implying thatC is not satisfied
has a very low fitness. For an individualI , the fitness
function computes the number of executedif-statements
IFTot. Therefore, the following values are required:

Definition 3:
1. Thetotal iteration space(TS) of a loop nestΛ is the

total number of executions of the body of loopLN:

TS=
N
∏
l=1

(ubl − lbl +1)

2. Theconstrained iteration space(CS) is the total itera-
tion space reduced to the rangesrl represented byv′

C,l :

CS=
N
∏
l=1

rl andrl =

{ ubl − lbl +1 if cl = 0,
ubl −v′

C,l +1 if cl > 0,

v′
C,l − lbl +1 else

3. Theinnermost loopλ is the index of the loop where a
loop nest splitting has to be done for a given set ofv′

C,l
values:λ = max{l | Ll ∈ Λ, rl 6= ubl − lbl +1}

The aggregate number of executedif-statementsIFTot is
computed as follows:
• IFTot = IFOrig + IFSplit (if-statements in theelse-part of

the splitting-if plus the splitting-if itself)
• IFOrig = TS−CS (all iterations ofΛ minus the ones

where the splitting-if evaluates to true)
• IFSplit = TPSplit+EPSplit (splitting-if is evaluated as of-

ten as itsthen- andelse-parts are executed)

• TPSplit = CS/
N
∏

l=λ+1
(ubl − lbl + 1) ∗ rλ (All loop nest

iterations where splitting-if is true divided by all loop
iterations located in thethen-part)

• EPSplit = IFOrig /
N
∏

l=λ+1
(ubl − lbl + 1) (All loop nest

iterations where splitting-if is false divided by all loop
iterations located in theelse-part)

The computation ofIFSplit is that complex because the du-
plication of the innermost loopλ in the then-part of the
splitting-if (e. g. they loop in figure 2) has to be considered.
SinceIFTot does not depend linearly onv′

C,l , a modeling of
this optimization problem using integer linear programming
(ILP) is impossible, so that we chose to use a GA.

Example: For a condition C= 4*x+k+i-40>=0 and the
loop nest of figure 1, our GA can generate the individual I=
(10,0,0). The numbers encoded in I denote the values v′

C,x, v′C,k

and v′C,i so that the following intervals are defined:x ∈ [10,35],
k ∈ [0,8], i ∈ [0,3]. Since only variablex is constrained by I, the
x -loop would be split using the conditionx>=10 . The formulas
above imply a total execution of 12,701,020 if-statements (IFTot).

3.3. Global Search Space Construction
After the first GA (see section 3.2), a set ofif-statements

IFi = (Ci,1 ⊕Ci,2 ⊕ . . . ⊕Ci,n) consisting of affine condi-
tionsCi, j and their associated optimized polytopesPi, j are
given. For determining index variable values where allif-
statements in a program are satisfied, a polytopeG model-
ing the global search space has to be created out of allPi, j .

In a first step, a polytopePi is built for everyif-statement
IFi . Therefore, the conditions ofIFi are traversed in their
natural execution orderπ which is defined by the associa-
tivity and precedence rules of the operators&& and|| . Pi

is initialized withPi,π(1). While traversing the conditions of
if-statementi, Pi andPi,π(j) are connected either with the in-
tersection or union operators for polytopes:∀ j ∈ {2, . . . ,n} :

Pi = Pi]Pi,π(j) with] =
{ ∩ if Ci,π(j−1) &&Ci,π(j)

∪ if Ci,π(j−1) || Ci,π(j)
Pi models those ranges of the index variables where one

if-statementi is satisfied. Since allif-statements need to
be satisfied, the global search spaceG is built by intersect-
ing all Pi : G =

T

Pi. Since polyhedra are not closed under
the union operator, thePi defined above are no real poly-
topes. Instead, we use finite unions of polyhedra for which
the union operator is closed [15].

3.4. Global Search Space Exploration
Since all Pi are finite unions of polytopes, the global

search spaceG also is a finite union of polytopes. Each
polytope ofG defines a region where allif-statements in a
loop nest are satisfied. After the construction ofG, appro-
priate regions ofG have to be selected so that once again
the total number of executedif-statements is minimized af-
ter loop nest splitting.

Since unions of polytopes (i. e. logicalORof constraints)
can not be modeled using ILP, a second GA is used here.
For a given global search spaceG = R1 ∪ R2 ∪ . . . ∪ RM,
each individualI consists of a bit-vector where bitIr
determines whether regionRr of G is selected or not:

I = (I1, I2, . . . , IM) with Ir =
{

1 if regionRr is selected,
0 else

Definition 4:

1. For an individualI , GI is the global search spaceG
reduced to those regions selected byI :
GI =

S

Rr with Ir = 1
2. The innermost loopλ is the index of the loop where

the loop nest has to be split when consideringGI :
λ = max{l | Ll ∈ Λ, il is used inGI}

3. ιl denotes the number ofif-statements located in the
body of loopLl but not in any other loopL′

l nested in
Ll . For figure 1,ιj is equal to 2, all otherιl are zero.

4. IFl denotes the number of executedif-statements when
the loop nestΛ′ = {Ll , . . . ,LN} would be executed:

IFl = (ubl − lbl +1)∗ (IFl+1 + ιl)
IFN+1 = 0

The fitness of an individualI represents the numberIFI of
if-statements that are executed when splittingΛ using the
regionsRr selected byI . IFI is incremented by one for every
execution of the splitting-if. If the splitting-if is true, the
counter remains unchanged. If not,IFI is incremented by
the number of executed originalif-statements (see figure 3).

IFI = 0;
∀i1 ∈ [lb1,ub1]

. . .
∀iλ ∈ [lbλ,ubλ]

IFI = IFI +1;
if (GI = true for(i1, . . . , iλ))

iλ = ubλ;
else

IFI = IFI + IFλ+1;

Figure 3. Global If-Statement Counter

After the GA has terminated, the innermost loopλ of
the best individual defines where to insert the splitting-if.
The regionsRr selected by this individual serve for the gen-
eration of the conditions of the splitting-if and lead to the
minimization ofif-statement executions.

4. Benchmarking Results

The techniques presented in section 3 are fully imple-
mented using the SUIF [16], Polylib [15] and PGAPack [8]
libraries. Both GA’s use the default parameters provided
by [8] (population size 100, replacement fraction 50%,
1,000 iterations). Our tool was applied to three multime-
dia programs. First, a medical tomography image processor
(CAVITY[3]) having passed the so called DTSE transfor-
mations [6] is used. We apply loop nest splitting to this
transformed application for showing that we are able to re-
move the overhead introduced by DTSE. The second bench-
mark is an MPEG 4 full search motion estimation (ME [5],
see section 1), and the QSDPCM algorithm [14] for scene
adaptive coding serves as third test driver.

Since all polyhedral operations used [15] have exponen-
tial worst case complexity, loop nest splitting as a whole
also has exponential complexity. Nevertheless, the effective
runtimes of our tool are very low, from 0.41 CPU seconds
(QSDPCM) up to 1.58 seconds (CAVITY) are required for
optimization on an AMD Athlon running at 1.3 GHz. For
obtaining the results presented in the following, the bench-
marks are compiled and executed before and after loop nest
splitting. Compilers are always invoked with all optimiza-
tions enabled so that highly optimized code is generated.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%
Cavity Motion Estimation QSDPCM

L1 D-Miss

L2 Fetch
L2 Miss

Branch Instrs

L1 I-F
etch

L1 I-F
etch

L1 I-M
iss

L1 D-Fetch

L1 D-Miss

L2 Fetch
L2 Miss

Intel Pentium III Sun UltraSPARC III MIPS R10000
L1 D-Fetch

L1 I-M
iss

Pipe Stall

Branch Taken
L2 Miss

L2 Fetch

L1 D-Miss

L1 D-Fetch
L1 I-M

iss

L1 I-F
etch

Pipe Stall

Branch Taken

Figure 4. Pipeline and Cache Behavior after Loop Nest Splitting

4.1. Pipeline and Cache Behavior

Figure 4 shows the effects of loop nest splitting on the
caches and pipelines of an Intel Pentium III, Sun Ultra-
SPARC III and a MIPS R10000 processor. To obtain these
results, the benchmarks were compiled and executed on the
processors while monitoring performance-measuring coun-
ters available in the CPU hardware. This way, reliable val-
ues can be generated without using erroneous cache simu-
lation software. The figure shows the performance values
for the optimized benchmarks as a percentage of the unop-
timized versions denoted as 100%.

As can be seen from the columnsBranch Taken andPipe
Stall, we are able to generate a more regular control flow for
all benchmarks. The number of taken branch instructions is
reduced between 8.1% (CAVITY Pentium) and 88.3% (ME
Sun) consequently leading to similar reductions of pipeline
stalls (10.4% – 73.1%). For the MIPS, a reduction of ex-
ecuted branch instructions between 66.3% (QSDPCM) and
91.8% (CAVITY) were observed. The very high gains for
the Sun CPU are due to its complex pipeline consisting of
14 stages which is very sensitive to stalls.

The hardware counters also clearly show that the behav-
ior of the L1 I-cache is improved significantly. The num-
ber of I-fetches is reduced by 26.7% (QSDPCM Pentium) –
82.7% (ME Sun), large improvements of I-cache misses are
reported for the Pentium and MIPS (14.7% – 68.5%). For
the Sun, this parameter remains almost unchanged. Due
to the removal of index variable accesses, the L1 D-caches
also benefit in several cases. Fetches from the D-cache are
reduced by 1.7% (ME Sun) resp. 85.4% (ME Pentium);
only for the QSDPCM benchmark, data fetches increase up
to 3.9% due to the insertion of spill code. D-cache misses
drop by 2.9% (ME Sun) – 51.4% (CAVITY Sun). The very
large register file of the Sun UltraSPARC III (160 integer
registers) is the reason for the slight improvements of the
L1 D-cache behavior for ME and QSDPCM. Since these
benchmarks only use very few local variables, they can be
stored entirely in registers even before loop nest splitting.

Furthermore, the columnsL2 Fetch and L2 Miss show
that the unified L2 caches also benefit significantly, since
reductions of accesses (0.2% – 53.8%) and misses (1.1% –
86.9%) are reported in most cases.

4.2. Execution Times
All in all, the factors mentioned above lead to speed-ups

between 17.5% (CAVITY Pentium) and 75.8% (ME Sun)
for the processors considered in section 4.1 (see figure 5a).
To demonstrate that these improvements not only occur on
these CPUs, additional runtime measurements were per-
formed for an HP-9000, PowerPC G3, DEC Alpha, TriMe-
dia TM-1000, TI C6x and an ARM7TDMI, the latter both
in 16-bit thumb- and 32-bit arm-mode.

Figure 5a shows that all benchmarks benefit from loop
nest splitting. The runtimes of CAVITY are improved be-
tween 7.7% (TI C6x) and 35.7% (HP). On the average over
all processors, a speed-up of 23.6% was measured. The fact
that loop nest splitting is able to generate a very regular con-
trol flow in the innermost loop of the ME benchmark leads
to very high gains in this case. The benchmark is acceler-
ated by 62.1% on average. The minimum speed-up amounts
to 36.5% (TriMedia), whereas the Sun CPU honors the op-
timization with an acceleration of 75.8%. For QSDPCM,
the improvements range from 3% (PowerPC) up to 63.4%
(MIPS) leading to an average speed-up of 29.3%.

The variations among different CPUs depend on several
factors. As already stated in section 4.1, the complexity of
register files and pipelines are important parameters. Addi-
tionally, runtimes are influenced by different compiler opti-
mizations and register allocation algorithms. Due to lack of
space, a detailed study can not be given here.

4.3. Code Sizes and Energy Consumption
Since code is replicated, loop nest splitting entails an in-

crease in code size (see figure 5b). On average, the CAV-
ITY benchmark’s code size increases by 60.9%, with mini-
mum and maximum increases of 34.7% (MIPS) and 82.8%
(DEC). Although the ME benchmark is accelerated most,
its code enlarges least. Increases between 9.2% (MIPS) and
51.4% (HP) lead to an average growth of only 28%. Fi-
nally, the code of QSDPCM enlarges between 8.7% (MIPS)
– 101.6% (C6x) leading to an average increase of 61.6%.

These increases by a few hundred instructions are not
a serious drawback, since the added energy required for
storing these instructions is compensated by the savings
achieved by loop nest splitting. Figure 5c shows the ef-
fects of loop nest splitting on memory accesses and energy

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

200%

0%

20%

40%

60%

80%

100%
Cavity Motion Estimation QSDPCM

0%

20%

40%

60%

80%

100%

120%

Data Read

Instr R
ead

Total E
ngy

Mem Engy

CPU Engy

Mem Acc.

Data W
rite

Pentiu
mSun

ARM7 arm
TI C

6x

TriM
edia

PowerPC
MIPS

a) b) c)

40%

60%

20%

80%

100%

120%

0%

DEC Alpha

140%

100%

60%

20%

160%

200%
180%

120%

80%

40%

0%

20%

40%

60%

80%

100%

0%

AverageHP

ARM7 th
mb

Pentiu
mSun

ARM7 arm
TI C

6x

TriM
edia

DEC Alpha

PowerPC

AverageHP
MIPS

ARM7 th
mb

Cavity QSDPCMMotion Estimation

Figure 5. a) Execution Times b) Code Sizes c) Energy Consumption after Loop Nest Splitting

consumption using an instruction-level energy model [13]
for the ARM7 core considering bit-toggles and offchip-
memories and having an accuracy of 1.7%.

The columnInstr Read shows that the number of instruc-
tion memory accesses is reduced by 23.5% (CAVITY) –
56.9% (ME). Furthermore, our control flow optimization
also leads to a significant reduction of data memory ac-
cesses. Data reads are reduced up to 65.3% (ME). For QS-
DPCM, the removal of spill code reduces data writes by
95.4%. In contrast, the compiler inserts spill code for CAV-
ITY so that an increase of 24.5% was observed. The total
amount of all memory accesses (Mem Acc) is reduced by
20.8% (CAVITY) – 57.2% (ME).

Our optimization leads to large energy savings both of
the CPU and its memory. The energy consumed by the
ARM core is reduced by 18.4% (CAVITY) – 57.4% (ME),
the memory consumes between 19.6% and 57.7% less en-
ergy. Total energy savings by 19.6% – 57.7% are measured.

Anyhow, if code size increases (up to a rough theoretical
bound of 100%) are critical, it is easy to change our algo-
rithms so that the splitting-if is not placed in the outermost
possible loop. This way, code duplication is reduced at the
expense of lower speed-ups, so that trade-offs between code
sizes and savings in runtimes can be realized.

5. Conclusions
We present a novel source code optimization called loop

nest splitting which removes redundancies in the control
flow of embedded multimedia applications. Using polytope
models, conditions having no effect on the control flow are
removed. Genetic algorithms identify ranges of the iteration
space where allif-statements are provably satisfied. The
source code of an application is rewritten in such a way that
the total number of executedif-statements is minimized.

A detailed study of 3 benchmarks shows that the branch-
ing and pipeline behavior is improved significantly. Fur-
thermore, caches also benefit from our optimization since
I- and D-cache misses are reduced heavily (up to 68.5%).
Since accesses to instruction and data memory are reduced
to a large extent, loop nest splitting consequently leads to
large power savings (19.6% – 57.7%). An extended bench-
marking using 10 different CPUs shows that we are able to
speed-up the benchmarks by 23.6% – 62.1% on average.

The selection of the benchmarks used in this paper
demonstrates that our optimization is a very general and
powerful technique. It is not only able to improve the code
of typical real-life applications, but in addition, it can be
used to eliminate the negative effects of other source code
transformation frameworks introducing a very large control
flow overhead into an application. In the future, we will
generalize our analytical models so that more classes of
loop nests can be treated. In particular, extensions to loops
not having constant bounds will be developed.

References
[1] T. Bäck. Evolutionary Algorithms in Theory and Practice. Oxford

University Press, 1996.
[2] D. F. Bacon, S. L. Graham et al. Compiler Transformations for

High-Performance Computing.ACM Computing Surv., 26(4), 1994.
[3] M. Bister, Y. Taeymans et al. Automatic Segmentation of Cardiac

MR Images.IEEE Journ. on Computers in Cardiology, 1989.
[4] H. Falk. Control Flow Optimization by Loop Nest Splitting at the

Source Code Level. Research Report 773, University of Dortmund,
Germany, Oct. 2003.

[5] S. Gupta, M. Miranda et al. Analysis of High-level Address Code
Transformations for Programmable Processors. InProc. of DATE,
Paris, 2000.

[6] Y. H. Hu, editor. Data transfer and storage (DTS) architec-
ture issues and exploration in multimedia processors, volume Pro-
grammable Digital Signal Processors – Architecture, Programming
and Applications. Marcel Dekker Inc., New York, 2001.

[7] M. Kandemir, N. Vijaykrishnan et al. Influence of compiler opti-
mizations on system power. InProc. of DAC, Los Angeles, 2000.

[8] D. Levine. Users Guide to the PGAPack Parallel Genetic Algorithm
Library. Tech. Rep. ANL-95/18, Argonne National Lab., 1996.

[9] N. Liveris, N. D. Zervas et al. A Code Transformation-Based
Methodology for Improving I-Cache Performance of DSP Appli-
cations. InProc. of DATE, Paris, 2002.

[10] T. S. Motzkin, H. Raiffa et al. The double description method.
Theodore S. Motzkin: Selected Papers, 1953.

[11] S. S. Muchnick.Advanced Compiler Design and Implementation.
Morgan Kaufmann, San Francisco, 1997.

[12] M. R. Stan and W. P. Burleson. Bus-Invert Coding for Low-Power
I/O. IEEE Transactions on VLSI Systems, 3(1), 1995.

[13] S. Steinke, M. Knauer, L. Wehmeyer and P. Marwedel. An accurate
and fine grain instruction-level energy model supporting software
optimizations. InProc. of PATMOS, Yverdon-Les-Bains, 2001.

[14] P. Strobach. A new technique in scene adaptive coding. InProc. of
EUSIPCO, Grenoble, 1988.

[15] D. K. Wilde. A Library for doing polyhedral Operations. Tech.
Rep. 785, IRISA Rennes, France, 1993.

[16] R. Wilson, R. French et al. An Overview of the SUIF Compiler
System.http://suif.stanford.edu/suif/suif1, 1995.

[17] S. Wuytack, F. Catthoor et al. Power Exploration for Data Domi-
nated Video Applications. InProc. of ISLPED, Monterey, 1996.

